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Abstract
Background Sodium p-aminosalicylic acid (PAS-Na) was reported to exhibit anti-inflammatory effect in the nervous system.
However, the mechanism by which PAS-Na exhibits anti-inflammatory effects on manganese (Mn)-stimulated BV2 microglia
cells remains unclear. Thus, this study investigated the role of PAS-Na in Mn-stimulated BV2 microglial cells.
Methods Microglia-like BV2 were treated with MnCl2 with or without the non-steroidal anti-inflammatory drug PAS-Na for 12
or 24 h to examine cell viability using MTT; for 24 or 48 h to examine levels of NLRP3, CASP1, IL-1β, and IL-18 mRNA using
Real-Time quantitative PCR; for 48 h to examine levels of NLRP3 and CASP1 inflammasomes, measured by western blot
analysis; and for 48 h to examine levels of inflammatory cytokines, measured by enzyme-linked immunosorbent assay.
Results The MTT assay showed that PAS-Na produced significant neuroprotective effect by preventing Mn-induced inflamma-
tion in BV2 microglial cells. PAS-Na significantly concentration and time dependently inhibited Mn-induced production of
NLRP3, CASP1, IL-1β, and IL-18.
Conclusion Taken together, our results suggest that PAS-Na exerts anti-inflammatory effects in Mn-stimulated BV2 microglial
cells via downregulation of NLRP3, CASP1, IL-1β, and I L-18. Furthermore, a high concentration and prolonged PAS-Na
treatment appear necessary for its therapeutic efficacy. Taken together, we conclude that PAS-Na affords therapeutic efficacy in
mitigating neurological conditions associated with neuroinflammation.
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NLRP3-CASP1 pathway

Introduction

Manganese (Mn) is an essential trace element that is widely
distributed in the Earth’s crust and is crucial for multiple Mn-
dependent enzyme and Mn metalloenzymes [1]. As such, Mn

plays a key role in numerous biochemical reactions, including
immune response, ATP generation, bone growth, digestion,
and reproduction [2]. Additionally, Mn is an integral constit-
uent of metalloenzymes, such as theMn superoxide dismutase
located within the mitochondria that facilitate the detoxifica-
tion of superoxide free radicals [3]. Mn is required in human
tissues and its concentrations regulated in several homeostatic
mechanisms. The liver, kidney, pancreas, bone, and parts of
the brain, including the basal ganglia and cerebellum, are par-
ticularly rich in Mn content [4]. Nutritional Mn deficiency has
not been described in humans and has been attributed to its
ubiquitous presence in the diet. In real-life scenarios, long-
term exposure to elevated levels of Mn causes manganism, a
neurodegenerative disorder characterized by Parkinson’s dis-
ease (PD)-like symptoms [5, 6]. Moreover, Mn is a risk factor
for several neurodegenerative diseases including PD and
Alzheimer’s disease (AD) [7]. Numerous investigations have
indicated that Mn exposure induces classical activation in
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microglial cells in the central nervous system (CNS), leading
to the production of pro-inflammatory cytokines [8, 9]. A
plethora of pro-inflammatory factors cause neuronal damage
[10]. However, the precise effect of Mn exposure on
microglial cells has yet to be fully elucidated.

As the primary immune response cell in the CNS, microg-
lia continuously monitor the microenvironment through pat-
tern recognition receptors, including Toll-like receptors and
Nod-like receptors. Once injury is sensed, microglia respond
rapidly to stress, infection, and injury [11–14]. Mn has been
shown to induce neurological injury, encompassing complex
pathophysiological signaling mechanisms between neurons
and glial cells [8, 15]. Glial cells are also an important target
of Mn neurotoxicity, both for sequestration of the metal and
for activation of inflammatory signaling pathways that trigger
neuroinflammation by releasing multiple inflammatory cyto-
kines [16, 17]. The accumulation of pro-inflammatory cyto-
kines, such as IL-1β (interleukin 1 β) and IL-18 (interleukin
18), as well as NLRP3 (Nod-like receptor family, pyrin do-
main containing 3)-CASP1 (caspase-1) inflammasome activa-
tion has been invoked to damage hippocampal neuronal cells
in the course of the pathogenesis of manganism [2, 10].

