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Abstract
Mercury is widely used in industry and has caused global environmental pollution. Inorganic mercury accumulates in the 
body causes damage to many organs, and the kidney is the most susceptible to the toxic effects of mercury. However, the 
underlying specific molecular mechanism of renal injury induced by inorganic mercury remains unclear at the cellular level. 
Therefore, in order to understand its molecular mechanism, we used in vitro method. We established experimental models by 
treating human embryonic kidney epithelial cell line (HEK-293 T) cells with  HgCl2 (0, 1.25, 5, and 20 µmol/L). We found 
that  HgCl2 can lead to a decrease in cell viability and oxidative stress of HEK-293 T, which may be mediated by upregula-
tion mitochondrial fission. In addition,  HgCl2 exposure resulted in the mitochondrial disorder of HEK-293 T cells, which 
was mediated by downregulating the expression of silent information regulator two ortholog 1 (Sirt1)/peroxisome prolif-
erator–activated receptor coactivator-1α (PGC-1α) signaling pathway. In summary, our results suggest that  HgCl2 induces 
HEK-293 T cell toxicity through promoting Sirt1/PGC-1α axis-mediated mitochondrial dynamics disorder and oxidative 
stress. Sirt1/PGC-1α may be an appealing pharmaceutical target curing  HgCl2-induced kidney injury.
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Abbreviations
HgCl2  Mercury dichloride
HEK-293T  Human embryonic kidney epithelial cell line
PGC-1α  Peroxisome proliferator-activated receptor 

coactivator-1α
Sirt1  Silent information regulator two ortholog 1
Mfn1  Mitofusin 1
Mfn2  Mitofusin 2
Drp1  Dynamin-related protein 1
ROS  Reactive oxygen species

ATP  Adenosine-triphosphate
qRT-PCR  Quantitative real-time PCR

Introduction

Mercury is a heavy metal toxic substance that exists in the 
environment for a long time and has global mobility. Mer-
cury pollution comes from a wide range of sources, such as 
polyvinyl chloride resin, medical products, batteries, and 
other manufacturing industries [1]. Acute and chronic mer-
cury poisoning caused by many causes can damage various 
organs such as the skin, pulmonary, neurological systems, 
and urinary [2]. In 2010, there were 7360 deaths from heart 
disease due to mercury exposure on the Chinese mainland 
[3]. With the pollution aggravation of mercury, its potential 
toxicity in humans and animals has gradually risen.

Mercury exists in the environment in the form of elemen-
tal, organic, and inorganic compounds. Inorganic mercury 
tends to accumulate in the kidney, leading to renal failure 
[4, 5]. The absorption and accumulation of mercury in the 
kidneys is very rapid, and up to 50% of low-dose inorganic 
mercury exposure (0.5 µmol  kg−1) was found in the kidney 
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of rats in a few hours [6]. Research has shown that mercury 
chloride  (HgCl2) treatment may cause necrosis and apopto-
sis of renal tubules, destroy the structure of renal tubules, 
and thereby affect renal function [7]. Nevertheless, the exact 
mechanism of nephrotoxicity caused by inorganic mercury 
is still unclear.

The kidney is a highly metabolized organ that requires 
ample adenosine triphosphate for active transport, and mito-
chondria play an essential role in energy production. Thus, 
the content of mitochondria in the kidney is second highest 
only to the heart [8]. Mitochondrial fusion is regulated by 
mitofusins 1 and 2 (Mfn1 and Mfn2), and dynamin-related 
protein 1 (Drp1) participates a vital link in mitochondrial 
fission. The fusion and fission of mitochondria are respon-
sible for regulating their morphology and number, and the 
two generally in a state of dynamic balance [9]. Neverthe-
less, quite a few poisons will break this balance, and the 
period tends to be mitochondrial fission, which results in 
apoptosis under oxidative stress [10, 11]. Hence, additional 
research is needed to investigate whether the disruption of 
mitochondrial dynamics is the key of renal injury caused by 
inorganic mercury.

Peroxisome proliferator–activated receptor-γ coactiva-
tor (PGC-1α) mediates mitochondrial biogenesis and is an 
essential regulator of energy homeostasis [11, 12]. Sirtuin 
1 (Sirt1) regulates the cell cycle, apoptosis, inflammation, 
oxidative stress, and other processes of cells. It is determined 
that PGC-1α is deacetylated and activated by Sirt1. Thus, 
the Sirt1/PGC-1α axis may be a key target of kidney injury.

