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Abstract
The aim of present study was to investigate the beneficial effect of chromium (III) picolinate (CrPic) and chromium (III)
picolinate nanoparticles (NCrPic) addition on growth performance, stress-related hormonal changes, and serum levels of various
immunity biomarkers, as well as the gene expression of IFN-γ in broilers exposed to heat stress conditions. Treatments included
T1 which received the basal diet with no feed additive; T2 exposed to heat stress; T3, T4, and T5 containing 500, 1000, and
1500 ppb CrPic; as well as T6, T7, and T8 containing 500, 1000, and 1500 ppb NCrPic, respectively. After 2 weeks from CrPic
and NCrPic supplementation, IFN-γ mRNA expression was assayed using the RT-PCR technique. The results showed that the
lower body weight, daily weight gain, daily feed intake by heat stress, and the feed conversion ratio were recovered remarkably
by CrPic and NCrPic supplements. The stress-elevated levels of cortisol and immunoglobulin were reduced significantly using
CrPic and NCrPic supplementation (P ≤ 0.05). The gene expression profile showed that the upregulated expression of IFN-γwas
regulated by the addition of CrPic and NCrPic, in particular, to the diet; however, a full downregulation of IFN-γ expression was
observed after week 2 of NCrPic supplementation. In conclusion, the results indicated that nanoparticle supplementation could be
effective in reducing heat stress–induced detrimental alterations, thereby attributing to substantial changes to the immune system,
including IFN-γ expression.
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Introduction

Heat stress (HS) is one of the major environmental concerns,
which negatively affects the farm animals’ performance. HS is
characterized by endocrine disorders, decreased metabolic
rates, increased lipid peroxidation, reduced feed intake (FI),
body weight (BW) gain, a higher feed conversion ratio (FCR),
immunosuppression, and intestinal microbial dysbiosis [1].

Many studies have confirmed the correlation between chromi-
um (Cr) and metabolism under increased physiological, path-
ological, and nutritional stress conditions [2–4]. Heat stress
may increase the urinary excretion of Cr, exacerbate a mar-
ginal Cr deficiency in broilers, and increase the Cr demand in
humans and animals [5, 6].

Trivalent Cr enhances the immunological function, with its
effects seemed to be more pronounced under HS conditions
[7]. The anti-stress attributes of Cr are linked to its impact on
pro-inflammatory cytokines, such as interleukin 6 [8]. In ad-
dition, it modulates the immune response through releasing
cytokines [2, 7]. Bhagat et al. [9] observed the significant
impact of Cr addition on interferon gamma (IFN-γ) mRNA
expression in broilers’ splenocytes and attributed an immune-
modulatory role to Cr.

Chromium has been contributed to increase cell-mediated
immune (CMI) responses in chickens [2]. CMI responses are
mediated by type 1 T helper cells (TH1) that commonly gen-
erate IFN-γ and are related with inflammatory cytolytic re-
sponses, being routinely indispensable for destroying cells
infected with viruses and other intracellular pathogens [9].
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IFN-γ induces a wide range of responses in epithelial cells. In
addition, evidence verifies the effectiveness of IFN-γ in in-
ducing anti-inflammatory responses [10, 11]. In nanotechnol-
ogy, being a relatively new science, the properties of materials
smaller than 100 nanometers are examined; in this respect,
studies on chromium nanoparticles have shown that chromi-
um nanoparticles are more absorbed in intestinal conditions,
being more effective than regular chromium particles [12].
According to some studies, the NCrPic increases CrPic digest-
ibility and serum chromium levels in broilers [12] and rats
[13] significantly.

During the past decades, many studies have been done on
the beneficial effects of Cr and its derivatives, including their
immunomodulatory properties; however, their effects on the
regulation of IFN-γ at the mRNA level in heat stress–exposed
broilers have not been fully elucidated. Hence, the effects of
Cr and Cr nanoparticle supplementation on growth perfor-
mance, stress-related hormones, serum levels of various im-
munity biomarkers, and IFN-γ gene expression were exam-
ined at an mRNA level.

Materials and Methods

Ethical protocol (no. 93/987 - 2014) was approved by the
experimental animal ethics committee of Islamic Azad
University of Tehran Science and Research Branch, Tehran,
Iran.