PAS-Na, a non-steroidal anti-inflammatory drug, has been
used to treat tuberculosis [18]. The chemical structure of PAS-
Na is comprised of carboxyl, hydroxyl, and amine groups,
which provide promising chelating moieties for metals. An
earlier study by Zheng et al. showed that in addition to its
known anti-tuberculosis effect, PAS is also an efficient che-
lating agent [19]. In ensuing clinical trials, PAS-Na has shown
efficacy in the treatment of Mn poisoning [20–22]. Moreover,
animal studies have shown that PAS-Na has protective effect
on spatial learning and memory abilities in rodent [23, 24].
Furthermore, PAS-Na has been reported to attenuate neuro-
toxicity in basal ganglia of rat [25, 26].

In spite of the many reports that have corroborated the
clinical efficacy of PAS-Na in protecting the CNS by attenu-
ating inflammatory response [24, 27], little is known about the
relationship of PAS-Na and NLRP3-CASP1 inflammasome
pathway. In addition, a previous study reported that NLRP3-
CASP1 inflammasome-mediated neuroinflammation in mi-
croglia has specific relevance to manganism [2, 15].
Therefore, the present study investigated the neuroprotective
effect of PAS-Na inMn-stimulated BV2 microglial cells from
the perspective of inflammatory responses.

Materials and Methods

Chemical Reagents

PAS-Na was purchased from Harbin Pharmaceutical Group
(China). DMEM-F12 medium was purchased from HyClone
(USA). 0.25% Trypsin (no EDTA) was purchased from

Genotech (China). Fetal bovine serum (FBS) was purchased
from Gibco (USA). JSH-23 (NF-κB inhibitor) was purchased
from Selleck (USA). MnCl2·4H2O and dimethyl sulfoxide
(DMSO) were purchased from Sigma (USA). BCA protein
quantitative kit and Thiazolyl Blue Tetrazolium Bromide
(MTT) were purchased from Beyotime (China). Eastep®
Super total RNA extraction kit, GoScript™ Reverse
Transcription Mix kit, and GoTaq® qPCR Master Mix kit
were purchased from Promega (USA). The ELISA Kits were
all purchased from Elabscience Company (China).

Cell Culture and Grouping

BV2 microglial cells were purchased from China Center for
Type Culture Collection (CCTCC). BV2microglial cells were
placed at T25 flasks in DMEM-F12 medium supplemented
with 10% FBS, penicillin G (100 units/mL), and streptomycin
(100 mg/mL) and incubated at 37 °C in a humidified atmo-
sphere containing 5% CO2 and passaged every 2–3 days to
maintain growth.

To examine the effect of various concentrations of PAS-Na
on Mn-induced cell viability, mRNA, and protein expression,
BV2 microglial cells were randomly assigned into six groups
in each group as follows: control, PAS-Na control, Mn-treated
group (stimulated with 200 μmol/L MnCl2), and concentra-
tions of 100, 200, and 400 μmol/L PAS-Na treatment groups
(Mn + L, M, H groups). Cells cultured without any exposure
and treatment were used as a control, and PAS-Na control
group was treated with 400 μmol/L PAS-Na only.Different
concentrations of PAS-Na treatment to Mn-induced Cell
viability

Cell Viability Assay

BV2 microglial cells were inoculated into 96-well plate at a
density of 6 × 103/well and then randomly assigned into dif-
ferent groups in different experiments. After 24 h of incuba-
tion, seeded cells were treated with various concentrations of
MnCl2 with or without PAS-Na. After 24 h, 100 μl of MTT
solution (5 mg/ml) was added to each well and kept in the
incubator for 3 h at 37 °C. Then, 150 μl DMSO was added to
dissolve the crystals, and cell viability was measured by taking
absorbance at a wavelength of 490 nMin. The formula of the
cell survival rate was as follows:

Cell viability %ð Þ

¼ experimental group OD−zero adjustment group OD

control group OD−zero adjustment group OD

� 100%
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Real-Time Quantitative PCR

Real-Time Quantitative PCR (qPCR) was performed to inves-
tigate the effect of PAS-Na on NLRP3, CASP1, IL-1β, and IL-
18 at mRNA level. 2 × 105/well BV2 microglial cells were
seeded in 6-well plate and then randomly divided into six
groups. After 24 h of incubation, 200μmol/LMnCl2 was added
to each well for 12 h prior to treatment with various concentra-
tions of PAS-Na for 24 h or 48 h. Total RNAwas isolated from
cells according to the Eastep® Super total RNA extraction kit’s
instructions. Total RNA (1 μg) was reverse transcribed using
GoScript™ Reverse Transcription Mix kit. The optimal condi-
tions for PCR amplification of cDNA were established using
the manufacturer’s instructions. GAPDH was used as a house-
keeping gene control, and untreated cells were used as a control
to normalize the relative amounts of target gene expression.

qRT-PCR was performed in a total volume of 20 ul,
consisting of 10 ul GoTaq® qPCRMaster Mix, 0.8 μM of each
primer, and diethylpyrocarbonate (DEPC)-treated water by using
real-time fluorescence quantitative PCR instrument (Applied
Biosystems, USA). The conditions for PCR cycles were as fol-
lows: stage 1, 95 °C 10min; stage 2, 95 °C 15 s, 60 °C 1min, 40
cycles; dissociation stage, 95 °C 15 s, 60 °C 15 s, 95 °C 15 s.
Primer sequences (Sangon Biotech, China) were listed in
Table 1. The cycle number at the linear amplification threshold
(Ct) values for the endogenous control GAPDH and the target
gene were recorded. Relative gene expression (target gene ex-
pression normalized to the expression of the endogenous control
gene) was calculated using the comparative Ctmethod (2-ΔΔCt).

Western Blot Analysis

Proteins from BV2 microglial cells were extracted. Enhanced
BCA protein assay kit (Beyotime, Shanghai, China) was ap-
plied to determine the concentrations of proteins, and double-
distilled water was used to balance concentrations of samples
before electrophoresis. Protein extracts were loaded onto a

sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) 10% gel for electrophoresis and then transferred
to a polyvinylidene fluoride (PVDF) membrane (Merck
Millipore, Darmstadt, Germany). After blockade with 5%
BSA, membranes were incubated with primary antibodies
(NLRP3, 1:1000, D4D8T, Cell Signaling Technology, USA;
Cleaved CASP1, 1:1000, asp296, Cell Signaling Technology,
USA; CASP1, 1:1000, ab1872, Abcam, USA; GAPDH,
1:2000, D16H11, Cell Signaling Technology, USA) over-
night at 4 °C, respectively. The goat anti-rabbit secondary
antibodies (1:5000, ab6721, Cell Signaling Technology,
USA) were incubated at room temperature for 1 h. Finally,
visualization of target proteins was achieved by detection of
fluorescence produced by enhanced chemiluminescence
(PierceTM ECL Western Blotting, Thermo).

Enzyme-Linked Immunosorbent Assay

The levels of IL-1β and IL-18 in BV2 microglial cells were
determined using commercially available enzyme-linked im-
munosorbent assays (ELISA). To quantitatively the concen-
tration of inflammatory cytokines, cells were incubated with
200 μmol/L MnCl2 acid for 12 h, then, different concentra-
tions of PAS-Na treatment for 48 h. Next the cells were col-
lected and analyzed for IL-1β and IL-18 content using an IL-
1βELISA kit and an IL-18 ELISA kit, respectively, according
to the manufacturer’s protocol.

Statistical Analysis

Statistical analyses were performed using GraphPad Prism 8
and IBM SPSS Statistics 25 software. All data presented are
representative of at least three independent experiments. The
data are shown as the mean ± standard deviation (SD). Each
experiment was repeated three times, and Student’s t test or
one-way ANOVA were employed to quantify differences be-
tween two groups or among multiple groups, followed by
LSD for post hoc comparisons. Statistical significance was
set at P < 0.05.

