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Abstract
Green evolutionary products such as biologically fabricated nanoparticles (NPs) pose a hazard to aquatic creatures. Herein, 
biogenic silver nanoparticles (AgNPs) were synthesized by the reaction between ionic silver  (AgNO3) and aqueous onion 
peel extract (Allium cepa L). The synthesized biogenic AgNPs were characterized with UV–Visible spectrophotometer, 
XRD, FT-IR, and TEM with EDS analysis; then, their toxicity was assessed on common carp fish (Cyprinus carpio) using 
biomarkers of haematological alterations, oxidative stress, histological changes, differential gene expression patterns, and 
bioaccumulation. The 96 h lethal toxicity was analysed with various concentrations (2, 4, 6, 8, and 10 mg/l) of biogenic 
AgNPs. Based on 96 h  LC50, sublethal concentrations (1/15th, 1/10th, and 1/5th) were given to C. carpio for 28 days. At the end 
of experiment, the bioaccumulations of Ag content were accumulated mainly in the gills, followed by the liver and muscle. 
At an interval of 7 days, the haematological alterations showed significance (p < 0.05) and elevation of antioxidant defence 
mechanism reveals the toxicity of biogenic synthesized AgNPs. Adverse effects on oxidative stress were probably related to 
the histopathological damage of its vital organs like gill, liver, and muscle. Finally, the fish treated with biogenic synthesized 
AgNPs were significantly (p < 0.05) downregulates the oxidative stress genes such as Cu–Zn SOD, CAT, GPx1a, GST-α, 
CYP1A, and Nrf-2 expression patterns. The present study provides evidence of biogenic synthesized AgNPs influence on 
the aquatic life through induction of oxidative stress.
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Introduction

An increasing number of technologies are employed for 
manufacturing the engineered nanomaterials in many sci-
entific and industrial sectors. Nowadays, nanoparticles (NPs) 
have applications in textiles, electronics, paints, cosmetics, 
and pharmaceuticals industries [1–4]. NPs are commonly 
used for their unique physico-chemical properties, especially 
metal oxide nanoparticles (MNPs) [5, 6]. Particularly noble 
metals such as silver, gold, platinum, and palladium have 
received much attention among scientists due to their high 
surface ratio and innovative applications [7–9]. In recent 
years, silver nanoparticles (AgNPs) have a new scope in 
functionalized surfactant and biocompatible [10, 11]. Ag 
has been used for medical purposes since the beginning of 
the last century [12–14].

Techniques have been developed and adapted as valuable 
tools to monitor pollution in aquatic environment for the last 
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two decades [15, 16]. Usually, aquatic organisms are quickly 
and constantly exposed to toxic substances from natural or 
dissolved anthropogenic sources [17, 18]. The nanomateri-
als (AgNPs, ZnONPs, CuONPs,  TiO2NPs,  Fe3O4NPs, and 
NiNPs) contribute a great deal of aquatic pollution that 
poses threat to aquatic organisms [19–25]. Bioaccumulation 
and biomagnification capacity of nanomaterials (Ag, Cu, Zn, 
and  CdCl2) have longer effects on aquatic species like plank-
tonic crustacean (Daphnia magna) [26], ragworm (Nereis 
diversicolor) [24], mussel (Mytilus galloprovincialis) [27], 
fishes (Clarias gariepinus, Oreochromis niloticus, Onco-
rhynchus mykiss, Danio rerio, Carassius auratus) [28–33]. 
Increasing use of nanomaterials decreases the population of 
aquatic organisms mainly fishes. According to their intimate 
dependence on the environment and comparing with other 
species, fishes are more vulnerable to nanotoxic stress [34, 
35]. Heavy metal/nanotoxicants accumulate in fish through 
biomagnifications and cause changes in their biological 
mechanisms [28, 36–39].

Fabrication of NPs can be achieved through different 
synthesis methods. Conventional (physical and chemical) 
approaches are the most widespread methods for the syn-
thesis of NPs. However, in chemical approach, the use of 
toxic chemicals in the synthesis methods is inevitable. Since 
noble metal NPs are widely exposed to environment, there 
is a growing need to develop eco-friendly synthesis meth-
ods, which do not use toxic chemicals. Biogenic approach of 
developing AgNPs could reduce the environmental impact 
and generate minimal waste. Usually, AgNPs are applied 
in electronics and storage devices, biomedical, etc. [40, 
41]. AgNPs are synthesized by several biological sources 
like bacteria, fungi, algae, and plants with the absence of 
hazardous materials [22, 42–44]. The biogenic AgNPs 
would be a least toxic and also an eco-friendly approach to 
inhibit the microbial contaminations in aquaculture environ-
ment. In addition, biogenic AgNPs are highly stable dur-
ing large-scale production of fish feed and have significant 
antibacterial effects [45]. Biogenic synthesis of AgNPs is 
cost-effective and suitable for large-scale production in 
controlled environmental condition to their stability, shape, 
and size [46, 47]. In recent years, to promote environmental 
sustainability, nontoxic precursors are used in the develop-
ment of nanomaterials [48]. Biogenic nanoparticles are the 
most admired inorganic NPs utilized as an efficient antibac-
terial, antifungal, antiviral, anti-inflammatory agents, and 
food additives [49]. Biogenic nanomaterials are nontoxic 
that increase growth and immune responses in various fishes 
like Catla catla, Labeo rohita, Cirrhinus mrigala, and Oreo-
chromis niloticus and which plays a crucial role in aqua-
culture operations [50–54]. Several studies showed that the 
toxicity of conventional AgNPs depending on particle size, 
capping or coating agent, binding to DNA, residues of  Ag+ 
ions, and release of reactive oxygen species (ROS) [55–59]. 

Through various pathways, AgNPs cause severe impacts on 
living organisms [60, 61]. The dispensable release of AgNPs 
in the aquatic ecosystem eventually may modify the physico-
chemical and biological characteristics of aquatic system 
resulting in an environmental imbalance [35, 62–64].

Despite their number of applications, detailed informa-
tion on the toxic effect and mechanical action of biogenic 
AgNPs on fish is limited. Therefore, the current study was 
to examine the toxicological impacts of biogenic AgNPs 
on freshwater common carp (Cyprinus carpio). This study 
further investigates the total accumulation, haematological 
parameters, and changes in antioxidant enzymes, oxidative 
stress genes, and histology in fish C. Carpio treated with 
sublethal concentrations of biogenic AgNPs.

