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Abstract
As a leading global cause of mortality, cancer continues to pose a significant challenge. The shortcomings of prevalent cancer 
treatments, such as surgery, radiation therapy, and chemotherapy, necessitate the exploration of alternative therapeutic strategies. 
Selenium nanoparticles (SeNPs) have emerged as a promising solution, with their synthesis being widely researched due to their 
potential applications. Among the diverse synthesis methods for SeNPs, the green chemistry approach holds a distinctive position 
within nanotechnology. This research delves into the anti-proliferative and anticancer properties of green-synthesized SeNPs via the 
cell-free supernatant (CFS) of Lactobacillus casei (LC-SeNPs), with a specific focus on MCF-7 and HT-29 cancer cell lines. SeNPs 
were synthesized employing the supernatant of L. casei. The characterization of these green-synthesized SeNPs was performed 
using TEM, FE-SEM, XRD, FT-IR, UV–vis, energy-dispersive X-ray spectroscopy, and DLS. The biological impact of LC-SNPs on 
MCF-7 and HT-29 cancer cells was examined via MTT, flow cytometry, scratch tests, and qRT-PCR. Both FE-SEM and TEM images 
substantiated the spherical shape of the synthesized nanoparticles. The biosynthesized LC-SNPs reduced the survival of MCF-7 (by 
20%) and HT-29 (by 30%) cells at a concentration of 100 μg/mL. Flow cytometry revealed that LC-SNPs were capable of inducing 
28% and 23% apoptosis in MCF-7 and HT-29 cells, respectively. In addition, it was found that LC-SNPs treated MCF-7 and HT-29 
cells were arrested in the sub-G1 phase. Gene expression analysis indicated that the expression levels of the CASP3, CASP9, and 
BAX genes were elevated after treating MCF-7 and HT-29 cells with LC-SNPs. Further, SeNPs were observed to inhibit migration 
and invasion of MCF-7 and HT-29 cancer cells. The SeNPs, produced via L. casei, demonstrated strong anticancer effects on MCF-7 
and HT-29 cells, suggesting their potential as biological agents in cancer treatment following additional in vivo experiments.
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Introduction

Cancer ranks as the second most common cause of death 
globally, surpassed only by cardiovascular diseases [1]. In 
2020, global cancer rates were estimated at 19.3 million 

cases, resulting in approximately 10 million deaths [2]. 
Women worldwide express a significant concern about 
malignancies, with breast cancer being the most prevalent, 
constituting about 25% of all gynecological cancers [3, 4]. 
Various treatment methods such as surgery, chemotherapy, 
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radiation therapy, and monoclonal antibodies are selected 
based on the patient’s specific circumstances. Nevertheless, 
the current treatments’ limitations in efficacy and safety 
necessitate the exploration of novel technologies to develop 
more effective treatment alternatives [5, 6].

Colorectal cancer (CRC), accounting for 10% of all cancers, 
holds the third position in the global cancer prevalence 
hierarchy and is implicated in a substantial portion of 
cancer-related fatalities [7]. Multiple treatment options for 
CRC, including surgery, chemotherapy, radiation therapy, 
and palliative care, are currently available [8]. Although 
traditional treatments can eliminate cancer cells, they also 
inadvertently harm healthy cells. Consequently, the quest for 
innovative treatment strategies has stimulated the invention 
and progression of novel cancer therapies [6].

In recent years, nanotechnology has made significant 
advances, especially in the creation of various medications. 
The production of nanoparticles represents a significant 
achievement in the effective diagnosis and treatment of 
diverse diseases. The manufacturing of nanoparticles employs 
biological materials such as microorganisms, enzymes, cells, 
and plant extracts [9]. There has been a marked increase in 
interest in deploying biogenetically engineered metallic 
nanoparticles (NPs) for cancer theranostics. The biological 
synthesis of nanoparticles, using organisms such as bacteria, 
actinomycetes, fungi, and plants, has been explored as a 
simpler and more cost-effective alternative to other chemical 
and physical methods [10]. Recently, considerable attention 
has been given to nanoparticle synthesis through green 
methods, using plants and bacteria, due to its numerous 
advantages [11, 12]. One such advantage is that the green 
synthesis of nanoparticles eliminates the need for cell 
cultures, which are labor-intensive and expensive, thereby 
increasing scalability and industrial applicability [13].

The unique characteristics of nanoparticles have recently 
sparked interest in utilizing microbial strains for nanoparticle 
synthesis. The distinct physicochemical properties of 
nanomaterials, compared to their non-nano counterparts, 
have stimulated extensive research in this field over the past 
few decades [14, 15]. Organisms have developed sophisticated 
mechanisms to survive in environments with high 
concentrations of undesirable ions, including transforming the 
chemical nature of a toxic ion into a non-toxic form, ultimately 
leading to the formation of corresponding nanoparticles [16]. 
Therefore, nanoparticles can be considered a byproduct of 
an organism’s resistance mechanism to a particular ion [17].

Selenium (Se) is a vital element that has garnered the 
attention of numerous researchers owing to its unique 
physicochemical and electrical characteristics [18]. This 
crucial micronutrient, found in a variety of sources such 
as organ meats, seafood, plants, cereals, and nuts, is 
integral to human health [19]. Its distinctive properties 
and potential uses in the realms of physics, chemistry, 

and biology have been widely acknowledged [20, 21]. 
As a trace element fundamental to all forms of life, 
selenium constitutes a component of selenocysteine 
in many enzymes, making it indispensable to all living 
beings [22]. In humans, selenium serves as a coenzyme 
for glutathione peroxidases and thioredoxine reductases, 
playing a vital role in the development of the immune 
system, cancer prevention, and antioxidant and antiviral 
effects [23]. Selenium nanoparticles (SeNPs), with their 
unique optical, electronic, electrocatalytic, and biological 
properties, carry considerable potential for technology 
applications across diverse fields, including medicine, 
diagnosis, therapy, electronic devices, catalysis, and 
chemical sensors [24].