Birds and Experimental Design

A total of 480 broilers of both sexes, from day 21 to day 42,
were randomly assigned in a CRD. The treatments included
the negative control group (normal temperature; NT) and the
positive control group (heat stress), which were fed with no
additive, as well as 6 heat stress (HS) groups that were fed
with a diet supplemented with 500, 1000, or 1500 ppb of
CrPic or 500, 1000, or 1500 ppb of NCrPic, respectively. As
Table 1 shows, the diets were balanced according to Ross 308
Broiler Nutrition Specifications [14]. On day 21, the chicks
were weighed and classified into 8 different groups, with 4
replicates of 15 birds in each group. The chicks were moni-
tored for their health and behavior constantly with water and
feed provided to them ad libitum in the experimental period.

Chromium picolinate was purchased from Sigma-Aldrich
((C18H12CrN3O6), catalogue no. C4124, CAS no. 14639-
25-9, USA), and the nanoparticles of chromium picolinate
were provided by the wet polish technique using a ball grind-
ing machine (DECO-PBM-V-4 L-A). The structure of nano-
particles was characterized with a scanning electron micro-
scope (Philips Bio Twin 100, the Netherlands) according to
Lin et al. [12], with the average diameter of the particles de-
termined to be 100 nm (Fig. 1).

From day 21 to day 28, the control group (NT) was
kept under the environmental temperature of 23 ± 1 °C,
and from day 28 to day 42, it was kept under the envi-
ronmental temperature of 21 ± 1 °C for the entire day.
The chicks of the heat stress groups, separated by oilskin
and tarpaulin fabric covers, were maintained under the
environmental temperature of 36 ± 1 °C (heat stress) for
21 days (day 21 to day 42), with the temperature applied
daily (from 08:00 a.m. to 06:00 p.m., 10 h a day), using
some heaters at the end of the saloon with automatic ther-
mal sensors. The experiment was terminated on day 42,
with the chicks euthanized by cervical dislocation.

Performance Parameters

The performance parameters such as FI, BW and FCR were
measured according to Abudabos et al. [15]. The data were
collected during the experimental period, with the mortality
rates noted.

Sample Collection and Organ-Related Weights

On day 42, 8 chicks per each group (2 chicks per each pen)
were randomly selected and slaughtered using the cervical
dislocation method [16]. At necropsy, the chicks’ hearts,
livers, spleens, and the bursa of Fabricius were taken to deter-
mine the relative weights of the organs.

Plasma Immunoglobulin Measurement (IgA, IgM, and
IgG)

Eight broilers were selected randomly from each treatment
group, with their blood samples taken and collected from their
wing veins on day 42. Next, they were centrifuged at 3,000×g
for 10 min at 4 °C and then were kept at − 20 °C. The IgA,
IgM, and IgG concentrations were determined using the
ELISA method (with the category numbers of H108, H109,
and H106, respectively).

Stress-Related Hormones and Biochemical Alterations

The concentration of cortisol was measured by ELISA
ki t (MyBioSource , USA, Category Number of
MBS265227). An ELISA reader system (IDEXX Inc.,
Westbrook, ME 04092, USA) was used to measure se-
rum cortisol. Plasma cholesterol and triglycerides were
analyzed spectrophotometrically, making use of com-
mercial kits (Pars Azmoon Kits, product codes: 1 500
010 and 1 500 032).
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Interferon Gamma mRNA Changes

RNA Isolation and RT-PCR

To examine the effects of normal and nano-chromium on the
IFN-γ expression, the total RNA was extracted from spleen
using TRIZOL method [17, 18]. The amount of RNA was
determined spectrophotometrically (260 nm and A260/280 =
1.8–2.0), with the samples stored at − 70 °C. For RT-PCR,
cDNAwas synthesized in a 20μL reactionmixture containing
1 μg of RNA, the oligo (dT) primer (1 μL), a 5 × reaction
buffer (4 μL), an RNAse inhibitor (1 μL), a 10 mM of dNTP
mix (2 μL), and M-MuLV Reverse Transcriptase (1 ml), ac-
cording to the manufacturer’s protocol (Fermentas, GmbH,
Germany). The cycling protocol for 20 μL reaction mixes
included 5 min at 65 °C, followed by 60 min at 42 °C, and
5 min at 70 °C to terminate the reaction.