Materials and Methods

Synthesis and Characterization of AgNPs

Using aqueous onion peel extract (Allium cepa L.), AgNPs 
were synthesized as described in our previous study [65]. 
Briefly, 5 g of A. cepa peel was cleaned and boiled in 100 ml 
of double distilled water (dd  H2O) at 60 °C for 20 min in 
250 ml of Erlenmeyer flask. Ten millilitres (10 ml) of result-
ing filtrate was mixed drop wise with 100 ml of (0.001 M) 
 AgNO3 solution. The darkish brown colour indicates the for-
mation of AgNPs, which were characterized using UV–Vis 
spectrophotometer, X-ray diffraction (XRD), fourier trans-
form infrared (FT-IR), and transmission electron microscopy 
(TEM) with energy dispersive spectrum (EDS).

Animal Maintenance

Freshwater fish Cyprinus carpio was procured from Nathan 
Fish Farm, Thanjavur, Tamil Nadu, India. The mean 
body weight and length of the fish were 5.34 ± 0.53 g and 
6.06 ± 0.69 cm, respectively. Fish were kept in 2000 l cir-
cular water tanks in the Aquarium Facility at Department 
of Animal Science, Bharathidasan University. The water 
was changed routinely and its temperature, pH, and dis-
solved oxygen (DO) were maintained at 29 ± 2 °C, 7.0 ± 0.1, 
and 6.5 ± 0.5 mg/l, respectively. Fish were allowed to accli-
matize for 7 days and fed with commercial pellet feed at 
ad libitum.

Acute Toxicity Test

After the acclimatization period, fish were randomly divided 
into six groups in plastic troughs and each group contains 
10 fish (Triplicate setup) for the determination of  LC50. The 
acute study was conducted for 96 h according to OECD 
203: Fish Acute Toxicity Test [66]. A series of AgNPs 
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suspension (0, 2, 4, 6, 8, and 10 mg/l) (100 W, 53 kHz at 
30 min, Misonix Ultrasonicator, USA) was exposed to each 
group separately. The NPs exposed to water were changed 
every 24 h to ensure and maintain the concentration of NPs. 
The experimental fish were fed with 10% of body weight  
of commercial feed. According to Finney [67], the  LC50 
values were obtained using probit analysis (SPSS ver. 16.0, 
IBM, Chicago, IL, USA).

Sublethal Toxicity

For sublethal toxicity, C. carpio fish were separated into four 
groups; each group consists of 90 fish (3 replicates). The first 
group was left as control. The suspension of 1/15th, 1/10th, 
and 1/5th of 96 h  LC50 concentrations were prepared by dis-
persing (100 W, 53 kHz at 30 min, Misonix Ultrasonicator, 
USA) of AgNPs and exposed to remaining groups (2–4). 
The total experiment was carried out for 28 days. Optimal 
parameters were maintained similar to the acclimatization 
period. Renewal method was carried out daily with the same 
concentrations of NPs after 30 min of feeding.

Fish Sampling

AgNPs exposed fish were collected for sampling with an 
interval of every 7 days. Fish were anesthetized by hypother-
mia method (non-chemical method); then, the blood sample 
was withdrawn from the dorsal aorta, and the vital organs 
like the gill, liver, and muscle were dissected out and stored 
for further analysis at −80 °C.

Analysis of Bioaccumulation

The accumulation of Ag content in the gill, liver, and mus-
cles of fish C. carpio was estimated using slightly modified 
method of Zhang [68]. Briefly, at the end of the exposure, 
fish tissue samples (0.5–1 g) were digested by the triple acid 
digestion method with the mixture of concentrated  HNO3, 
HCl, and  H2O2 in the ratio of 3:3:1. Finally, the total sus-
pension (25 ml) was made with dd  H2O and stored in poly-
propylene tubes. The bioaccumulation of Ag in the target 
tissues was estimated using ICP-OES (Manufacturer: Perki-
nElmer; Model: Optima 5300 DV, USA; wavelength range 
165–782 nm; RF generator 40 MHz; Detection limit: upto 
ppb level using SCD detector). The obtained results were 
expressed in µg/g of the tissue analysed.

Haematological Parameters

The blood sample was drawn with 1 ml syringe (30-gauge) 
at dorsal aorta with an interval of 7 days and immedi-
ately transferred into collection tubes (containing EDTA) 
and subjected to analyse the haematological parameters. 

Haemoglobin, haematocrit, red blood cells, and white blood 
cells were evaluated in Mindray BC-2800Vet® automated 
haematology analyser. The mean cell volume (MCV), mean 
cell haemoglobin (MCH), and mean cell haemoglobin con-
centration (MCHC) were calculated by the method of Dacie 
and Lewis[69].

Measurement of Oxidative Biomarkers

For evaluating the oxidative stress damage, the gill, liver, 
and muscle tissues were homogenized with cold phosphate 
buffer (pH 7.4) and centrifuged at 11,200 × g for 10 min 
and the filtrate was stored at −80 °C until used. Lowry [70] 
method was adopted to estimate the total tissue protein with 
BSA as standard. Superoxide dismutase (SOD) activity was 
analysed by the method of Marklund and Marklund [71]. 
The measured activity was expressed as unit/mg protein. 
The activity of catalase (CAT) enzyme was measured by the 
method of Claiborne [72]. One unit of catalase was defined 
as 1 μMol of  H2O2 consumed/mg protein/min. Rotruck et al. 
[73] method was followed to identify the glutathione per-
oxidase (GPx) activity and expressed as μMol consumed/
mg protein/min. Habig et al. [74] was used to determine 
the glutathione-S-transferase (GST) activity and expressed 
as unit/mg protein. Glutathione (GSH) was analysed by the 
method of Moron et al. [75] and expressed as μg/mg protein.

Histoarchitecture Analysis

For the analysis of AgNPs toxicity in vivo, the histopatho-
logical examinations were done in selected tissues of C. 
carpio (gill, liver, and muscle) fixed in 10% formalin. The 
paraffin-embedded tissues were fixed and stained (haema-
toxylin and eosin). Morphological alterations were observed 
under a microscope attached with a camera (DM750, Leica 
Microsystems, Germany).