SeNPs exhibit an array of biological attributes, such as 
antioxidant [25] and antimicrobial effects [26], immune 
system regulation [27], and tumor prevention [28]. As such, 
SeNPs have been identified as a key type of nanoparticle in 
medical research [29, 30]. Studies have shown that SeNPs 
have less toxicity and display superior biological activity 
when compared to common forms of selenium, such as  se+4 
and  se+6 ions [31, 32]. Hence, SeNPs have been employed as 
a new addition to drug nanocarriers for drug delivery systems, 
particularly as selenium is a necessary dietary micronutrient 
in the form of SeNPs [33]. When scaled to the nanolevel, 
selenium functions as a promising chemo-preventive 
agent with lower toxicity [34, 35]. Several mechanisms of 
SeNPs’ anticancer effects have been identified, including 
the production of reactive oxygen species (ROS), activation 
of apoptotic pathways, mitochondrial dysfunction, DNA 
fragmentation, cell cycle arrest, and disruption of cellular 
homeostasis, [36–39]. In the study at hand, we synthesized 
SeNPs using Lactobacillus casei (LC-SeNPs) cell-free 
supernatant to assess their anticancer effects on MCF-7 
breast cancer and HT-29 colon cancer cell lines.

Material and Method

Reagents

Sodium selenite  (Na2SeO3), RPMI-1640 medium, fetal 
bovine serum (FBS, courtesy of DENAzist Asia’s Co), and 
penicillin–streptomycin (PS) 100 X were all procured from 
Gibco, ThermoFisher Scientific (Waltham, MA, USA). MTT 
[3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium 
bromide] and DMSO (dimethyl sulfoxide) were sourced 
from Merck (Germany). The Annexin V-FITC kit and 
2′-7′-dichlorodihydrofluorescein diacetate (DCFHDA) were 
obtained from Roche (Munich, Germany). Ultra-pure water 
was generated using Milli-Q (Millipore, Darmstadt, Germany). 
DAPI (4′,6-diamidino-2-phenylindole dihydrochloride) was 
purchased from Sigma-Aldrich (St. Louis, MO, USA).
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Preparation of Supernatant and Production 
of LC‑SeNPs

The L. casei (Strain 6904) required for the synthesis of sele-
nium nanoparticles was procured from the Iranian Biologi-
cal Resources Center (IBRC). Initially, the selected strain 
was grown in 50 mL de Man, Rogosa, and Sharpe (MRS) 
(Merck Millipore) liquid culture medium in a shaker incu-
bator at 30 °C, with a speed of 150 rpm, over 18 h. Fol-
lowing this, 1 mL of the cultured L. casei was introduced 
to 100 mL MRS liquid culture medium (1% V/V), and the 
mixture was incubated at the same conditions for 72 h. The 
culture supernatant, after 72 h, was collected via centrifuga-
tion at 6000 rpm (Hettich, Germany) at room temperature 
for 20 min. This supernatant was then condensed using a 
freeze dryer (Alpha 1–2 LDPlus, Christ, Germany) until 
the volume reduced to 30 mL. This concentrated super-
natant was then employed in the synthesis of LC-SeNPs. 
LC-SeNPs were produced by slightly modifying the pro-
tocol established by Xu et al. [40]. To summarize, 4 mM 
of  Na2SeO3 was dissolved in 10 mL of distilled water, fol-
lowed by the addition of 10 mL of bacterial supernatant, and 
the mixture was stirred at 40 °C for 3 h and 350 rpm. The 
emergence of an orange color indicated successful formation 
of selenium nanoparticles. The precipitate was rinsed with 
distilled water, then subjected to 10-min centrifugation at 
13,000 rpm (Eppendorf 5804R, Germany) three times, and 
the final product was left to dry in the incubator.

Characterization of the Produced LC‑SeNPs

Post-production, the structure, and morphology of the syn-
thesized nanoparticles were confirmed using a variety of 
methods, such as ultraviolet–visible spectroscopy (UV–vis) 
(UV 1601, Shimadzu), field emission scanning electron 
microscopy (SEM) (Zeiss, Sigma VP model), energy-dis-
persive X-ray spectroscopy (EDX) (Zeiss, Sigma VP model), 
transmission electron microscopy (TEM) (Leo 906, Zeis-
s100KV model, Germany), X-ray powder diffraction (XRD) 
(PANalytical’s X′Pert PRO MRD), and Fourier transform 
infrared spectroscopy (FT-IR) (Spectrum Two FT-IR Spec-
trometer (Perkin Elmer)). Dynamic light scattering parti-
cle size distribution analysis (DLS) and zeta potential of 
LC-SeNPs were determined by Malvern Instruments Nano 
Zetasizer (Worcestershire, UK). The characterization tests 
were conducted as per our earlier study [41].

Cell Culture

Cell lines of HT-29, MCF-7, and human foreskin fibro-
blasts (HFF) were purchased from the Pasture Institute 
Cell Bank in Iran, Tehran. The cells were grown in RPMI 
1640 medium (Gibco, USA) that was supplemented with 

1% (V/V) penicillin–streptomycin and 10% heat-inactivated 
FBS, and 2 mM L-glutamine. The cells were kept in a 5% 
 CO2 incubator at 37 °C.