PCR Reaction

The RT-PCR reaction was triggered in the total volume of 25
μL, containing the PCR master mix (12.5 μL), FWD- and

REV-specific primers (each 0.75 μL), cDNA as the template
(1 μL), as well as the nuclease-free water (10 μL). PCR con-
ditions were provided by general denaturation at 95 °C for 3
min, one cycle, followed by 40 cycles of 95 °C for 20 s, the
annealing temperature of 63 °C for β-actin and 58 °C for
IFN-γ for 30 s, as well as elongation at 72 °C for a minute

Table 1 Ingredients and chemical composition of the experimental diets (based on Ross strain rearing catalogue)

Starter (1–21
days)

Finisher (21–42 days)

Ingredients (%) Cont
(T1)

HS
(T2)

Cr500
(T3)

Cr1000
(T4)

Cr1500
(T5)

NCr500
(T6)

NCr1000
(T7)

NCr1500
(T8)

Corn 60.7 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0

Soybean meal 30.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0

Corn gluten meal 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Soybean oil 2.3 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55

Dicalcium phosphate 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7

Limestone 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Salt 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

L-lysine. HCl 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

DL-methionine 0.14 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Mineral and vitamin mix1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

CrPic (ppb/kg) - - - 500 1000 1500 - - -

NanoCrPic (ppb/kg) - - - - - - 500 1000 1500

Analyzed nutrient
composition

Starter (1–21
days)

Finisher (21–42 days)

ME (kcal/kg) 3120 3190

CP (%) 21.1 19.0

Lysine (%) 1.1 0.95

Methionine (%) 0.5 0.4

Calcium (%) 0.9 0.9

Available phosphorus (%) 0.4 0.4

1 Supplied per kilogram of diet: trans-retinyl acetate, 25mg; cholecalciferol, 6 mg; menadione, 1.2 mg; thiamine, 2.3 mg; riboflavin, 8 mg; nicotinamide,
42 mg; choline chloride, 400 mg; calcium pantothenate, 10 mg; pyridoxine HCl, 4 mg; biotin, 0.04 mg; folic acid, 1 mg; cobalamin, 0.012 mg; Fe (from
ferrous sulfate), 82 mg; Cu (from copper sulfate), 7.5 mg; Mn (from manganese sulfate), 110 mg; Zn (from zinc oxide), 64 mg; I (from calcium iodate),
1.1 mg; Se (from sodium selenite), 0.28 mg

Fig. 1 TEM image of nano-chromium (bar line = 100 nm)
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and at 72 °C for 5 min. The products of RT-PCR were sepa-
rated on the 1.5% agarose gel containing ethidium bromide
and were visualized using the Gel Doc 2000 system (Bio-
Rad). The specific primers for Gallus IFN-gamma and
GAPDH were designed and manufactured by CinnaGen
(CinnaGen Co., Tehran, Iran). The primer pairs for RT-PCR
are depicted in Table 2.

Statistical Analysis

Obtained data were analyzed using SPSS (19.0), with
Duncan’s multiple range test used for the comparison of
means. The probability value of less than 0.05 was determined
to be statistically significant. Following mathematical model
was used for statistical analysis:

Yijk ¼ μ þ Ti þ εij

where Yijk= a dependent variable, μ = overall mean, Ai = the
effect of treatments, and εij = the residual deviation of the
observation from the effects in the model.

Results

Performance

Table 3 demonstrates the performance data. The final weight
in the heat stress animals that received CrPic and NCrPic for 3
weeks increased significantly in comparison to the heat stress
control; however, chicks treated with CrPic at 500 ppb and
NCrPic at 1500 ppb doses showed a remarkable increase in
their daily WG (Table 3). The FCR was significantly lower (P
< 0.01) in CrPic- and NCrPic-treated broilers.

Organs’ Relative Weight

Table 4 shows a summary of the effects of various treatments
on organs’ weight in broilers. There was a significant differ-
ence between the relative weights of the spleens and the bursa
of Fabricius among experimental treatments (P < 0.05). In

addition, the weights of the heart and the liver were not affect-
ed significantly.

Hormones and Serum Biochemical Parameters

In the anti-stress effects of CrPic and NCrPic under stress
conditions, the cortisol concentration was measured as a
stress-related factor (Table 5). The results demonstrated that
the cortisol content of serum increased significantly (P < 0.05)
on day 42 in the heat stress birds, while CrPic at 500 and
NCrPic at 1500 ppb doses reduced the cortisol content of
serum significantly in heat stress broilers (Table 5).
Furthermore, the cholesterol content of the heat stress broilers
increased significantly (P < 0.05) after CrPic and NCrPic
treatments. In addition, the level of serum triglycerides was
affected significantly by the addition of CrPic and NCrPic in
different treatments.