RNA Extraction and cDNA Synthesis

Total RNA was extracted from liver tissue (~50 mg) of 
experimental fish using RNAiso Plus Kit (Takara Clontech, 
India). The purity and concentration of RNA were checked 
by BioDrop µLITE spectrophotometer. Then, the cDNA 
were synthesized from the obtained RNA using RevertAid 
First Strand cDNA Synthesis Kit (Thermo Scientific). Total 
volume of reverse transcription reaction mixture contains 

(1)MCV(cu.microns) = Hct∕RBC(106∕ml)

(2)MCH(pg) = [Hb(g∕l) × 10]∕RBC(106∕ml)

(3)MCHC(g∕dl) = [Hb(g∕l) × 10]∕Hct × 100

1 3

Krishnasamy Sekar R. et al.906



5 × reaction buffer (4 µl), 10 mM dNTP mix (2 µl), RiboLock 
RNase inhibitor (1 µl), and RevertAid H minus (1 µl) with 
800 ng of RNA. Reverse transcription was performed by 
the following thermal conditions 25 °C for 5 min, 42 °C 
for 60 min, and 70 °C for 5 min (Eppendorf  MasterCycler® 
Gradient, Hamburg, Germany). The synthesized cDNA was 
stored at −20 °C.

Real‑Time Quantitative PCR Analysis

RT-qPCR was performed by using a single-step real-time 
PCR machine  (LightCycler® 96, Roche Life Science, USA) 
with 1X SYBR Green (Takara), 0.5  μl of each primer 
(Table 1), and 1 μl synthesized cDNA. The RT-qPCR con-
ditions were initial denaturation (95 °C for 5 min), 45 cycles 
of 3 step amplification (95 °C for 10 s, 48/52 °C for 30 s, and 
72 °C for 10 s). Table 1 shows the annealing temperatures of 
each primer. β-actin served as the internal control to normal-
ize the RNA level. Three technical repeats and experimental 
replicates were performed for each gene. Threshold cycle 
(Ct) values were used to quantify the gene expression by 
 2−∆∆CT method [76].

Statistical Analysis

The data obtained were showed as mean ± standard deviation 
(SD) for each group. The differences among groups were 
analysed statistically at p < 0.05 against the control group 
using one-way Analysis of variance (ANOVA) followed by 
Duncan’s multiple range (DMRT) as post hoc test (SPSS).

Results and Discussion

Characterization of Biologically Synthesized AgNPs

AgNPs optical property was studied by using UV–Vis spec-
troscopy (Fig. 1a). Herein, the synthesis of AgNPs may be 
due to the phytochemical constituents present in the peel 
of onion. It has been already reported that the onion wastes 
(Allium cepa L.) contain dietary fibre and bioactive com-
pounds [77]. During synthesis, the formation of AgNPs 
was observed by the colour change due to the excitation 
of surface plasmon resonance (SPR) in the visible region 
ranging from 350 to 700 nm. The wavelength region has 
a typical SPR absorption band of synthesized AgNPs at a 
wavelength of maxima (λ max) at around 466 nm. The pre-
vious study biosynthesized AgNPs showed SPR around at 
460 nm [78]. The results were an agreement with earlier 
study conducted in Dimocarpus Longan Lour. peel extract 
synthesized AgNPs [79].

The XRD pattern of biogenic AgNPs was indexed com-
pletely with the results supporting that the prepared mate-
rial exhibited and confirmed by JCPDS card no: 03–0921 
with a face-centred cubic (fcc) structure of silver (Fig. 1b). 
The planes of 1 1 1, 2 0 0, 2 2 0, and 3 1 1 were located the 
2θ at 38.07°, 46.18°, 64.32°, and 77.35°, respectively, and 
confirmed the face-centred cubic (fcc) structure of AgNPs, 
which might have resulted from the bioactive compounds 
in the onion peel extract. The average particle size of the 
biogenic synthesized AgNPs was calculated at 33 nm with 
the Scherrer equation. D = Kʎ/βcosθ, whereas D is particle 
size, ʎ is X-ray wavelength (0.15426 nm), β is full width 

Table 1  Primer sequences and annealing temperature for target genes and the housekeeping gene for real-time qPCR

Gene Names Genes code Primers Anneal-
ing Tm 
(°C)

Accession no References

Cu–Zn superoxide dismutase Cu–Zn SOD Forward CTG TGT GGG CAC TGT CTT CTT 
Reverse GAC ACA CAC ACA TCC TGT CCG 

62 XM_019111694 [193]

Catalase CAT Forward CTG GAA GTG GAA TCC GTT TG
Reverse CGA CCT CAG CGA AAT AGT TG

63 JF411604 [194]

Glutathione peroxidase GPx1a Forward AGG AGA ATG CCA AGA ATG 
Reverse GGG AGA CAA GCA CAAGG 

60 GQ376155 [195]

Glutathione
S-transferase

GST-α Forward ACA ATA CTT TCA CGC TTT CCC 
Reverse GGC TCA ACA CCT CCT TCA C

61 DQ411314 [196]

Cytochrome P450 CYP1A Forward ATT TCA TTC CCA AAG ACA 
CCTG 

Reverse CAA AAA CCA ACA CCT TCT 
CTCC 

65 AB048939 [197]

Nuclearfactor erythroid 2-related factor 2 Nrf-2 Forward TTC CCG CTG GTT TAC CTT AC
Reverse CGT TTC TTC TGC TTG TCT TT

51 JX462955 [194]

Beta-actin β-actin Forward TTT GGC GCT TGA CTC AGG AT
Reverse AGG CCA TAA GGG AAG GGA CA

51 M24113 [198]
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at half maximum (FWHM), and θ is Bragg’s angle. In 
comparison to the previous report [50], the AgNPs par-
ticles are slightly smaller, with an XRD modal diameter 
of 12 nm.

The AgNPs synthesized using brown skin of onion peel 
extract, which contains different phytochemical constitu-
ents such as dietary fibre, phenolics, and flavonoids [77]. 
These phytochemicals play an important role in the forma-
tion and stabilization of AgNPs. The FT-IR spectral peaks 
at 3429-and 1637  cm−1 assigned to the deformative vibra-
tion of water molecules (Fig.  1c). The weak peaks at 
2922, 1259, 1546, and 1044  cm−1, corresponding to the 
stretching vibration of methyl [80], germinal methyl [81], 
amide I groups proteins [82], and C = O stretching [83]. 
Characteristics peaks at 801 and 545  cm−1 were attributed 
to Ag–O stretching vibration [84]. From this functional 
group analysis, which revealed the presence of flavonoids, 
phenolics, methyl, amide groups, and proteins was present 
in the biogenic AgNPs.