Assessment of LC-SeNP Cytotoxicity via MTT Assay.
The MTT assay was utilized to evaluate the cytotoxic impact 

of LC-SeNPs on the HT-29 and MCF-7 cell lines. Initially, the 
cells (1 ×  104 cells/well) were seeded. Subsequently, HT-29 and 
MCF-7 cancer cells were exposed to varying concentrations 
of the LC-SeNPs (3.125, 6.25, 12.5, 25, 50, and 100 mg/mL) 
at 24-, 48-, and 72-h intervals at 37 °C and 5%  CO2. After 
incubation, 20 μL of MTT dye solution was added to each 
well, and the plates were incubated for 24 h. The MTT dye was 
then removed, and 100 μL of DMSO was added to each well. 
Ultimately, the absorbance of the microwells was measured 
at 570 nm using the ELISA reader. This entire process was 
repeated thrice, along with the control group, and the  IC50 
value was determined using the obtained OD values as per the 
formula given in reference [12].

Flow Cytometry Assessment of Apoptosis

Apoptotic induction was detected in HT-29 and MCF-7 cells 
 (105 cells/well), treated with  IC50 concentration of LC-SeNPs 
for a duration of 24 h, as per the guidelines provided in the 
Annexin V-FITC kit (eBioscience, Affymetrix, USA) manual. 
The stained cells’ analysis was conducted using a flow 
cytometry apparatus (Biocompare, USA). For comparison, 
untreated HT-29 and MCF-7 cells were utilized as a baseline 
control [42].

DAPI Staining

The DAPI staining protocol is employed to assess apoptosis 
in HT-29 and MCF-7 cells exposed to LC-SeNPs. The cells 
are initially seeded in 6-well plates before treating with an 
 IC50 concentration of LC-SeNPs for 24 h and fixation with 
0.4% formaldehyde. Following fixation, the cells are stained 
with 0.5 mg/mL DAPI dye for 5 min at ambient temperature. 
Afterward, the cells are thoroughly rinsed twice with PBS 
and inspected under the Olympus IX81 inverted fluorescence 
microscope (Olympus, Hamburg, Germany). Apoptosis is 
ultimately deduced from the detected nuclear fragmentation 
[43].

Apoptotic Genes Expression via qRT‑PCR

The relative expression of apoptotic genes, namely, BCL2-
associated X (BAX), BCL2 apoptosis regulator (BCL2), 
Caspase 3 (CASP3), and Caspase 9 (CASP9), is determined 
through qRT-PCR.

Cell viability(%) = (Abs test cells∕Abs control cells) × 100
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Initially, total RNA from treated and untreated cells is 
extracted following the instructions of an RNA extraction kit 
(CinnaGen, Iran). The extracted RNA’s quality and quantity 
are then verified using a nanodrop (IMPLEN GMBH). This 
is followed by cDNA synthesis using the Revers AidTM 
First Strand cDNA Synthesis Kit (Fermentas, USA). The 
expression of BAX, BCL2, CASP3, and CASP9 genes is then 
scrutinized using qRT-PCR on a Light Cycler (Bioneer, 
Daejeon, Korea), with beta-actin (ACTB) employed as an 
internal control.

The cDNA synthesis involves the addition of 3 μg of total 
RNA to a blend containing 1 μL of 10 × buffer and 1 μL of 
DNAse, incubated at 37 °C for 30 min. Afterward, 1 μL 
EDTA is added and further incubated at 65 °C for 30 min to 
inhibit DNAse activity. A mixture of 4 μL of 5 × buffer, 1.5 
μL of MgCl2, 2 μL of dNTP mix (10 mM), 2 μL of random 
hexamer primer, 0.5 μL of RNasin (40 Unit/μL), and 1 μL 
of reverse transcriptase (RT) enzymes is then prepared and 
incubated at 42 °C for 60 min. Finally, the RT enzyme is 
deactivated by heating at 70 °C for 10 min.qRT-PCR reac-
tions are set up in a final volume of 20 μL, comprising 10 
μL master mix (Bioneer, South Korea), 1 μL of each primer 
(10 mM) (Table 1), 1 μL of cDNA, and 8 μL of PCR-grade 
H2O. The thermal cycling parameters consist of initial DNA 
denaturation at 95 °C for 1 min, followed by 40 cycles of 
95 °C for 20 s, 62 °C for 40 s, and 72 °C for 10 s. The rela-
tive change in gene expression for all genes, compared to the 
ACTB control gene, is calculated using the widely accepted 
 2−△△Ct method [41, 42].

Cell Cycle Assay

HT-29 and MCF-7 cell lines were cultured in 6-well 
plates  (106 cells/well) and treated with a half maximal 
inhibitory concentration  (IC50) of LC-SeNPs for a period 
of 24 h. Subsequent to the treatment, cells were rinsed 
twice with PBS and underwent centrifugation at 1500 rpm 
for 5 min. Thereafter, cells were stained with 250 mL of 
propidium iodide (PI) dye and incubated for half an hour. 
A second round of centrifugation was then conducted at 

5000 rpm for 5 min at room temperature. The cell cycle 
stages were identified using a BD FACScan Cell Flow 
Cytometer (Becton Dickinson, USA). The outcomes 
were conveyed as the percentage representation of cells 
in each phase of the cell cycle using the Flow Jo software 
(Version 7.6.1) [12].