Results

Establishment of BV2 Cell Inflammatory Injury Model
Induced by Mn

In order to ensure the successful modeling of the inflammato-
ry injury model, first, cell survival rate was assessed in BV2
microglial cells after Mn treatment. The results showed that
the cell survival rate was significantly reduced in Mn treat-
ment compared to the control group (P < 0.05, P < 0.01, Fig.
1). Therefore, we used cells cultured in 200 μmol/LMnCl2 for
12 h in the follow-up experiments.

Table 1 qPCR primer sequences

Gene Primer sequences

NLRP3 Forward: 5′-GTTGGTGAATTCCGGCCTTA-3′

Reverse: 5′-GCCTGAGTCCTGTGTCTCCA-3′

CASP1 Forward: 5′-AACCACTCGTACACGTCTTGC-3′

Reverse: 5′-ATCCTCCAGCAGCAACTTCA-3′

IL-1β Forward: 5′-CCAGGATGAGGACATGAGCA-3′

Reverse: 5′-CGGAGCCTGTAGTGCAGTTG-3′

IL-18 Forward: 5′-GACTCTTGCGTCAACTTCAAGG-3′

Reverse: 5′-GTTGTCTGATTCCAGGTCTCCA-3′

GAPDH Forward: 5′-TACTAGCGGTTTTACGGGCG-3′

Reverse: 5′-TCGAACAGGAGGAGCAGAGAGCGA-3′
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Effect of MnCl2 on the Morphology of BV2 Microglial
Cells

The morphology of control and MnCl2 treated is shown as
Fig. 2. The morphology of control BV2 microglial cells
showed small soma with fusiform, elliptical and synaptic.
Mn-treated BV2 microglial cells had shorter branches which
appeared to be resorbed into the cell body, while some cells
became larger and amoeboid (Fig. 2). These data suggest that
Mn exposure could impair immune system, and further indi-
cate that our cells were a successful model of manganism.

Effect of PAS-Na on Cell Viability of BV2 Microglial
Cells

To examine the effect of PAS-Na on cell viability, we exam-
ined the survival rate of PAS-Na-treated BV2microglial cells.
As shown in Fig. 3, the incubation of BV2 microglial cells
with 0–1600 μmol/L PAS-Na for 24 h did not decrease cell

viability within the range of concentrations used (P > 0.05).
However, cellular viability was significantly decreased at con-
centrations of 3200 and 6400 μmol/L PAS-Na (P < 0.01).
Therefore, 100(L), 200(M), and 400(H) μmol/L were utilized
in the follow-up experiments.

PAS-Na Exerted Its Neuroprotection to BV2 Microglia
Cells in a Concentration-Dependent Manner

Based on the results above, next, we investigated whether the
neuroprotective effects of PAS-Na were concentration depen-
dent. PAS-Na significantly increased cell viability of BV2
microglial cells with increasing concentration (Fig. 4). Thus,
the results showed that PAS-Na might play a neuroprotective
role in Mn-treated BV2 microglia cells in a concentration-
dependent manner.

Effects of PAS-Na on Mn-Induced NLRP3, CASP1, IL-
1β, and IL-18 mRNA Expression in BV2 Microglial Cells

To assess temporal effect of PAS-Na treatment on Mn-
induced inflammatory responses in microglia, NLRP3,
CASP1, IL-1β, and IL-18 mRNA expression were detected
by means of qPCR. As shown in Fig. 5, compared to control
cells, mRNA levels of NLRP3, IL-1β, and IL-18 were signif-
icantly increased in cells treated with Mn (Fig. 4e, g, d, P <
0.05, P < 0.01). Furthermore, NLRP3 and IL-1β mRNA ex-
pression was significantly increased in PAS-Na-treated cells
compared to that in Mn-treated group (Fig. 4a, c, P < 0.01).
Interestingly, PAS-Na treatment for 48 h significantly de-
creased the levels of NLRP3 and IL-1β compared with the
Mn-treated group (Fig. 4e, g, P < 0.05, P < 0.01). However, a
significant decrease was observed in mRNA expression of
CASP1 only (compared to Mn-treated group) (Fig. 4f, P <
0.05). Based on these results, we infer that the expression of
NLRP3, CASP1, and IL-1β was significantly decreased, and
IL-18 was significantly increased in BV2microglial cells with
prolonged PAS-Na incubation times.