TEM micrograph with EDS was given in Fig. 1d. The 
size of the synthesized NPs was 8–50 nm and exhibited 
with the agglomerated spherical silver nanoparticles [85]. 
Ganesh Kumar et al. [86], reported, that the morphology 
of the NPs were depending on the concentration of reduc-
ing agents, which gives the structure to the NPs. The EDS 
analysis reveals a strong signal at 3 keV (Fig. 1e), which 
was generally exhibited by metallic Ag nanocrystals due to 

SPR, the peaks at 0.3 and 0.5 keV showed the un-reacted 
precursors of  AgNO3 and biomolecules [87].

Acute Toxicity of AgNPs

The toxicity of different NPs has been widely studied and 
used in the fields of biomedical and pharmaceuticals. Due 
to the increasing production and application of NPs, there 
is a growing likelihood of occupational and possibility of 
environmental exposure [88]. NPs in the aquatic ecosystem 
encounter various changes, such as dissolution, aggrega-
tion, oxidation, and bioavailability that cause toxicity to the 
aquatic species [89]. Nowadays, traditional and biological 
NPs exhibit attractive characteristics and can trigger sev-
eral risk factors [90]. The determined  LC50 values were 
used to fix the sublethal concentrations to investigate the 
chronic effect of biogenic synthesized nanomaterials. No 
mortality was noted in the control groups; however, the bio-
genic nanomaterial-treated fish groups showed mortality 
in the increasing concentrations and 100% mortality was 
recorded at the maximum tested concentrations (10 mg/l) at 
96 h. The 96 h acute exposure of AgNPs synthesized from A. 
cepa was toxic to C. carpio at the  LC50 of 2.76 mg/l. In the 
earlier study, exposure of AgNPs synthesized using blood 
serum of sheep showed  LC50 at 0.61 mg/l to common carp, 
which is higher toxicity concentration than the present study 
[91]. Liaqat et al. [92] analysed 96 h  LC50 concentration 
of AgNPs synthesized using Halymenia porphyraeformis 

Fig. 1  Characterization of biologically synthesized AgNPs by using onion peel extract. a UV–vis spectrum. b XRD analysis. c FT-IR analysis. d 
and e TEM analysis with EDS spectrum
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in C. carpio was found to be 0.331 mg/l, which is more 
toxic than the  LC50 value shown in this present investigation. 
On the other hand, commercially available colloidal AgNPs 
showed highest mortality at the 48 h  LC50 concentration of 
0.5 mg/l [93]. Ramachandran et al. [94] reported that the 
96 h  LC50 of biologically synthesized AgNPs were toxic to 
adult zebrafish at 24.5 µg/l. A study conducted by Krishnaraj 
et al. [95] has shown the highest toxicity even on the lowest 
concentration of AgNPs synthesized using aqueous extract 
of Malva crispa leaves at 142.2 µg/l to adult zebrafish. Simi-
larly, another study has revealed that fish  exposed to AgNPs 
synthesized using Psidium guajava in zebrafish were found 
to be 400 µg/l [96]. Aquatic toxicity evaluation may pro-
vide insights to the relative sensitivity of different species to 
AgNPs, which may also provide suitable data on the adverse 
effect of NPs on aquatic environment, as these species hold 
important positions in aquatic ecosystems. The toxicity dif-
ference in the different species reveals the sensitivity of spe-
cies distributions. This study indicates that the toxic nature 
of NPs was not only dependent on the species difference 
but also depends on the concentration and physio-chemical 
properties of NPs [97–101].

Sublethal Toxicity Analysis

Following the  LC50 determination, 28 days chronic toxicity 
was analysed. The sublethal concentrations of 1/15th, 1/10th, 
and 1/5th of the  LC50 (2.36 mg/l) of AgNPs (0.184, 0.276, 
and 0.552 mg/l) were used. No mortality was observed in 
control and AgNPs treated groups during the experiment.

Bioaccumulation Assay

ICP-OES is a powerful multi-element analyser used to quan-
tify the toxic metals in fish and other aquatic organisms 
even at subparts per billion because of its high sensitivity 
[102–104]. Total accumulation level of Ag at the end of 
 28th day in gill, liver, and muscle of C. carpio fish exposed 
to biogenic AgNPs was shown in Table 2. The biotrans-
formation in the present study observed that the accumula-
tion in all organs was dose-dependent. According to Iversen 
et al. [105] report, the accumulation of NPs was based on 
the composition, size, surface charge, and surface coating. 

Generally, metal uptake is depending upon water which 
pumped through gills. Significantly accumulated Ag content 
was observed in the gill, liver, and muscle when compar-
ing with control fish. In this study, the accumulation was 
observed in the following order of gill > liver > muscle in 
AgNPs exposed C. carpio fish. Generally, gills are in direct 
contact with aquatic environment and are physiologically 
complex and vulnerable structures that makes them easily 
target organ for waterborne toxicants [106]. In addition, 
AgNPs can accumulate and bind with gills by transporta-
tion process, which affects the ability of fish respiration to 
hypoxic (low oxygen) conditions, and passes through blood 
stream to liver tissue leading to oxidative stress. Generally, 
fish have various transportation systems to maintain their 
required mineral levels for a wide range of metabolic path-
ways, either by regulating the absorption of minerals through 
their diet [1]. Results of another study confirmed the highest 
accumulation of Zn was observed in gills after exposure of 
ZnONPs [107, 108]. These findings are comparable with 
previous studies that have shown the bioaccumulation of Ag 
in various vital organs of O. mykiss [109, 110]. The study 
of possible uptake of  TiO2NPs showed that the gill, intes-
tine, and brain have higher level of Ti content, and the least 
amount of Ti was accumulated in the muscle of the gold-
fish (C. auratus) [33]. Liver is known to be one of the vital 
organs in fish and have detoxification process when exposed 
to contamination via excretion. Thus, a lower content of Ag 
elimination in the liver of common carp may be due to the 
binding of the metallothionein-like proteins produced in 
these tissues and its eventual detoxification and storage in 
them; hence, suggesting that Ag is excreted gradually and 
slowly in the liver tissues in comparison to the gills [111]. 
The accumulation of NPs in fish could occur due to the 
exposure of NPs for longer times [112]. This was most pro-
nounced in fish treated with higher concentrations of AgNPs 
[113, 114]. The influence of different metals induces toxicity 
and it might have been caused by the structural variabilities 
of the particles, potential adsorption by tissues, and physi-
ological and toxicological responses by organisms. Moreo-
ver, the accumulation of nanomaterials in common carp was 
depending on the target organ, concentration, and duration 
of exposure [106].