Cellular Uptake of LC-SeNPs.
On 6-well culture plates, 1 ×  105 MCF-7 cancer cells 

were seeded, and the plates were incubated for 24  h 
at 37  °C in 5%  CO2. The cells were treated with  IC50 
concentration of LC-SeNPs and Cy7 dye (7 μg/mL) for 
24  h. Then, the cells were trypsinized, transported to 
tubes, and centrifuged after being washed three times 
with PBS to remove the free nanoparticles. For quick 
examination, the pellets were re-suspended in 0.5 mL 
of PBS, fixed in 4% paraformaldehyde, and stained with 
DAPI. At last, the fluorescence amplitude of each well 
was determined using a microplate reader (Biotek Synergy 
HT, USA) with an excitation wavelength of 750 nm and an 
emission wavelength of 775 nm. Becton Dickinson’s Cell 
Quest software was used to gather and evaluate data from 
1 ×  104 cells. A confocal laser-scanning microscope (A1, 
Nikon, Switzerland) was used to detect the cellular uptake 
of LC-SeNPs [44].

Wound Healing Assay

Cancer cells under growth were subjected to trypsinization, 
and 2 ×  105 cells were dispensed per well in a 12-well 
plate, followed by a 24-h incubation period. Once 90% cell 
confluency was achieved, a scratch was introduced via a 
200-μL sterile pipette tip to create a cell-free zone. Cellular 
debris was then eliminated with a gentle wash using culture 
medium, and initial images were captured (0 h). The HT-29 
and MCF-7 cells were left to invade for 24 h, and the impact 
of nanoparticles on wound healing was evaluated at the 
conclusion of the 24-h incubation period via secondary 
microscopy. The progress of wound closure was analyzed 
using the Image-J 1.45 software [45].

Table 1  Primer characteristics 
of target genes

Genes Reverse or 
forward

Primer sequences Size (bp) Tm (°C) Length 
of PCR 
product

BAX F
R

5′-ATG TTT TCT GAC GGC AAC TTC-3
5′-AGT CCA ATG TCC AGC CCA T-3′

21
19

55 133 bp

BCL2 F
R

5′-ATG TGT GTG GAG ACC GTC AA-3′
5′-GCC GTA CAG TTC CAC AAA GG-3′

20
20

65 141 bp

CASP3 F
R

5′-TGT TTG TGT GCT TCT GAG CC-3′
5′-CAC GCC ATG TCA TCA TCA AC-3′

20
20

60 210 bp

CASP9 F
R

5′-CAT TTC ATG GTG GAG GTG AAG-3′
5′-GGG AAC TGC AGG TGG CTG -3′

21
18

65 149 bp
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Analysis of Statistical Data

The GraphPad Prism 8.0.2 software was utilized for statistical 
analysis. Quantitative data were expressed as mean ± standard 
deviation (SD), while qualitative information was represented as 
a percentage. The collected data were then examined using t-test, 
one-way and two-way analysis of variance (one-way ANOVA), 
with a P < 0.05 indicating a statistically significant disparity.

Results and Discussion

Physiochemical Characterization of LC‑SeNPs 
Produced Through Eco‑friendly Synthesis

The spherical form of LC-SeNPs was affirmed by the 
visual evidence provided by TEM and FE-SEM images 
(Fig. 1 A and B) [46]. The EDX spectrum showed a high 
Se peak at 1.4  keV (64.6%), suggesting the preferred 
purity of Se in the synthesized LC-SeNPs. In our research, 
we observed O (6.5%) and C (28.9%) peaks in the EDX 
graph encircling the LC-SeNPs (Fig. C).

The protein molecules probably involved in capping the 
synthesized nanoparticles are suggested by the detection 
of carbon and oxygen peaks. This inference is in line with 
prior characterization studies of SeNPs synthesized with 
the use of Streptomyces minutiscleroticus, Pseudomonas 
aeruginosa ATCC 27853, and Bacillus mycoides [47–49].

DLS analysis provided data on the size distribution and 
the polydispersity index (PDI) of SeNPs (Fig. 1D) [50]. 
SeNPs had an average size of 90.78 nm and a PDI of 0.28 
(Fig. 1D).

Earlier studies have noted a range of sizes for SeNPs 
produced through bacterial mediation. These sizes were 
observed using various bacterial strains, including Lac-
tobacillus casei ATCC 393 (spherical shape, 50–80 nm), 
Escherichia coli (spherical shape, 60 nm), and Strep-
tomyces bikiniensis strainess_ama-1 (spherical shape, 
50–100 nm) [40, 51, 52].

The LC -SeNPs displayed a  zeta  potent ia l 
of − 17.30 ± 0.56  mV, indicating satisfactory stability 
(Fig. 1E). The charge distribution on the LC-SeNPs can be 
assessed by the zeta potential, which can forecast the stabil-
ity of colloidal SeNPs [53]. This observed event could be 
due to the inherent capping of the nanoparticles by biomol-
ecules, providing an additional advantage in environmentally 
friendly biosynthesis [54].

UV–vis spectroscopy verified the existence of SeNPs, 
formed through the reduction of selenium ions to elemental 
LC-SeNPs, with a peak observed at approximately 269 nm 
(Fig. 2A) [55, 56].

Further, XRD analysis was used to determine the 
crystallinity of SeNPs [57]. The XRD diffractogram 
demonstrated the creation of SeNPs, courtesy of the 
bacterial supernatant reducing agents, which led to the 
reduction of selenium. The XRD pattern of the synthesized 

Fig. 1  SEM (A) and TEM (B) micrograph of biosynthesized SeNPs; EDX spectrum (C); DLS analysis (D) and ζ-potential of the of biosynthe-
sized SeNPs (E)
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selenium SeNPs revealed a broad diffraction peak at lower 
angles, confirming their amorphous or non-crystalline state. 
This finding was noted in the 2B dataset. A peak index of 
30.06° is associated with the crystalline metal structure of 
SeNPs (Fig. 2B).