Fig. 1 Effect of different MnCl2 concentrations for 12 h on the cell
viability of BV2. BV2 microglial cells were treated with 0, 50, 100,
150, 200, 250, 300, 400, and 500 μmol/L MnCl2 for 12 h. *, P < 0.05;
**, P < 0.01 compared to the control, x� SD (μmol/L)

Fig. 2 Effect of MnCl2 on BV2
microglial cells morphology. The
normal morphology of BV2
microglial cells cultured in
normal medium for 12 h (left).
Morphological changes of BV2
microglial cells were observed
after exposure to 200 μmol/L
MnCl2 for 12 h (right). Arrows
indicate typical control and Mn-
treated BV2 cells. Scale bar
indicates 50 μm
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Profiles of NLRP3, CASP1, IL-1β, and IL-18 Produced
by Mn-Stimulated BV2 Cells After PAS Treatment

Protein Expression Levels of NLRP3 and CASP1
Inflammasomes

Mn exposure increased the expression of NLRP3 and CASP1
in the BV2 cells (Fig. 6b, c, P < 0.05, P < 0.01), compared to
control cells. It is well established that CASP1 is cleaved into
mature CASP1 to function. Thus, we determined protein ex-
pression of cleaved CASP1 and found its protein expression
increased compared to control cells (Fig. 6d, P < 0.05).
Furthermore, NLRP3 and cleaved CASP1 were significantly
reduced after PAS treatment (Fig. 6b, d, P < 0.01), compared
to the Mn-treated group. These results indicate that Mn acti-
vates the NLRP3 and CASP1 inflammasomes in BV2 cells.

However, PAS-Na can effectively suppress induced
inflammatory.

Protein Expression Levels of IL-1β and IL-18 Inflammatory
Cytokines

Tomeasure the levels of IL-1β and IL-18 in the BV2 cells, we
used the ELISA technique. Figure 7 presents the mean levels
of the two cytokines, measured in repeated experiments, in
cultured BV2 cells. The results showed a strong increase in
IL-1β and IL-18 protein expression in the BV2 cells com-
pared to the control at 12-h Mn stimulated (Fig. 7, P <
0.01). Importantly, PAS-Na treatment for 48 h significantly
decreased the levels of IL-1β and IL-18 compared with the
Mn-treated group (Fig. 7, P < 0.05, P < 0.01). Notably, the
protein expression of IL-18 was reduced in dose-dependent
manner.

Discussion

Excessive brain Mn accumulation is known to cause an extra-
pyramidal disorder, including cognitive, memory, and motor
deficits, as well as psychosis, an early effect in the course of
the disease [28, 29]. In severe cases, manganism patients’
symptoms exhibit analogous neurological deficits to those of
PD patients, such as tremor, bradykinesia, and gait difficulties,
though the 2 diseases also have distinct features [30, 31].
Notably, inflammatory processes play an important role in
neurodegenerative diseases and occur early in the pathogene-
sis of Mn neurotoxicity [13, 32]. As the primary source for
pro-inflammatory cytokines, microglia are implicated as piv-
otal mediators of neuroinflammation and can induce or mod-
ulate a broad spectrum of cellular responses [14, 33]. Herein,
we found that morphological changes after exposure to man-
ganese are manifested as Mn poisoning, and the related mech-
anism of their changes were described below.