Table 2  Total accumulation 
of Ag (µg/g) in the gill, liver, 
and muscle of C. carpio 
exposed to different sublethal 
concentrations of AgNPs

Each values denote mean ± SD (n = 3); different letters show significant difference among the group 
(p < 0.05)

Tissue Elements 
(µg/g)

Treatment (mg/l)

Control 0.184 (mg/l) 0.276 (mg/l) 0.552 (mg/l)

Gill Ag 0.155 ± 0.020b 0.339 ± 0.012b 1.265 ± 0.200a 1.328 ± 0.140a

Liver Ag 0.052 ± 0.008c 0.066 ± 0.005c 0.117 ± 0.02b 0.338 ± 0.05a

Muscle Ag 0.054 ± 0.023c 0.104 ± 0.012b 0.115 ± 0.03b 0.276 ± 0.025a
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Haematological Analysis

Haemoglobin (Hb) and haematocrit (Hct) content in control 
and AgNPs treated fish were illustrated in Fig. 2a, b. Hb 
and Hct content in the AgNPs treated fish was significantly 
decreased (p < 0.05) on all sampling days except the  14th 
day, which showed the higher content of Hb at 0.184 mg/l 
compared to control. Exposure of AgNPs on O. niloticus sig-
nificantly decreased the values of erythrocyte count, Hct and 
Hb compared to the control groups [115]. Reduced values of 
haematological parameters were observed by Dhanapakiam 
and Ramasamy [116] after exposing Cu for 30 days in C. 
carpio were due to the destruction of erythrocytes. Similar 
to the present findings, Alkaladi et al. [117] and Rather et al. 
[52] found a decreased value of Hct in fish exposed to vary-
ing sublethal levels of ZnONPs and AgNPs, respectively. 
Similar observations were also reported in C. catla treated 
with zinc and cadmium [118], arsenic [119], and O. niloticus 
treated with cadmium [28]. A decline in the Hct level sug-
gests anaemia or destruction of the erythrocyte membrane, 
resulting in haemodilution [120–122].

The erythrocyte count of control and fish exposed to sub-
lethal concentrations of AgNPs were illustrated in Fig. 2c. 
The RBC in the AgNPs treated fish was decreased signifi-
cantly (p < 0.05) when comparing with control. This phe-
nomenon was more evident in fish treated with higher sub-
lethal concentrations of AgNPs. Reduction in RBC may also 
be due to a decline in haematopoiesis [123, 124]. Exposure 
of NPs causes respiratory dysfunction through gill damage 
and eventually alters the RBC values [125]. Farmen et al. 
[126] have reported that the RBC count and haemoglo-
bin values significantly decreased, resulting in macrocytic 
anaemia in Atlantic salmon exposed to AgNPs. A similar 
reduction of RBC was reported in Oreochromis mossam-
bicus treated with Cu [127], O. mykiss treated with CuNPs 
[128], L. rohita treated with waterborne  Fe2O3 NPs [129], 
and ZnONPs treated O. niloticus [117].

In the present investigation, significant increase (p < 0.05) 
in white blood cells (WBC) count was observed in the 
AgNPs -treated fish than control (Fig. 2d). In the higher 
sublethal concentration (0.276 and 0.552 mg/l), the WBC 
count was decreased significantly, whereas the lower con-
centration (0.184 mg/l) showed a maximum increase. Due 
to the nano-toxicity, the WBCs respond immediately to 
the medium alteration. This shows that the fish can build 
a defensive mechanism to withstand nanotoxic stress. The 
increase in WBC may be due to induced proliferation as a 
result of the nano-toxicity of pluripotential hematopoietic 
cells, which, in effect and may result from decreased circu-
lation between differentiated cells [130, 131]. In this study, 
increased WBC counts suggest the stress of the fish caused 

by nano-toxicants, which may have caused hypoxia and gill 
damages.

The MCV, MCH, and MCHC levels of AgNPs treated 
fish were illustrated in Fig. 2e–g, respectively. RBC index 
level in the treated fish was significantly altered (p < 0.05) 
throughout the experiment. This was most pronounced in 
fish exposed to the sublethal concentrations of AgNPs. The 
present results confirmed the alteration of haematological 
indices as a non-specific immune response to NPs toxicity. 
Similar results were found in C. mrigala exposed to AgNPs 
[52] and O. niloticus exposed to ZnONPs [117]. Exposure 
of nanomaterials may disrupt the iron absorption in intestine 
or hematopoietic tissues and increases the destruction rate of 
RBC due to osmoregulatory dysfunction  [132].

Oxidative Biomarkers

The activity of antioxidant enzyme SOD in the gills 
of AgNPs was shown in Fig.  3a. AgNPs significantly 
altered (p < 0.05) the SOD levels in the gill tissues of 
AgNPs exposed groups comparing control. In contrast, 
 7th day treatment showed a similar response except for 
0.184 mg/l of AgNPs treated fish gill. On  14thth day of 
AgNPs exposure significantly enhanced the enzyme activity 
at 0.552 mg/l compared with control and other tested con-
centrations. On  21stst day exposure, there was a significant 
decrease in AgNPs exposed groups. On  28th day, levels of 
SOD were decreased in 0.276 and 0.552 mg/l. The liver and 
muscle SOD activity were increased significantly through-
out the study period compared with the control (Fig. 3b and 
c). C. carpio exposed to 0.552 mg/l AgNPs showed a sig-
nificant increase in muscle SOD activity up to  21st day and 
significantly decreased on  28th day. Lower and intermediate 
concentrations of AgNPs induced a significant alteration. 
These results indicated the generation of  O•−

2 in the tissues 
of C. carpio and demonstrated that AgNPs induced oxida-
tive stress after chronic exposure. In another study, similar 
findings were reported by Pirsaheb et al. [133], a significant 
decrease in activity of SOD was observed in gills of C. car-
pio exposed to metal-doped  TiO2NPs and the mechanism 
behind this, is the metallic nature of NPs and the presence 
of transition metals encourages the production of ROS lead-
ing to oxidative stress. For maintaining cell homeostasis 
and preventing oxidative stress, SOD catalyses superoxide 
anion radical dismutation by forming less-reactive molecular 
oxygen [134]. A similar response was observed in O. mos-
sambicus exposed to AgNPs [135] and juvenile C. auratus 
exposed to fullerene  C60 [136].