The lack of additional pronounced selenium peaks, 
coupled with the broadening observed in the existing 
diffractogram, can be attributed to the binding of bacterial 
supernatant biomolecules to LC-SeNPs. This correlation 
brings about a loss of crystallinity, resulting in the formation 
of an amorphous selenium structure. This outcome concurs 
with previous scientific endeavors focused on the eco-
friendly fabrication of SeNPs [58–60]. Moreover, the FT-IR 
spectrometry of bacterial supernatant was used in the green 
synthesis of SeNPs to identify the specific biomolecules 
involved in the reduction and capping of SeNPs [61]. 
Various biomacromolecules, predominantly proteins, have 
been found to participate in the reduction of selenite and 
selenate, leading to the stabilization of these compounds 
into SeNPs [54].

FT-IR spectrometry displayed a prominent and extensive 
peak at 3434  cm−1, linked to the tensile absorption of O–H 
and N–H groups found in polysaccharide compounds and 

amino groups in bacterial proteins. The broad peak was 
a result of peak interferences related to the supernatant 
components, which included the absorption of C-H tensile 
vibrations connected with the alkene compounds' double 
bonds above 3000  cm−1. The absorption peak of C = O and 
C-N bonds in the nucleotides and nitrogenous compounds of 
supernatant protein prominently appeared at 1618  cm−1 and 
1381  cm−1, respectively. The tensile vibration frequencies 
related to C-O–H and C–O–C bonds of polysaccharide 
compounds were faintly visible at 1000  cm−1. Off-plane 
bending vibrations associated with C = C-H bonds were 
exhibited at 617 and 995  cm−1 (Fig. 3A).

In the FT-IR spectrum of reduced SeNPs, the presence 
of several peaks is associated with the coating of SeNPs 
by diverse molecules. The absorption peak is related to 
the tensile vibrations of the O–H and N–H groups of 
polysaccharides and amino groups, which are broadly due to 
the peak overlap around 3437  cm−1. The tensile vibrations 
absorption of the C-H aliphatic bonds of polysaccharide 
compounds at 2922   cm−1, absorption of the carbonyl 
group C = O of proteins and nucleotides at 1625  cm−1, the 
absorption peak of the C-N bond of nitrogenous compounds 
at 1362  cm−1, C-O bond of polysaccharide derivatives at 
1003  cm−1, tensile vibrations of the C-O ester group of fats or 
phospholipids at 1264  cm−1, and the absorption peak of the 
tensile vibration of the Se-O bond observed on the surface of 
SeNPs at 492  cm−1 were also detected. The shift at the tensile 
absorption peak of the C = O bond from 1618 to 1625  cm−1 
compared to the initial spectrum could be connected to the 
binding of the supernatant organic compounds to the SeNPs’ 
surface (Fig. 3B) [62]. The results of this study highlight 
the biosynthesis and stabilization of SeNPs through the 
involvement of bacterial proteins and metabolites [63].

In Vitro Cytotoxicity of LC‑SeNPs

The MTT assay was used to determine the cytotoxicity 
and cell viability of LC-SeNPs. The study demonstrated a 
notable decrease in the survival rates of HT-29 and MCF-7 
cells when exposed to all concentrations of LC-SeNPs, in 
contrast to the control group. The most significant drop in 
cell survival was observed at the 100 μg/mL concentration of 
LC-SeNPs (P < 0.0001). Additionally, a marked variation in 
the viability of HT-29 and MCF-7 cells was detected across 
concentrations of 12.5, 25, 50, and 100 μg/mL (Fig. 4A). 
Interestingly, MCF-7 cells exhibited substantially lower 
survival compared to HT-29 cells. The estimated  IC50 values 
of LC-SeNPs for MCF-7 and HT-29 cells were 15.72 and 
32.37 μg/mL, respectively (Fig. 4B). A significant difference 
in the  IC50 values of LC-SeNPs was discerned after 24 h 
(P < 0.01) (Fig. 4C). These findings suggest that as the 
concentration of LC-SeNPs escalated, the survival rate of 
cancer cells diminished.

Fig. 2  UV–visible absorption spectrum (A) and X-ray diffraction 
spectra (B) of SeNPs synthesized using Lactobacillus casei extract
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Green synthesized LC-SeNPs exerted a far lesser 
impact on normal HFF cells compared to the HT-29 and 
MCF-7 cancer cells (Fig. 4D). MTT assay demonstrated 
more than 70% cell viability for HFF cells after treatment 
with a 100-µg/mL concentration of LC-SeNPs. The  IC50 
value of LC-SeNPs for HFF cells was calculated as 
738 µg/mL. The outcomes indicated a very low toxicity 
of LC-SeNPs against HFF cells, thus attesting their 
biocompatibility. The cytotoxic effect of LC-SeNPs on 
cancer cells aligns with the findings of other studies, 
reaffirming our results [64, 65].

The uptake and cytotoxicity of metallic nanoparticles 
(NPs) within cells are influenced by several factors 
including their size, shape, concentration, the materials 
coating them, surface charge, and surface functionalization. 
Furthermore, the method of biosynthesis of metallic 
NPs, particularly when derived from natural sources, 
significantly impacts their bioactivity. A variety of 
biomolecules are involved in microbial synthesis, which 
act as capping agents during biosynthesis procedures 

[66]. Numerous research findings have highlighted the 
exceptional ability of SeNPs to cause cytotoxicity in cancer 
cells via multiple molecular and cellular mechanisms. 
These include cell cycle disruption, oxidative stress, 
mitochondrial damage, DNA destruction, and apoptosis 
initiation [67].