The damage of renal epithelial cells is closely related to 
nephropathy, and its damage will cause the decline of renal 
function [13]. In this study, we treated the human embry-
onic kidney epithelial cell line (HEK-293 T) with different 
concentrations of  HgCl2 (1.25, 5, and 20 µmol/L) for 24 h, 
respectively. Then, we examined the effect of inorganic mer-
cury on cell viability, reactive oxygen species (ROS), and 
some representative mRNA and protein levels (Drp1, Mfn2, 
PGC-1α, and Sirt1). Our current work aimed to discuss the 
role of inorganic mercury in kidney injury from the perspec-
tive of mitochondrial dynamics.

Materials and Methods

Materials

Mercury  (HgCl2, Beijing Chemical Works, China) was dis-
solved in double-distilled water, sterilized with filters. Cell 
Counting Kit-8 (CCK-8) and ROS detection were acquired 
from Beyotime Biotechnology (Shanghai, China). Dulbec-
co’s Modified Eagle’s Medium (DMEM) was obtained from 
Meilun Biotechnology Co., Ltd (Dalian, China). TRIzol rea-
gent was the product of Invitrogen (Carlsbad, CA, USA), and 

penicillin-streptomycin was purchased from Leagene Bio-
technology (Beijing, China). DNA markers were supplied by 
GenStar (Beijing, China), and 5 × All-In-One RT MasterMix 
was obtained from Applied Biological Materials (abm) Inc. 
(Richmond, BC, Canada). Antibodies to Mfn2, Drp1, Sirt1, 
and PGC-1α were purchased from Beijing Biosynthesis Bio-
technology (Beijing, China). The antibody to GAPDH was 
the product of Hangzhou Goodhere Biotechnology (China).

Cell Culture

HEK-293 T cells were obtained from the Institute of Bio-
chemistry and Cell Biology (Shanghai, China) were cul-
tured in DMEM containing 10% fetal bovine serum. The 
cells were at 37 °C in a saturated humid environment with 
5%  CO2 [14].

Cell Viability Assay

First, HEK-293 T cells were seeded into 96-well microplates 
at a density of 1.0 ×  104 cells per well. After being attached 
to the plates, the cells were cultured with  HgCl2 at various 
concentrations, including 0, 1.25, 5, and 20 µmol/L at the 
indicated time.  HgCl2 was dissolved with phosphate bal-
anced solution. The previous studies provided us with ref-
erence doses for kidney cell [15]. After treatment, 10 µL 
CCK-8 kit reagent was contained for 4 h. Finally, the plate 
reader (Molecular Devices, Shanghai, China) was used to 
measure the solution’s absorbance values at 450/630 nm 
[16]. The optical density represented the relative value of 
cell viability.

ROS Production Assay

DCFH-DA fluorescent dye assay kit was used to perform 
ROS level test. A total of 5.0 ×  104 HEK-293 T cells per well 
were cultured in 6-well plates and then cultured with  HgCl2 
(0, 1.25, 5, and 20 µmol/L). Then 10 µM ROS assay reagent 
was added in serum-free medium for an additional 20 min. 
Fluorescence intensity was measured using a plate reader 
(Molecular Devices, Shanghai, China) to measure 488 nm 
and an emission wavelength of 525 nm [17].

Quantitative Real‑Time PCR

After incubation, HEK-293 T cells were collected. The 
total RNA was isolated from cells using the Trizol reagent 
as described by a previous study [16, 18]. Total RNA was 
used to synthesize cDNA by reverse transcription of high 
capacity cDNA [19, 20]. Then, the mRNA expression levels 
of mitochondrial dynamics-related genes, including Drp1, 
Mfn2, Sirt1, and PGC-1α, were assessed using quantitative 
real-time PCR (qRT-PCR) [21, 22]. Specific primers were 
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synthesized by Sangon Biotech (Shanghai, China), as shown 
in Table 1, the results were calculated using the standard 
 2−∆∆Ct method.

Western Blot Analysis

After cells were lysed with RIPA buffer with PMSF, the pro-
tein was extracted from HEK-293 T cells, in which the BCA 
kit was measured the protein concentrations [23–25]. Then, 
the total protein was separated to 12% SDS-poly acrylamide 
gel electrophoresis, and we transferred it onto a PVDF mem-
brane [26, 27]. The membranes were sealed in containing 5% 
skimmed milk powder and, in turn, bound with non-specific 
antibodies for 2 h, followed by overnight incubation at 4℃ 
with specific antibody the appropriately dilluted [28, 29]. 
Ultimately, we used Image Pro-Plus 6.0 software to perform 
densitometry.