CAT activity in the gill was found to be increased in 
AgNPs treated groups comparing the control, whereas the 
gill CAT activity was decreased significantly on  14th day 
(0.552 mg/l of AgNPs) (Fig. 3d). In this present study, the 
liver and muscle of AgNPs treated fish showed significantly 
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Fig. 2  Analysis of haematologi-
cal parameters. a Hb. b Hct. c 
RBC. d WBC. e MCV. f MCH. 
g MCHC on AgNPs exposed 
C. carpio fish. Each value 
represents the mean ± SD; n = 3. 
Different letters above the bars 
show a significant difference 
among the groups at p < 0.05
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decreased CAT activity throughout the study period com-
pared with control (Fig. 3e and f). Excessive productions 
of ROS from SOD catalytic activity inhibits the CAT func-
tion [137–140]. Several studies have also demonstrated 
a biphasic tendency in CAT activity in fish after treating 
with increasing levels of  TiO2 in O. niloticus and C. Carpio 
[141–143].

Comparing with control, significant increase (p < 0.05) 
in gill GPx activity was observed throughout the experi-
ment period except on  14thth day (Fig. 3g). GPx activity 
in the liver decreased significantly in all the concentrations 
of AgNPs after  7th day exposure compared with control 
fish (Fig. 3h). AgNPs induced a biphasic trend elevation of 
GPx in the muscle on all sampling days compared with its 
control (Fig. 3i). A maximum elevation of muscle GPx was 
observed on  28th day experiment in (0.552 mg/l) of AgNPs. 
Reduced intracellular GSH levels or toxicity of nanomateri-
als on enzyme correlate with the reduction or induction of 
GPx activity. Likewise, Wu and Zhou [144] found significant 
alternations in GPx activity of fish Oryzias latipes exposed 
to AgNPs. Elimination of hydroperoxides by GPx through 
the reduction of GSH alters the function [145]. In response 
to CuONPs exposure, GPx activity was stimulated in the 
liver and gill of O. niloticus to counteract hydroperoxides 
[31].

The GST activity in the gill was significantly increased 
on all the sampling days except on  7th day of treatment, and 
significantly decreased activity was observed on  14th day 
experiment (0.552 mg/l) (Fig. 3j). Induced activity of GST 
is an adaptive mechanism for neutralizing the impacts of 
nanomaterials. Lee et al. [146] observed increased activity 
of GST in tissues of C. carpio treated with various con-
centrations of AgNPs and suggested that GST enzyme is 
induced to protect the fish against the NPs toxicity. The 
increase in GST activity in gills could be a good marker for 
compensatory tissue response against to toxicant exposure. 
The antioxidant enzyme activity of GST in the liver tissues 
exposed to AgNPs was shown in Fig. 3k. AgNPs exposure 
significantly decreased the liver GST activity throughout 
the experiment period except for the  7th day compared with 
its control. Significantly decreased (p < 0.05) muscle GST 
activity was observed throughout the experiment (Fig. 3l). 
Stimulated activity of GST in Brycon amazonicus fish indi-
cates its significance against ROS [147]. Similar induced 
activity of GST was reported by Chae et al. [148] after 
studying the effects of AgNPs in Japanese medaka (Oryzias 
latipes). Increased activity of GST reveals ROS generation 
due to the existence of nanomaterials in fish [149]. The 
altered antioxidant defense mechanism exhibits imbalanced 
oxidant and antioxidant levels in the tissues [150, 151].

A maximum elevation of gill GSH was observed on  14th 
day (0.276 mg/l) and a minimum of decreased activity was 
found on the same day at 0.552 mg/l concentration (Fig. 3m). 

The changes of liver GSH activities in the AgNPs exposed 
groups were shown in Fig. 3n. It was found that GSH activ-
ity was varied with the exposure concentration and different 
times in this study. The change in the levels of GSH is inter-
related with the activity of GST. According to Reddy et al. 
[152], increased glutathione reductase activity is a result of 
pro-oxidant system which forms reduced GSH by recycling 
oxidized GSH. Increased activity of GSH level was noted 
in fish (Lateolabrax japonicus) after treated with benzo[a]
pyrene by Jifa et al. [153]. In muscle, the AgNPs treat-
ment significantly decreased the elevation of GSH activity 
throughout the experiment period compared with the control 
group (Fig. 3o). AgNPs exposure depleted the glutathione 
activity in cells associated with increasing ROS levels [154, 
155]. The ability of NPs can induce the toxicity to fish by 
several factors such as their concentration, the exposure 
period, accessibility to the target site, and distribution in 
organism’s tissues and kind of species [156].

Histological Observations

Histopathological analysis of fish tissues has been used as 
a tool that is essential for evaluating the quality of aquatic 
water bodies [157–159]. Gills are vital organs used for many 
physiological functions [160]. Typical gills of the untreated 
fish indicated a neat architecture of primary and second-
ary lamellae, mucous cells, pillar cells, epithelial cells, and 
central venous sinus, which could be differentiated easily 
(Fig. 4a–d). The AgNPs treated (0.184 and 0.276 mg/l) fish 
gill showed lamellar blood sinus constricts, leukocyte infil-
tration of epithelium and fusion of lamellae were noticed 
(Fig.  4e–l), whereas 0.552  mg/l of AgNPs  treated fish 
showed severely damaged primary and secondary lamel-
lae, complete fusion of lamellae, epithelial necrosis, epi-
thelial desquamation, aneurysm, epithelial lifting, hyper-
plasia, thickening of primary lamellae, and curved lamellae 
(Fig. 4m–p). Damages in the gill are a chain-like process 
induced by toxicants, leading to respiratory disease [161]. 
Histopathological changes in fish gills when exposed to a 
toxicant lead to toxicity by direct and indirect. Necrosis and 
degeneration of lamellae were directly affected by toxicants, 
whereas indirect mode is based on the epithelial lifting, 
hyperplasia [162]. Alterations, such as epithelial hyperpla-
sia, fusion of lamellae, shortening of lamellae, and aneu-
rysm, can be considered as adaptive responses of fish when 
exposed to toxicants [163]. In addition, the aneurism in the 
gills represents the blood-filled and swelling blood vessel 
may lead to disturbances in blood flow in the gills, increase 
risk of disagreement and result in severe haemorrhage and 
bleeding or death [164]. Lamellar fusion, hypertrophy, 
hyperplasia, and thickening of lamellae are considered as 
defense responses, widely studied in fish, and can prevent 
the toxicants from the bloodstream. In the present study, 
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Fig. 3  Antioxidant enzyme activity of C. carpio exposed to sublethal 
concentrations of AgNPs. a Gill SOD. b Liver SOD. c Muscle SOD. 
d Gill CAT. e Liver CAT. f Muscle CAT. g Gill GPx. h Liver GPx. i 
Muscle GPx. j Gill GST. k Liver GST. l Muscle GST. m Gill GSH. 
n Liver GSH. o Muscle GSH. Each value represents the mean ± SD; 
n = 3. Different letters above the bars show a significant difference 
among the groups at p < 0.05

◂

the severity of histo-morphological changes in the gill of 
common carp was concentration dependent, so that the fish 
treated with higher concentration of AgNPs showed more 
intense damages. Most important observed damages were 
fusion of secondary lamellae, shortening of lamellae, hyper-
plasia, and aneurism. These histo-morphological differences 
were defense mechanisms against toxic substances to protect 
from further damages [108].