The Immune Function

As Table 6 demonstrated, serum immunoglobulin analyses
showed that in the CrPic- and NCrPic-treated birds, the im-
portant blood immunoglobulins, i.e., IgA, IgG, and IgM, in-
creased significantly (P < 0.01). The dose of 1500 ppb CrPic
has had the highest value among all immunoglobulins. In
addition, immunoglobulins increased significantly upon the
addition of NCrPic to the treatments.

Interferon Gamma Gene Expression

The mRNA level of IFN-γ-expressing splenocytes was deter-
mined using the PCR technique after 1 and 2 weeks of expo-
sure to heat stress, with the results having been normalized
against the mRNA level of IFN-γ-actin, a house-keeping gene
(Fig. 2). The expression profile of IFN-γ after days 7 and 14
from treatment with CrPic and NCrPic showed a different
feature, for a significant upregulation of IFN-γ expression
was observed on day 7 in the group of birds that received
1000 ppb CrPic, while all three groups that received NCrPic
showed the remarkable downregulation of IFN-γ expression.
In the meantime, the 14-day treatment with CrPic at 1500 ppb
resulted in the significant downregulation of IFN-γ

Table 2 Sequences of real time
PCR primers forβ-actin and IFN-
γ (Bhagat et al. 2008)

RNA target Primer sequence (5′–3′) Accession number Product size (bp)

β-actin

F CATCACCATTGGCAATGAGAGG L08165 353

R GCAAGCAGGAGTACGATGAATC

IFN-γ

F TGAAGAACTGGACAGAGAGAAATGA AJ634956 227

R GGCTTTGCGCTGGATTCTCA
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expression, and all three given concentrations of NCrPic led to
the substantial downregulation of IFN-γ expression.

Discussion

Results of current study demonstrated that the administration
of CrPic and NCrPic supplements in cyclic heat stress
chickens resulted in the side effects of typical anti-stress
agents, including an increase in the daily WG and the ultimate
body weight, having been consistent with other reports [19].
Besides, Cr was observed to modulate the FI of heat stress
chickens, with our findings having been in line with some
other studies [20–22]. Chromium is usually recognized as an
active component in glucose metabolism, which enhances the
sensibility of tissue receptors to insulin and glucose absorption
by cells, thereby increasing the glucose oxidation. It is sup-
posed that increased glucose absorption, diminished blood
glucose, and increased appetite enhance FI. Increased FI
may lead to an increase in the BW gain in the absence of
malnutrition, mal-adsorption factors, and especially degener-
ative diseases. In the present study, administration of NCrPic
resulted in significant effects on FCR. The addition of

1500 ppb nanoparticles of chromium resulted in 2.06 FCR,
having been better than other treatments and too close to the
control group. It is assumed that when large particles are con-
verted into small particles using nanotechnology, they will
easily absorb through the intestinal mucosa. Moreover, the
particles’ surface area will increase, thereby enhancing diges-
tion. Thus, nanoparticle feed may increase intestinal absorp-
tion [12]. Some studies have reported that nanoparticle drugs
and minerals could increase absorption [23–25]. Lien et al.
[13] demonstrated that as against normal CrPic, the NCrPic
significantly increased CrPic digestibility in rats. Pursuant to
observations, chromium nanoparticles are absorbed more eas-
ily and exert a strong impact. Interestingly, the weight of lym-
phatic organs (bursa of Fabricius and spleen) in heat stress
chickens were significantly (P < 0.05) affected by general size
Cr and nano-sized Cr. Improvements in lymphoid organs are
consistent with the studies done by Lu et al. [21] and Valera
et al [26]; however, others reported no significant effect by Cr
addition on the weight of lymphatic organs [27, 28]. In addi-
tion, some findings have showed that physiological stress is
usually linked with the degeneration of lymphoid organs
[29–31], yet the effects of Cr on the regeneration of these
organs are not determined. Serum immunoglobulins have

Table 3 Effects of CrPic and NanoCrPic supplementation on production performance of heat stress broilers on experimental period (days 21–42)

Items Treatments1

Cont HS Cr500 Cr1000 Cr1500 NCr500 NCr1000 NCr1500 SEM

Final weight (kg) 2.176a 1.763c 1.986b 1.769c 1.840bc 1.730c 1.811c 1.849bc 0.03*