Recent investigations have revealed that the cellular 
membrane has a crucial role in the toxicity induced by 
LC-SeNPs in cancerous cells. SeNPs are found to alter 
the biomechanical characteristics of cancer cells, notably 
leading to a marked decrease in adhesion force and Young's 
modulus [30, 68].

Tabibi et al., through their examination of the anticancer 
effects of SeNPs on MCF-7 and HT-29 cell lines, revealed 
that a 100-µM concentration of SeNPs inhibited more 
than 75% of cancer cell growth [69]. Ranjitha et al. also 
reported potent cytotoxic activity of synthesized SeNPs 
against the HT-29 cell line, showing 40.5%, 33%, and 
23.7% of cell viability at 2 μg/mL, 4 μg/mL, and 30 μg/
mL concentrations, respectively [70].

Fig. 3  Fourier transform 
infrared spectroscopy spectra of 
Lactobacillus casei extract (A) 
SeNPs synthesized using Lacto-
bacillus casei extract (B)
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Wadhwani et  al. reported that SeNPs, synthesized 
using Acinetobacter sp.sW30, resulted in 53.5%, 26.6%, 
and 77% cell viability at a concentration of 100 μg/mL 
against 4T1, MCF-7, and HEK293 cells, respectively 
[71]. Biosynthesized SeNPs, using Idiomarina sp.PR58-
8, exhibited a dose-dependent cytotoxicity against HeLa 
cells, with only 3% viability observed at a concentration of 
100 μg/mL. No toxicity was detected against HaCaT normal 
cells [72].

Biogenic SeNPs, synthesized using Streptomyces 
minutiscleroticus M10A62, led to 99.5% and 100% cyto-
toxicity against HepG2 and HeLa cells [47].

The  IC50 values of SeNPs, synthesized by Streptomyces 
bikiniensis strainess_ama-1, were found to be 75.96 μg/mL 
for HepG2, and 61.86 μg/mL for MCF-7 cancer cells [52].

A significant death rate in MCF-7cancer cells was noted 
following the treatment with SeNPs synthesized using Bacil-
lus sp. MSh-1  (IC50: 41.5 ± 0.9 μg/mL) [73].

Comparing  IC50 values, it was clear that the LC-SeNPs 
in this study demonstrated potent antiproliferative activity 

against MCF-7 and HT-29 cancer cells, as compared to other 
green synthesized SeNPs.

LC‑SeNPs Triggered Apoptosis in MCF‑7 and HT‑29 
Cells

In the conducted research, the analysis via flow cytometry 
revealed the cytotoxic influence of LC-SeNPs resulted in 
both early and late stages of apoptosis in MCF-7 and HT-29 
cells. Upon evaluation of the data, it was observed that 66% 
of MCF-7 and 73% of HT-29 cells remained viable. Notably, 
early apoptosis was evident in 10% of HT-29 and 14% of 
MCF-7 cells, while 13% of HT-29 and 14% of MCF-7 cells 
were in late apoptosis. Additionally, necrosis was found in 
4% of HT-29 and 5% of MCF-7 cells. The results highlighted 
a notably high toxicity of LC-SeNPs towards the MCF-7 and 
HT-29 cancer cells (P < 0.0001) (Fig. 5).

As depicted in Fig. 6, DAPI staining was performed on 
MCF-7 and HT-29 cells. Treated MCF-7 and HT-29 cancer 
cells displayed bright blue fluorescence with higher intensity 

Fig. 4  Comparison of the cell viability percentage of MCF-7 and 
HT-29 cells treated with different concentrations (3.125, 6.25, 12.5, 
25, 50, and 100 mg/mL) of LC-SeNPs compared to the control group 
(A). Comparison of the  IC50 values of cells treated with different 
concentrations (B). Comparison of the difference between the  IC50 
values of LC-SeNPs in MCF-7 and HT-29 after 24 h (C). Investigation 

of the cell viability percentage of normal human foreskin fibroblast 
(HFF) cells treated with different concentrations of LC-SeNPs 
compared to the control group (D). (****P < 0.0001, ***P < 0.001, 
**P < 0.01, and *P < 0.05). The results are expressed as mean  SD of 
three independent experiments (n = 3)
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compared to control-untreated cells. The untreated cells had 
a round shape. The nuclei stained homogeneously with less 
bright blue fluorescence. A pronounced blue fluorescence, 
a result of nuclear chromatin condensation, was noted in 
treated MCF-7 and HT-29 cells compared to those that were 
untreated. The condensation patterns of chromatin in the cell 
nuclei treated with LC-SeNPs provided evidence of apopto-
sis in MCF-7 and HT-29 cancer cells (Fig. 6). In accordance 
with previous findings, morphological alterations such as 
cell shrinkage, membrane blebbing, nuclear fragmentation, 
and chromatin condensation were observed in Hela, HepG2, 
and HT-29 cells [70, 74, 75]. Apoptosis is a crucial mecha-
nism in the death of cancer cells [76], and in alignment with 
prior studies, our results indicate that apoptosis is the pri-
mary cause of cancer cell mortality [77, 78].