Statistical Analysis

The data analysis was completed by SPSS version 19 (IL, 
USA). Mean ± standard error of the mean (SEM) was used 
to represent the results. Multiple groups were compared by 
analysis by one-way ANOVA following T-test, and P values 
less than 0.05 indicated significant difference.

Results

HgCl2 Treatment Affected the Cell Viability 
of HEK‑293 T Cells

To test the effect of  HgCl2 in vitro, we treated HEK-293 T 
cells with different concentrations of  HgCl2. A cell model of 
 HgCl2-induced HEK-293 T injury was established to clarify 
different concentrations of  HgCl2 to test the cell viability. We 
found that cell viability was significantly reduced (Fig. 1) in 
the  HgCl2-treated group (except low dosage group) com-
pared to the control group (P < 0.05), which indicates the 
cytotoxicity of  HgCl2 to HEK-293 T.

HgCl2 Treatment Increased ROS Levels in HEK‑293 T 
Cells

The level of ROS activity in HEK-293 T is displayed in 
Fig. 2. ROS levels increased in the middle and high group 
compared with the control group (P < 0.05, Fig. 2), which 
indicates the oxidative stress of HEK-293 T cells induced 
by  HgCl2.

HgCl2 Affected the Expression of Mitochondria 
Dynamics Relative mRNA in HEK‑293 T Cells

–To further investigate  HgCl2 treatment’s effect on mito-
chondria dynamics, we measured the mRNA expressions 
(Fig. 3A–D) showed that  HgCl2-treated HEK-293 T cells 
contained significantly higher mRNA expression levels of 
the Drp1. Mfn2, PGC-1α, and Sirt1 mRNA expression in 
 HgCl2-treated HEK-293 T cells significantly decreased P 
values less than 0.05, except for the low-dose  HgCl2 group.

Table 1  Primers sequences for 
qRT-PCR

Gene Genebank number Primer sequence (5’ → 3’)

Sirt1 NM_001159589.2 Forward: CGC TGT GGC AGA TTG TTA TTAA 
Reverse: TTG ATC TGA AGT CAG GAA TCCC 

PGC-1α XM_017320718.1 Forward: GGA TAT ACT TTA CGC AGG TCGA 
Reverse: CGT CTG AGT TGG TAT CTA GGTC 

Mfn2 NM_001355590.1 Forward: GCA TTC TTG TGG TCG GAG GAGTG 
Reverse: TGG TCC AGG TCA GTC GCT CATAG 

Drp1 NM_001360010.1 Forward: ACT GAT TCA ATC CGT GAT GAGT 
Reverse: GTA ACC TAT TCA GGG TCC TAGC 

GAPDH XM_017321385.1 Forward: GGT TGT CTC CTG CGA CTT CA
Reverse: TGG TCC AGG GTT TCT TAC TCC 

Fig. 1  Cell viability was determined by CCK-8 assay. After exposure 
to  HgCl2, a dose-dependent decrease in cell viability was observed. 
Data were presented as the means ± SEM, n = 6. * Meaning a signifi-
cant difference (P < 0.05) vs control group (dosage of 0 group)
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HgCl2 Decreased the Expression of Sirt1 
and Increased the Expression of PGC‑1α, 
and Affected the Ratio of Mfn2 to Drp1

Compared with the control group,  HgCl2-treated HEK-293 T 
cell contained significantly lower levels of the Sirt1, and 
higher expression levels of PGC-1α, except for the low-dose 
 HgCl2 group (P < 0.05). When  HgCl2 was given as a clear 
inhibition of Sirt1, the production of Drp1 increased and 
the levels of Mfn2 were decreased (Fig. 4A and B), which 
is consistent with the results of the qRT-PCR.

Fig. 2  Effect of exposure to  HgCl2 on oxidative stress. After exposure 
to  HgCl2, a dose-dependent increase in ROS was observed. Data were 
presented as the means ± SEM, n = 6. * Meaning a significant differ-
ence (P < 0.05) vs control group (dosage of 0 group)

Fig. 3  Effect of  HgCl2 on 
Sirt1/PGC-1α signaling 
pathway in HEK-293 T cells. 
The relative mRNA levels of 
Drp1 (D), Mfn2 (C), Sirt1 (A), 
and PGC-1α (B). Data were 
presented as the means ± SEM, 
n = 6. * Meaning a significant 
difference (P < 0.05) vs control 
group (dosage of 0 group)

Fig. 4  Changes in Drp1, Mfn2, 
Sirt1, and PGC-1α levels in 
 HgCl2-treated HEK-293 T 
cells. Data were presented 
as the means ± SEM, n = 4. * 
Meaning a significant differ-
ence (P < 0.05) vs control group 
(dosage of 0 group)
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Discussion