Daily feed intake (g bird-1) 148a 135bc 139b 131cd 130cd 126d 132cd 132c 1.34**

Daily weight gain (g bird-1) 75a 53c 65b 58bc 59bc 56bc 58bc 64b 1.57**

FCR (feed /gain) 1.97b 2.55a 2.14ab 2.26ab 2.20ab 2.25ab 2.28ab 2.06b 0.04**

a–dDifferent superscript letters indicate a significant difference between data presented in the same row, *P < 0.05, **P < 0.01
1 Cont = no stress no additive; HS = heat stress no additive; Cr500 = heat stress and CrPic at 500 ppb of diet; Cr1000 = heat stress and CrPic at 1000 ppb
of diet; Cr1500 = heat stress and CrPic at 1500 ppb of diet; NCr500 = heat stress andNanoCrPic at 500 ppb of diet; NCr1000 = heat stress andNanoCrPic
at 1000 ppb of diet; NCr1500 = heat stress and NanoCrPic at 1500 ppb of diet

Table 4 Effects of chromium and nanoparticles chromium supplementation on organs weight at 42 days of age

Treatments1

Items (% of live weight) Cont HS Cr500 Cr1000 Cr1500 NCr500 NCr1000 NCr1500 SEM

Heart 0.56 0.59 0.46 0.50 0.54 0.47 0.43 0.54 0.01

Liver 2.74 2.66 2.82 2.80 2.49 3.02 2.56 2.85 0.06

Spleen 0.11a 0.10ab 0.09ab 0.10ab 0.09ab 0.09ab 0.07b 0.07b 0.00*

Bursa of Fabricius 0.21a 0.17ab 0.24a 0.23a 0.18ab 0.11b 0.22a 0.15ab 0.01*

a–bMeans in the same row with different superscript letters differ significantly, *P < 0.05
1 Cont = no stress no additive; HS = heat stress no additive; Cr500 = heat stress and CrPic at 500 ppb of diet; Cr1000 = heat stress and CrPic at 1000 ppb
of diet; Cr1500 = heat stress and CrPic at 1500 ppb of diet; NCr500 = heat stress andNanoCrPic at 500 ppb of diet; NCr1000 = heat stress andNanoCrPic
at 1000 ppb of diet; NCr1500 = heat stress and NanoCrPic at 1500 ppb of diet
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been reported to increase significantly (P < 0.01) upon the
addition of CrPic and NCrPic to the diet of heat stress broilers,
with numerous reports indicating the triggering of the immune
function upon Cr inclusion [7, 19, 27, 32], with our findings
being consistent with these studies. Bahrami et al. [7] indicat-
ed that the concentration of serum IgG increased in heat stress
broilers supplemented with Cr. In addition, Huang et al. [33]
noted that serum IgG and IgM increased in dietary supple-
mentation of Cr. To illustrate the improvement in the immune
function in the heat stress cases, it should be noted that heat
stress induces a secretion of hormonal events. These events
begin with hypothalamic excitation and production of the
corticotropin-releasing factor, which induce the anterior pitu-
itary to release ACTH, thereby leading to the instigation of the
adrenal cortical tissue by ACTH to enhance the production
and release of corticosteroids [26, 34]. Corticosterone pre-
vents the production of antibodies [35]. Hirakawa et al. [36]
concluded that heat stress conditions cause immune abnormal-
ities in broiler chickens. Antibodies reduction might have
been obliquely due to the increase in inflammatory cytokines
under stress, which stimulates the hypothalamic production of
the corticotropin-releasing factor [37, 38]. Chromium supple-
mentation enhances the immune response or via a direct effect
on cytokines [39], either the indirect efficacy of reducing the

level of glucocorticoids [40, 41]. The accurate mechanism by
which chromium improves the immune system is not yet fully
known. Nonetheless, a trustworthy result showed that Cr re-
duced the levels of serum cortisol, as observed in the current
study (Table 4). It may not be surprising that the depletion of
the serum cortisol content is one of the main mechanisms by
which Cr alleviates heat stress-related depression in immuno-
competent broilers. In addition, according to Spears et al. [42]
and Valera et al. [26], Cr addition increases the serum insulin
concentration, yet it decreases the corticosterone concentra-
tion. There is a negative correlation between insulin
(anabolic) and corticosterone (catabolic), in which they have
opposite effects on metabolism. In addition, IFN-γ exerts its
impact using various methods and is the most effective induc-
er of the reactive oxygen and nitrogen species (ROS-RNS) in
target cells, such as macrophages. The immunomodulation
that stimulates tryptophan degradation through the enzyme
indoleamine 2, 3-dioxygenase is triggered during the cellular
immune response, following the production of ROS-RNS by
immunocompetent cells [43]. In this study, it was assumed
that the upregulation of IFN-γ expression by the addition of
CrPic and NCrPic could be a key factor in overcoming heat
stress and the resulting immunosuppression. However, ac-
cording to the results of the present study, the addition of Cr