Apoptosis is induced through three primary pathways: (1) 
the mitochondrial pathway (intrinsic apoptotic pathway), (2) 
the death receptor pathway (extrinsic apoptotic pathway), 
and (3) the endoplasmic reticulum (ER) pathway [79]. The 
mitochondrial-dependent intrinsic apoptosis pathway is trig-
gered in response to intrinsic proapoptotic stimuli like DNA 
damage, chemotherapeutic agents, and intracellular ROS. 
The intrinsic mitochondrial pathway is managed by pro and 
anti-apoptotic structural proteins of the B-cell lymphoma 2 
(Bcl-2) family, which regulate the permeability of the mito-
chondrial outer membrane to proteins such as cytochrome 
c [80, 81]. The initiation of this pathway eventually results 
in the release of Bcl-2 pro-apoptotic proteins from the 
mitochondria, the activation of the caspase cascade, and 
ultimately, the induction of apoptosis. However, the Bcl-2 

Fig. 5  Flow cytometry plot to evaluate apoptosis induced by LC-SeNPs on the MCF-7, HT-29, and control cells after 24 h (****P < 0.0001 and 
**P < 0. 01)
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anti-apoptotic protein hinders the release of cytochrome c 
from the mitochondria [80, 82].

The extrinsic or death receptor pathway induces 
apoptosis through the binding of death ligands (FasL, 
TRAIL) to their respective death receptors (TNFRSF), 
forming the death signaling complex (DISC), and 
subsequently activating caspase [80, 83]. BAX, Caspase 
3, and Caspase 9 proteins, encoded by related genes, 
are classic proteins involved in the intrinsic pathway of 
apoptosis. It is well established that Caspase 9 activates 
Caspase 3, which is critical for the execution phase of 
apoptosis, and an increase in these protein levels is an 
indication of apoptosis [84].

The authors’ hypothesis concerning the anticancer 
properties of SeNPs revolves around the interaction with 
endogenous copper, particularly copper bound to chroma-
tin, which leads to Reactive Oxygen Species (ROS) genera-
tion. Notably, certain types of cancer exhibit higher copper 
levels within cells and in serum. SeNPs have the capacity 
to form a complex with copper bound to chromatin, conse-
quently reducing Cu (II) to Cu (I). The reoxidation of Cu (I) 
then triggers substantial ROS production, which serves to 
effectively eliminate cancer cells [52]. Thus, SeNPs emerge 
as potential chemopreventive and chemotherapeutic agents 
against human cancers [85].

This study explored the gene expression changes in 
HT-29 and MCF-7 cells following treatment with LC-
SeNPs, particularly focusing on genes linked to apoptosis 

induction. The qRT-PCR results revealed an increase 
in the expression of BAX, CASP3, and CASP9 genes as 
compared to normal cells, indicating that LC-SeNPs 
therapy stimulates apoptosis. However, no marked decrease 
was noted in the expression of the BCL2 gene, an anti-
apoptotic agent, post LC-SeNPs treatment in both cell 
types. Moreover, the expression of BAX, CASP3, and 
CASP9 genes in MCF-7 cells exposed to LC-SeNPs was 
significantly higher than in HT-29 cells (Fig. 7). The study 
by Huang et al. demonstrated that Tf-SeNPs exert a strong 
cytotoxic effect on cancer cells by inducing apoptosis 

Fig. 6  DAPI staining of MCF7, 
HT-29, and control cells to 
show apoptosis induced by 
LC-SeNPs

Fig. 7  The comparison of expression levels of genes responsible for 
apoptosis induction after 24 h of treatment with LC-SeNPs 
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through both intrinsic and extrinsic pathways [36]. Othman 
et al. explored the anticancer properties of SeNPs, revealing 
that SeNPs containing berberine can stimulate apoptosis 
by down-regulating BCL2 and upregulating the expression 
of BAX and CASP3 genes [86]. Pi et  al. reported that 
SeNPs notably enhanced apoptosis and necrosis in MCF-7 
cells compared to control cells (12.74% versus 4.27%). 
Additionally, the expression of key apoptosis regulatory 
proteins like Caspase 9 and Caspase 3 was markedly 
higher than in the control group [87]. Furthermore, 
biosynthesized black ginger-selenium nanoparticles were 
found to induce apoptosis by upregulating BAX, Caspase 3, 
and downregulating BCL2 [88]. The anticancer properties 
of biosynthesized SeNPs were also reported against A549 
cancer cells and human cervical cancer cells, with findings 
indicating a significant increase in caspase-3 activity, ROS 
overproduction, and mitochondrial dysfunction [51].

Collectively, these findings align with prior research 
results, reinforcing the concept that SeNPs possess 
cytotoxic effects and promote apoptosis in cancer cell 
lines [89, 90].

Impact of LC‑SeNP Treatment on Cell Cycle Arrest

This study observed a hindered proliferation of HT-29 and 
MCF-7 cells when treated with SeNPs, resulting in cell cycle 
arrest in the sub-G1 phase. Cell cycle analysis revealed that 
LC-SeNPs obstructed the cell cycle, leading to sub-G1 phase 
arrest in both MCF-7 and HT-29 cells, which effectively 
inhibited cell proliferation. Consequently, the percent-
age of cells in the sub-G1 phase was significantly higher 
in HT-29 and MCF-7 cells treated with LC-SeNPs com-
pared to the control group (17.69% and 25.29% vs. 0.62%, 
respectively). In contrast, the number of HT-29 cells in the 

Fig. 8  Cell cycle analysis of MCF-7 and HT-29 cells treated with LC-SeNPs compared to the control group (****P < 0.0001, ***P < 0.001, and 
*P < 0.05)
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G1 phase decreased significantly compared to the control. 
Additionally, the number of MCF-7 cells in the S and G2 
phases showed a significant reduction compared to the con-
trol (Fig. 8). Several studies have demonstrated the impact 
of SeNPs on cell cycle arrest and cell death pathways in dif-
ferent cancer cell lines. Our findings align with these studies, 
as sub-G1 phase cell cycle arrest was observed, as reported 
in other studies as well [74, 91].