Previous studies have established the propensity of Mn to
activate microglia, leading to neuroinflammation [34–36]. In
the present study, we found that BV2 microglial cells showed
increased release of pro-inflammatory IL-1β following Mn
exposure. Li et al. observed that Mn caused enhancement in
inflammatory cytokines IL-6, IL-1β, PGE2, and TNF-alpha
levels in the hippocampus and thalamus [24]. The NLRP3
inflammasome, which comprises the NLRP3 scaffold, the
PYCARD/ASC adaptor, and CASP1, has a critical role in
the maturation and release of pro-inflammatory cytokines
[37–39]. The inflammasome is formed and activated in re-
sponse to infections, cellular damage, or metabolic distur-
bances and is involved in both host defense and sterile inflam-
mation through proteolytically activating the highly pro-
inflammatory cytokines, IL-1β, and IL-18 [40]. Here, we pro-
vide evidence that Mn exposure triggers the activation of

Fig. 4 Effects of PAS-Na on cell viability of BV2microglia cells exposed
to Mn. BV2 microglial cells were stimulated with 200 μmol/L MnCl2 for
12 h prior to L, M, H-PAS treatment for 12 h. **, P < 0.01 compared to
the control, ##, P < 0.01 compared to the Mn-treated group x� SD
(μmol/L)

Fig. 3 Effect of various concentrations of PAS-Na for 24 h on the cell
viability of BV2. BV2microglial cells were treated with 0, 100, 200, 400,
800, 1600, 3200, and 6400 μmol/L PAS-Na for 24 h. **, P < 0.01
compared to the control x� SD (μmol/L)
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NLRP3-CASP1 inflammasome pathway in microglia, corrob-
orating in vivo observations by Wang et al [2]. Moreover, no
significant increase was observed in the levels of IL-18 in
BV2 microglial cells exposed to Mn in the present study.
Collectively, these data suggest that microglia are activated
by Mn both in vivo and in vitro, thus leading to the activation
of the NLRP3-CASP1 inflammasome pathway, maturation,
and release of pro-inflammatory cytokines (IL-1β and IL-
18) and the ensuing innate immune response.

Microglia are the first line of response to brain injury or
disease [41, 42]. Microglia play a critical homeostatic role in
neuroinflammation, which is associated with various neurolog-
ical diseases, including PD, AD, and Huntington disease
[43–45]. Abnormal activation of microglia may induce neuro-
toxicity, and its excessive production of inflammatory media-
tors might aggravate blood-brain barrier disruption, facilitating
CNS inflammatory responses [46–48]. Accordingly, control-
ling microglial activation might represent a potential strategy

Fig. 5 Effects of PAS-Na on Mn-induced pro-inflammatory cytokines
mRNA expression in BV2 microglial cells for 24 h (a, b, c, d) or 48 h
(e, f, g, h). Each value indicates the mean ± SD and is representative of

results obtained from three wells in all experiments. *, P < 0.05, **, P <
0.01, as compared with control group; #, P < 0.05, ##, P < 0.01, as
compared with Mn-treated group (μmol/L)
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for the management of these diseases. Therapeutically, as a
non-steroidal anti-inflammatory drug, PAS-Na has anti-
inflammatory effects and has a proven efficacy against many
different inflammation-associated disorders. Santos et al. found
that in hippocampal pyramidal neurons, the Mn-induced in-
crease in the level of PGE2 was reversed by PAS-Na [49]. Li
et al. reported PAS-Na attenuated neuropathic pain through
balancing pro-inflammatory and anti-inflammatory cytokine re-
lease in rat [24]. In addition, PAS-Na could mobilize and re-
move tissue Mn which is due to its chelating function [19]. In
line with these reports, we ascertained that PAS-Na treatment
impededMn-induced upregulation of IL-1β expression in BV2
microglial cells. Both the NLRP3 and CASP1 pathways were
activated by Mn but were only partially repressed by PAS-Na

treatment. Ram et al. found that novel NLRP3 inhibitor reduces
nervous system injury by inhibiting NLRP3 and CASP1 path-
ways, consistent with our results [50]. Taken together, these
data confirmed the anti-inflammatory functions of PAS-Na,
providing evidences for its efficacy as a potential promising
therapeut ic for CNS disorders character ized by
neuroinflammation.