Exposure of fish to nanomaterials contributes to enter into 
the digestive tract and respiratory organs then distributed to 

all over the body through blood circulation and deposited 
eventually in the liver, which is considered as an essential 
metabolic organ that detoxifies toxic matters [165–169]. His-
tological examination of the control liver showed the nor-
mal hepatocytes with sinusoids and nucleus (Fig. 5a–d). Our 
results showed that waterborne AgNPs (0.184 mg/l) induced 
blood congestion, karyolysed hepatocytes, infiltrating eryth-
rocytes in the liver (Fig. 5e–h). Moreover, cloudy degra-
dation of hepatocytes, kupffer cells, karyolysis, necrotic 
pancreatic tissue, and nuclear alteration were noticed in the 
liver of 0.276 mg/l AgNPs treated fish (Fig. 5i–l). How-
ever, 0.552 mg/l AgNPs treated liver has different structural 
characters like karyolysis, kupffer cells, dilated sinusoids, 
necrosis, cytoplasmic vacuolation, and aggregation of mel-
anoacrgophages (Fig. 5m–p). An induced proliferation of 
endoplasmic membranes may cause alterations in the liver, 
biotransformation, and metabolism of intracellular enzymes 

Fig. 4  Light microscopic structural analysis of gill tissue of freshwa-
ter fish C. carpio exposed to AgNPs. (× 40, H & E). a, b, c, and d are 
control gills of  7th,  14th,  21stst, and  28th days, respectively, showing 
MC — mucus cells, PL — primary lamellae, SL — secondary lamel-
lae, EC — epithelial cells, PC — pillar cells, and red star mark — 
central venous sinus. The other photo plates (e-p) showing the altera-
tions of AgNPs treated gill tissue structures such as CF — complete 
fusion, ED — epithelial desquamation, EN – epithelial necrosis, FL 
— fusion of lamellae, NSC — naked supporting cartilage, H/HP — 

hyperplasia, SSL — shortening of secondary lamellae, FCL — fully 
collapsed lamellae, LI — leukocyte infiltration of epithelium, LBSC 
— lamellar blood sinus constricts, A — aneurism, SPL — splitting 
of primary lamellae, DSL — disintegrating secondary lamellae, FC 
— complete fusion of lamellae, CL — curved lamellae, EL — epi-
thelial lifting, black star mark — thickening of primary lamellae, D 
— debris, and CCSL — completely collapsed secondary lamellae. 
Scale bars are 50 μm
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[160, 170, 171]. Among the changes, erythrocyte infiltration 
is an initial immunological fish defense system because of 
damages caused by toxicants [172]. Similar alterations were 
reported by Rodrigues et al. [173] in O. mykiss and Cunha 
and de Brito-Gitirana [174] in D. rerio.

In this study, the standard histological structure of the 
muscle shows an elegant assembly of bundles of muscle 
fibres, sarcolemma, nucleus, and connective tissue. The 
fibres appeared irregular with nuclei as black dots in section. 
The entire muscle mass was covered in a dense collagen-
ous tissue sheath called epimysium. As the name implies, 
they also had many cross striations (Fig. 6a–d). Fish exposed 
to AgNPs (0.184 mg/l) revealed several tissue alterations, 
namely, degradation of muscle bundle, pyknotic nuclei, and 
fragmented fibre (Fig. 6e–h). Several alterations in muscle 
cytoplasm and degeneration of muscle bundle may be related 
to oxidative stress in the target tissue caused by generated 
ROS through nanomaterials exposure [175, 176]. However, 

vacuolar degradation in muscle, necrosis in muscle fibre, 
bend muscle fibre, necrotic zone, and degeneration endomy-
sium were also observed in 0.279 mg/l AgNPs treated fish 
(Fig. 6i–l). Similar changes were detected in 0.552 mg/l 
AgNPs treated fish muscle with increased eosinophilia of 
the cytoplasm, intracellular space, lesion of striated muscle, 
shrinkage of muscle fibre, and tissue debris (Fig. 6m–p). 
Histological changes might have occurred as a toxicity 
response to the increased accumulation of toxicants in the 
muscle tissues. Maharajan et al. [177] reported cytoplasmic 
degeneration, damaged epithelium, hydropic swelling of 
hepatocytes, blood congestion, nuclear pyknosis, cytoplas-
mic vacuolation, and nuclear degeneration, accumulation of 
dark granules, and cellular necrosis were the responses of 
copper exposure to Asian sea bass (Lates calcarifer).

Fig. 5  Light microscopic structural analysis of liver tissue of fresh-
water fish C. carpio exposed to AgNPs. (× 40, H & E).a, b, c, and d 
are control gills of  7th,  14th,  21stst and  28th days, respectively, showing 
H — hepatocytes, N — nucleus, and S — sinusoids. The other photo 
plates (e–p) showing the alterations in the liver tissue structures such 
as HC — hepatocyte congestion, CDH — cloudy degradation of 
hepatocytes, KC — kupffer cells, KL/K — karyolysis, V — cytoplas-

mic vacuolation, BC — blood congestion, PN — pancreatic nucleus, 
KH — karyolysed hepatocytes, PNZ — pancreatic necrotic zone, 
NPT — necrotic pancreatic tissue, CBV — congestion of blood ves-
sels, IE — infiltrating erythrocytes, NA — nuclear alteration, KAC 
— karyolysed aciner cell, MA — melano-macrophage aggregates, 
DS — dilated sinusoids, N — necrosis, and EN — enlarged nucleus. 
Scale bars are 50 μm
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Expression of Oxidative Stress Response Genes

It is well established that the induction of oxidative damage 
is an underlying mechanism of nanomaterials induced tox-
icity in the biological systems. The release of free radicals 
changes various signalling pathways causing apoptosis. The 
present study investigated the changes in the transcript level 
of genes (Cu–Zn SOD, CAT, GPx1a, GST-α, CYP1A, and 
Nrf-2) after the exposure of AgNPs, by adopting RTqPCR 
method. The expression of Cu–Zn SOD was found to be 
downregulated in fish exposed to AgNPs (Fig. 7a). Cu–Zn 
SOD is an important antioxidant defense system of all living 
organisms [178]. AgNPs significantly decreased the Cu–Zn 
SOD gene expression levels after 28 days of exposure. When 
the oxidant insult is produced, tissues can counteract and 
activate the Cu–Zn SOD gene expression more smoothly. 