Table 5 Effect of chromium and nanoparticles chromium supplementation on serum cortisol, cholesterol, and triglycerides in heat stress broilers at 42
days of age

Items Treatments1 SEM

Cont HS Cr500 Cr1000 Cr1500 NCr500 NCr1000 NCr1500

Cortisol (ng/ml) 5.403ab 5.673a 5.116b 5.143b 5.260b 5.233b 5.283b 5.176b 0.04*

Cholesterol (mg/dl) 125.33a 90.33b 122.00ab 116.33ab 120.33ab 104.00ab 124.33ab 114.66ab 3.80*

Triglycerides (mg/dl) 115.66ab 102.66b 131.00ab 153.33ab 142.00ab 174.00ab 179.33ab 210.66a 12.13*

a–dMeans in the same row with different superscript letters differ significantly, *P < 0.05
1 Cont = no stress no additive; HS = heat stress no additive; Cr500 = heat stress and CrPic at 500 ppb of diet; Cr1000 = heat stress and CrPic at 1000 ppb
of diet; Cr1500 = heat stress and CrPic at 1500 ppb of diet; NCr500 = heat stress andNanoCrPic at 500 ppb of diet; NCr1000 = heat stress andNanoCrPic
at 1000 ppb of diet; NCr1500 = heat stress and NanoCrPic at 1500 ppb of diet

Table 6 Effect of chromium and nanoparticles chromium supplementation on serum immunoglobulins in heat stress broilers

Items (mg/ml) Treatments1 SEM

Cont HS Cr500 Cr1000 Cr1500 NCr500 NCr1000 NCr1500

IgA 0.397ab 0.316cd 0.320cd 0.357bc 0.439a 0.278d 0.321cd 0.388ab 0.01**

IgG 0.711ab 0.591c 0.616c 0.603c 0.758a 0.601c 0.654bc 0.684b 0.01**

IgM 1.035a 0.931c 0.964bc 0.963bc 1.053a 0.918c 1.016ab 0.998ab 0.01**

a–dMeans in the same row with different superscript letters differ significantly, **P < 0.01
1 Cont = no stress no additive; HS = heat stress no additive; Cr500 = heat stress and CrPic at 500 ppb of diet; Cr1000 = heat stress and CrPic at 1000 ppb
of diet; Cr1500 = heat stress and CrPic at 1500 ppb of diet; NCr500 = heat stress andNanoCrPic at 500 ppb of diet; NCr1000 = heat stress andNanoCrPic
at 1000 ppb of diet; NCr1500 = heat stress and NanoCrPic at 1500 ppb of diet
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to the diet especially at 1000 ppb dosage upregulated IFN-γ
mRNA expression after 1 or 2 weeks, yet the addition of
NCrPic resulted in the downregulation of the proposed gene
expression in a concentrated manner. These results may have
been due to the genotoxic effects of the high levels of chro-
mium on the diet chosen for use [44]. As mentioned in past
research [45–47], the use of nano-size nutrients and nutritional
materials makes themmore prone to absorption in the GI tract.
Since in the present study, there was no reliable reference for

the suitable dose of NCrPic as against the normal sized Cr, we
used the same doses of NCrPic.

Conclusions

The findings of the study demonstrate that both diets supple-
mented with CrPic and NCrPic could be effective in overcom-
ing heat stress setbacks, including body weight gain and food
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intake reduction. Moreover, they were determined to improve
stress-related hormonal and immunological markers. In gen-
eral, the effects of Cr derivatives on IFN-γ expression at the
mRNA level were highlighted, and the use of NCrPic was
shown to reduce the heat stress–upregulated expression of
IFN-γ. In the end, it is recommended that the beneficial effects
of both compounds be adjusted properly so as to prevent the
toxic effects of the NCrPic supplement.
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