The mechanisms of cell cycle arrest and cell death 
can vary depending on the specific selenium compounds 
used and the cell phenotype [92]. SeNPs can selectively 
enter cancer cells through endocytosis and induce cancer 
cell apoptosis via signal transduction pathways [87, 93]. 
Conversely, various studies have reported selenite’s ability 
to arrest the cell cycle at the S or G2/M phases [94–96]. 
For instance, Bidkar et al. explored SeNPs as a delivery 
system and demonstrated that paclitaxel-loaded SeNPs 
arrested cancer cells in the G2/M phase in a dose-dependent 
manner, resulting in a significant antiproliferative effect on 
A549, MCF-7, HeLa, and HT-29 cells [97]. Lopez-Heras 
et al. proposed that SeNPs inhibit the growth of HepG2 cells 
by inducing cell cycle arrest in the S phase. This effect is 
mediated by the re-regulation of the eIF3 protein complex, 
which impacts the protein synthesis machinery and inhibits 
cell cycle progression [98].

Uptake of LC‑SeNPs

Figure 9A and B show fluorescence microscopy photographs 
of MCF-7 cells after 24 h of treatment with LC-SeNPs at 
37 °C. It appears that the cells’ fluorescence was boosted 
following treatment with the  IC50 concentration of LC-SeNPs. 
The intensity of the fluorescence of the cells was monitored 
using a microplate reader in order to further quantify the 
cellular uptake efficiency of the LC-SeNPs (Fig. 9C). Figures 
also depict the cellular uptake of LC-SeNPs by malignant cells 
after 24-h incubation at the  IC50 concentration of LC-SeNPs at 
37 °C. When cells were treated with LC-SeNPs, the efficiency 
of cellular uptake had improved (Fig. 9). Previous studies have 
suggested that SeNPs have the capacity to penetrate various 
cell types through unique endocytosis pathways, thus eliciting 
toxic effects [99]. Moreover, SeNPs have exhibited greater 
selectivity between normal and cancer cells compared to  Se+IV 
at similar concentrations, in addition to their distinct anticancer 
effectiveness. Specifically, cancer cells selectively internalize 
SeNPs via endocytosis, which then induce cell apoptosis by 
activating apoptotic signal transduction pathways [87, 93]. 
To date, numerous studies on intracellular mechanisms have 
suggested that SeNPs enter cancer cells via endocytosis and 
trigger apoptosis of cancer cells through signal transduction 
pathways [36, 100, 101]

Fig. 9  Fluorescence images of MCF-7 cells after 24 h incuba-
tion with LC-SeNPs and Cy7 dye, (A) MCF-7 untreated cells (con-
trol) (B) MCF-7 cells treated with IC50 concentration of LC-SeNPs 

and Cy7 dye. (C) Quantitative analysis of cellular uptake of LC-
SeNPs  and Cy7 dye by MCF-7. Data represent means ± standard 
deviations (n=3). Significant difference specified as *P < 0.05
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Suppression of Migration in MCF‑7 and HT‑29 Cell 
Lines by LC‑SeNPs

In addition to studying the impact of metal nanoparticles on 
cell proliferation, this research also investigated their effect 
on cell motility. Notably, metastasis is a critical characteristic 
of cancer, and approximately 90% of cancer-related deaths 
are attributed to metastasis [102]. Consistent with prior 
studies, SeNPs were found to inhibit cell migration and 
invasion [89]. Our data also indicate that apart from their 

antiproliferative effect, SeNPs have inhibitory effects on the 
migration of cancer cells. The scratch test was employed to 
examine the migration capacity of HT-29 and MCF-7 cells 
in the presence of selenium nanoparticles. As illustrated in 
Fig. 10A, 24 h after SeNP treatment, the migration rate of 
MCF-7 cells significantly decreased compared to the control 
group (P < 0.01). Furthermore, the scratch test revealed a 
significantly lower migration rate in HT-29 cells treated 
with LC-SeNPs within 24 h compared to the control group 
(P < 0.05) (Fig. 10B).

Fig. 10  The scratch test to investigate the capacity of MCF-7 (A) and HT-29 (B) cells to migrate under the presence of LC-SeNPs. 
The migration rate of MCF-7 (**P < 0.01) and HT-29 (*P < 0.05) cells during 24-hour treatment with LC-SeNPs compared to the control group
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After 24 h, the wounds of the MCF-7 control, HT-29 
control, and LC-SeNPs in MCF-7 and HT-29 groups 
showed approximately 80%, 70%, 35%, and 20% healing, 
respectively (Fig. 10C).

Similarly, Xia et al. reported a wound healing rate of 
approximately 21.9% after 24 h with SeNPs@Am treatment. 
The use of SeNPs@Am inhibited the aggressiveness of 
cancer cells [75].

Li et  al. demonstrated that biologically synthesized 
SeNPs with Galangin significantly suppressed the migration 
of HepG2 cells [103].

Conclusion

In summary, this study reveals the anticancer activity of LC-
SeNPs synthesized by L. casei, which inhibits the proliferation 
and cell cycle of HT-29 and MCF-7 cells, and induces 
apoptosis through the up-regulation of apoptosis-related 
genes. Furthermore, LC-SeNPs exhibit inhibitory effects on 
the migration of HT-29 and MCF-7 cells, providing a potential 
strategy to prevent the invasion of cancerous cells. These 
findings offer in vitro evidence supporting the anticancer and 
anti-metastatic effects of LC-SeNPs, forming a basis for further 
pre-clinical and clinical investigations.
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