With the development of industries, mercury pollution in the 
global environment has become increasingly serious, which 
poses severe harm to human and animal health by affecting 
drinking water and air quality [30]. Therefore, the prevention 
and control of mercury poisoning have become a pressing 
issue facing all countries in the world [31]. Many studies 
have shown that inorganic mercury deposits itself in multiple 
tissues, such as pulmonary, liver, and kidney [32, 33]. The 
kidney is the most susceptible to the toxicity of ingested 
inorganic mercury, but side-effect-free pharmaceuticals are 
hitherto not available. In our study, the cell viability of HEK-
293 T cells was significantly reduced by 5 and 20 µmol/L 
 HgCl2 treatment for 24 h with CCK-8 assays. Therefore, 
the result suggests that  HgCl2 exerts a cytotoxic effect on 
HEK-293 T cells.

HgCl2 can cause oxidative stress in the liver, kidney, and 
brain of rats by producing excessive ROS production [32, 
34]. Besides,  HgCl2 has been shown to induce oxidative 
stress in human erythrocytes [35]. Studies have shown that 
after 24 h of exposure to  HgCl2, SH-SY5Y cells significantly 
increased ROS production, and the viability decreased in a 
dose-dependent manner [36]. The level of ROS in HEK-
293 T cells increased in a dose-dependent manner in our 
investigation, which is consistent with the test results of cell 
viability. Hence, our results revealed that oxidative stress 
caused by  HgCl2 causes damage to HEK-293 T cells.

Mitochondria are the main production source of ROS, 
and they also can produce ATP, which is the “power 
source” of cells. The morphological changes of mitochon-
dria are regulated by mitochondrial fusion and fission, and 
the disorder of its dynamics can cause cell damage [37]. 
Mfn2 is involved in mitochondrial fusion, while Drp1 is 
the primary regulator of mitochondrial division. Under 

pressure, Drp1 forms a helical oligomer, which wraps the 
outer mitochondrial membrane and divides mitochondria 
[38]. Over mitochondrial fragmentation results in many 
ROS accumulation, which in turn ROS overload makes 
mitochondrial damage more serious [39–42]. Our results 
demonstrate that  HgCl2 exposure causes mitochondrial 
dynamics disorder and make mitochondria tend to fis-
sion. Thus, abnormal mitochondrial dynamics and oxida-
tive stress caused by  HgCl2 may promote HEK-293 T cell 
damage.

PGC-1α mediates mitochondrial biogenesis and also 
regulates mitochondrial fusion and fission [43]. As an 
essential upstream regulator of PGC-1α, Sirt1 activates 
PGC-1α by regulating deacetylation to induce mitochon-
drial dysfunction and influence energy metabolism [44]. 
In the present study, our findings showed that  HgCl2 expo-
sure decreases the levels of Sirt1 and increases PGC-1α 
in HEK-293 T cells. Previous research has shown that 
PGC-1α stimulates Mfn2 expression and downregulates 
Drp1 expression [45]. In this study,  HgCl2 exposure can 
downregulate the expression of Mfn2 and upregulate the 
expression of Drp1 in HEK-293 T cells, leading to exces-
sive mitochondrial division. Thereby, our results suggest 
that  HgCl2 may cause HEK-293  T cell mitochondrial 
dynamics disorder by inhibiting the Sirt1/PGC-1α signal-
ing pathway.

Mitochondria are a power house that play critical roles 
in cell differentiation, signaling transmission, and cell 
apoptosis. Mitochondrial fragmentation is a hallmark 
of apoptosis, at which time mitochondria tend to fission 
[46]. Hence, in this study, we confer that  HgCl2 exposure 
triggers mitochondrial dynamics disorder via promoting 
oxidative stress, leading to apoptosis in HEK-293 T cells 
(Fig. 5).

Fig. 5  Schematic diagram of 
 HgCl2-induced apoptosis in 
HEK-293 T cells. Mitochondrial 
dynamics disorder induced 
by  HgCl2 exposure activates 
oxidative stress in HEK-293 T 
cells via inhibition of the Sirt1/
PGC-1α signaling pathway
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Conclusion

In conclusion, our study firstly demonstrates  HgCl2 caus-
ing mitochondrial dysfunction through the inhibition of 
the Sirt1/PGC-1α signaling pathway, eventually leading 
to apoptosis HEK-293 T cells. Our findings provide the 
possibility that activating the Sirt1/PGC-1α signal path-
way is beneficial for treating kidney apoptosis induced by 
inorganic mercury exposure.
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