Transcript levels of the CAT gene were downregulated in all 
the treatment conditions of AgNPs exposure (Fig. 7b). In the 
present study, AgNPs exposure downregulated the Cu–Zn 
SOD and CAT gene expression, which might be partially 
disturbed by other signalling factors in fish liver tissue [179].

The AgNPs exposure shows a similar response between 
control and higher concentration in GPx1a mRNA transcript 
level (Fig. 7c). The tissue-specific response might partially 
explain the expression of GPx1a under oxidative stress con-
ditions. Increased level of GPx1a mRNA in the liver indi-
cates its mechanism for compensating the damages caused 
by nanomaterials [180]. GPx1a is a unique enzyme which 
catalyses membrane phospholipid hydroperoxides [181]. 
Therefore, it is speculated that the liver requires increased 
GPx1a de novo synthesis to metabolize AgNPs. However, 

Fig. 6  Light microscopic structural analysis of muscle tissue of fresh-
water fish C. carpio exposed to AgNPs. (× 40, H & E). a, b, c, and d 
are control gills of  7th,  14th,  21st and  28thth days, respectively, show-
ing MF — muscle fibre, S — sarcolemma, CT — connective tissue, 
N — nucleus, MB — muscle bundle, SM — striated muscle. The 
other photo plates (e–p) showing the alterations in the liver tissue 
structures such as MFN — muscle fibre necrosis, FF — fragmented 
fibre, DMB — degradation of muscle bundle, PN — pyknotic nuclei, 

VDM — vacuolar degradation in muscle, N — necrosis, NMF — 
necrotic muscle fibre, NZ — necrotic zone, CD — cellular debris, 
BMF — bend muscle fibre, DMT — degradation of muscle tissue, 
DMF — degradation of muscle fibre, IS — intracellular space, DE 
— degenerating endomysium, BMF — bend muscle fibre, ICE & P 
— increased eosinophilia in the cytoplasm and pyknotic nuclei, SMF 
— shrinkage of muscle fibre, and LSM — lesion of striated muscle. 
Scale bars are 50 μm
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higher level of ROS resulting from the AgNPs exposure 
inactivates or decreases GPx1a activity.

The transcript levels of GST-α were downregulated in 
AgNPs exposed fish (Fig. 7d). GST-α plays a crucial role 
in detoxifying various types of toxicants and protects the 
DNA damage from ROS-mediated oxidative stress. Lee 
et al. [146] observed a similar response in C. carpio when 
exposed to 200 µg/l of AgNPs. GST-α gene expression 
might be a valuable tool for evaluating oxidative stress 
[182, 183]. Downregulation of GST-α indicates the failure 
of the defence system to counteract the increased ROS 
generation.

The expression of CYP1A was found to be downregu-
lated in fish exposed to AgNPs (Fig. 7e). CYP1A enzyme 
controls the biotransformation of several toxic substances. 
Nanomaterial-related elevations of the CYP1A gene may 
be used as biomarkers for the metal detoxification process. 
Mostly detoxification is occurred in the microsomal mono-
oxygenase enzyme system and dependent on the heme pro-
tein, which located in liver and other organelles of fish [184]. 
According to Oliva et al. [185] report, the activity of CYP1A 
varies in different metal contaminations.

Various cell-signalling pathways regulate antioxidant 
enzyme gene transcription mechanism [186]. The Nrf-2 
signalling is an important expression factor for antioxidant 

Fig. 7  Effect of AgNPs expo-
sure on expression of genes 
involved in oxidative stress 
in the liver of C. carpio after 
28 days exposure. a Cu–Zn 
SOD. b CAT. c GPx1a. d 
GST-α. e CYP1A. f Nrf-2. Each 
value represents the mean ± SD; 
n = 3. Different letters above 
the bars show a significant 
difference among the groups at 
p < 0.05
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enzyme genes in higher and lower vertebrates [187, 188]. 
Overlapping expression of Nrf-2 was observed in fish fol-
lowing exposure to AgNPs (Fig. 7f); transcript levels of 
Nrf-2 in fish treated with 0.184 and 0.552 mg/l concentra-
tion of AgNPs were downregulated, whereas 0.276 mg/l 
exposure showed enhanced Nrf-2 expression in the liver. 
Biogenic AgNPs stimulated the  H2O2 production, which 
increased the expression of Nrf-2 mRNA [189]. This phase 
2 detoxifying enzyme removes potential materials by con-
verting them to harmless compounds and then eliminated 
them from the body [190]. There are mismatch alterations 
between antioxidant enzymes and antioxidant gene expres-
sion levels that might be the effect of time-lag after tran-
scription and translation. When the antioxidant mechanism 
could not reduce or eliminate the excessive production of 
ROS, it can increase the risk of oxidative stress. These 
impacts may degrade the enzymes or reduce the activity 
[191, 192].

Conclusion

Recent reports clearly stated that biogenic nanomaterials are 
less toxic than chemically prepared nanomaterials. How-
ever, the present study demonstrated that biogenic AgNPs 
showed toxicity to freshwater common carp C. Carpio in 
a concentration dependent manner. Bioaccumulation anal-
ysis showed a maximum accumulation of Ag in the gills 
compared with other organs, indicating the dose-depend-
ent activity and availability of target tissues. A significant 
alteration was noticed in haematological parameters during 
sublethal exposure periods. Phytogenic AgNPs potentially 
caused oxidative stress by either stimulating or inhibiting 
the SOD, CAT, GPx, GST, and GSH activities of antioxi-
dant defence systems. Histological observations reveal the 
damages of C. carpio tissues caused by AgNPs released into 
the aquatic ecosystems and may pose a risk to aquatic life. 
The expression levels of the antioxidant defence system of 
C. carpio were downregulated. It is known that the induced 
activities of Cu–Zn SOD, CAT, GPx1a, GST-α, CYP1A, 
and Nrf-2, serve as a protective mechanism to overcome the 
free radicals. The present work indicated that the toxicity 
evaluation tools might be considered as potential biomarkers 
for assessing the health status of fish and the data obtained 
in this regard provide substantial information to sustain the 
quality of the aquatic bodies.
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