CORRECTION

Correction to: Eco-Friendly Mycogenic Synthesis of ZnO and CuO Nanoparticles for In Vitro Antibacterial, Antibiofilm and Antifungal Applications

Asem A. Mohamed 1 · Mohammed Abu-Elghait 2 · Nehad E. Ahmed 1 · Salem S. Salem 2 ib

Published online: 25 September 2020

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Correction to: Biological Trace Element Research https://doi.org/10.1007/s12011-020-02369-4

The original version of this article unfortunately contained a mistake. Figures 7 and 8 were inadvertently interchanged. The corrected Figs. 7 and 8 are correctly presented here.

The original article has been corrected.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The online version of the original article can be found at https://doi.org/10.1007/s12011-020-02369-4

Salem S. Salem salemsalahsalem@azhar.edu.eg

Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt

Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt

Fig. 7 Light inverted microscopic images of S. aureus biofilms grown with various concentrations of CuO-NPs: a 0.0 mg/mL, represent the positive control; b negative control; c, d 3.0 and 1.5 mg/mL above the MIC value; e 0.7 mg/mL; f 0.3 mg/mL; g 0.15 mg/mL; h 0.07 mg/mL; i 0.03 mg/mL; and j 0.01 mg/mL. At concentrations from 0.01 to 0.3 mg/ mL (f-j) bacteria have appeared as scattered cells and cannot aggregated together to perform normal biofilm.

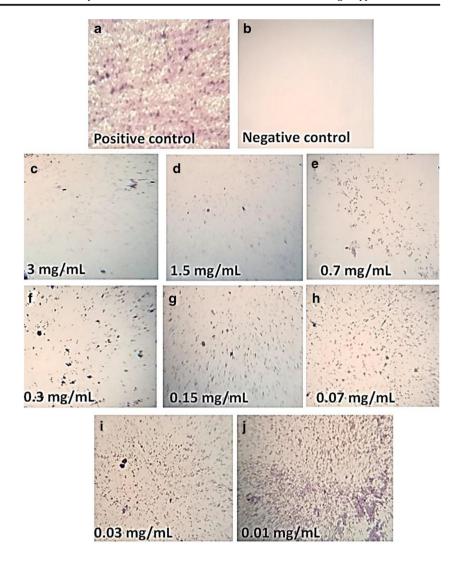
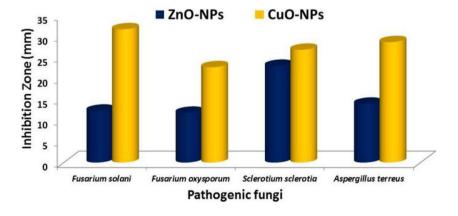



Fig. 8 Antifungal activity for ZnO-NPs and CuO-NPs at 10mg/ mL against different phytopathogenic fungal strains