The major function of inflammasomes is the generation of
mature IL-1β and IL-18 [51]. NLRP3 is known as a critical
mediator in neuroinflammation-mediated neurodegeneration
[52]. We assessed whether the activation of the NLRP3
inflammasome was involved in Mn-induced release of IL-
1β and IL-18 frommicroglia. Moreover, cleaved CASP1 trig-
gers the maturation and secretion of potent pro-inflammatory

Fig. 6 NLRP3/CASP1 expression in BV2 microglia cells. BV2
microglial cells were stimulated with 200 μmol/L MnCl2 for 12 h prior
to L, M, H-PAS treatment for 48 h. Western blot was performed for
NLRP3, CASP1, Cleaved CASP1, and GAPDH. Statistical analysis of

relative target protein expression/internal control ratio. **, P < 0.01 com-
pared to the control, ##, P < 0.01, compared to the Mn-treated group, x
� SD (μmol/L)

Fig. 7 IL-1β and IL-18
expression in BV2 microglia
cells. BV2 microglial cells were
stimulated with 200 μmol/L
MnCl2 for 12 h prior to L, M, H-
PAS treatment for 48 h. ELISA
was performed for IL-1β and IL-
18, **, P < 0.01 compared to the
control, ##, P < 0.01 compared to
the Mn-treated group, x� SD
(μmol/L)
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mediators (IL-1β and IL-18) and culminating in the activation
of the immune system and antimicrobial defense [53]. Using
western blots, we showed thatMn exposure induced increased
expression of NLRP3 and cleaved CASP1 in BV2 microglia.
Mn-induced NLRP3-CASP1 inflammasome activation and
the release of pro-inflammatory cytokines from microglia
were shown to be blocked by treatment with PAS-Na.
Herein, we found that PAS-Na Herein, we found that PAS-
Na inhibited the Mn-induced increase in NLRP3 and cleaved
CASP1 with concentration- and time-dependent, as well as
the release of IL-1β and IL-18. Taken together, these results
demonstrate that the NLRP3-CASP1 inflammasome pathway
in BV2 microglial cells can be activated by Mn via non-
canonical activation pathways. Additionally, the accumula-
tion of pro-inflammatory cytokines, such as IL-1β and IL-
18, may damage neuronal cells. Further, Mn exposure in the
48 h of PAS-Na treatment group showed that high-
concentration of PAS-Na can reduce NLRP3, CASP, IL-1β,
and IL-18 in different degree, while this was not the case in the
other treatment groups. In other words, a high-concentration
and prolonged PAS-Na treatment is necessary for its therapeu-
tic efficacy. Notably, the combination of PAS-Na and Mn
exposure increases NLRP3 and IL-1β in 24 h of treatment,
which shown that PAS-Na might have some toxicity, and the
magnitude of its toxicity needs further study. Meanwhile, ad-
ditional work is required to further investigate the neurotoxic
effect of IL-1β on neuronal cells, as well as the relationship
between the abnormal activation of microglia and impair-
ments in learning and memory in the hippocampal region. In
addition, future research should be directed at the therapeutic
efficacy of PAS-Na in attenuating in vivo Mn-induced neuro-
logical impairment.

Conclusion

The pathological mechanisms associated with Mn neurotox-
icity are poorly understood, and evidence concerning the in-
terrelationship between PAS-Na and neuroinflammation is
lacking. Collectively, our novel data demonstrated that PAS-
Na exerts an anti-inflammatory effect in Mn-stimulated BV2
microglial cells. Most specifically, the anti-inflammatory ef-
fect of PAS-Na on Mn-stimulated BV2 microglial cells is
mediated by inhibition of the NLRP3-CASP1 inflammasome
pathway, both in a concentration- and time-dependent man-
ner. Therefore, PAS-Na may serve as a potential therapeutic
agent for the treatment of neurodegenerative conditions with
inherent neuroinflammation.
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