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Abstract
In this study, the protective effects of chrysin (CR) on lead acetate (PbAc)-induced renal toxicity in Sprague-Dawley rats were
investigated with biochemical, histopathological, and immunohistochemical methods. In the study, rats were given orally at 30
mg/kg/body weight (BW) PbAc after CR of 25 and 50 mg/kg/BW was administered to them orally (a total of 7 administrations
for 7 days). The results showed that CR reduced urea and creatinine levels by alleviating PbAc-induced kidney damage. It was
determined that CR decreases PbAc-induced lipid peroxidation due to its antioxidant properties and increases catalase (CAT),
superoxide dismutase (SOD), glutathione peroxidase (GPx) activities, and glutathione (GSH) levels. It was also detected that CR
protects DNA from the toxic effects of PbAc and reduces 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels. Biochemical and
immunohistochemical findings demonstrated that CR had anti-inflammatory and antiapoptotic effects and reduced nuclear factor
kappa-B (NF-κB), interleukin-33 (IL-33), prostaglandin-E2 (PGE-2), tumor necrosis factor-α (TNF-α), p53 levels, and the
activities of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), which were increased with PbAc adminis-
tration. Moreover, CR was found to increase the levels of aquaporin-1 (AQP-1) and nephrine in PbAc-induced kidney tissue. CR
decreased the contents of lead (Pb), zinc (Zn), iron (Fe), sodium (Na), and copper (Cu) and increased those of potassium (K)
calcium (Ca) in renal tissue. These results indicated that CR considerably alleviates kidney toxicity caused by PbAc.
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Introduction

Lead (Pb), an environmental pollutant and toxic agent, is among
the heavy metals [1, 2]. Contaminated food, water, and air

pollution are major sources of Pb toxicity [3, 4]. According to
the World Health Organization, Pb is among the 10 most dan-
gerous substances for public health [5]. Pb excretion is very
difficult and can be stored in soft tissues, bones, and other im-
portant organs for a long time [6, 7]. In addition, it has toxic
effects onmany tissues, especially kidney [6, 8, 9].Although the
mechanism of Pb toxicity in the kidneys cannot be understood
precisely, studies suggest that oxidative stress has an important
contribution to Pb toxicity [10, 11]. Moreover, studies have
reported that Pb can induce apoptosis by causing mitochondrial
degradation and DNA damage [12, 13] (Fig. 1).

In the treatment of toxicity caused by heavy metals, including
Pb, chelators are used to excrete heavy metal from the body [7,
14]. It has been reported that chelators used in lead treatment,
alongwith some undesirable side effects [15], did not havemuch
effect on the lead accumulated in tissue [16, 17]. Therefore,
research has focused on various alternative approaches to the
treatment of Pb toxicity, particularly plant-based drugs [7].

Herbal products and their active components protect the tis-
sues and organs from the attacks reactive oxygen species (ROS)
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and prevent the formation of oxidative stress [18, 19]. Thus,
these substances are often among the research topics in metal
detoxification [19]. Flavonoids, plant secondary metabolites,
are the phenolic compounds which are abundant in foods and
have antioxidant, antibacterial, anti-cancer, anti-mutagenic, and
anti-inflammatory properties [20–25]. Chrysin (CR), whose
chemical name is 5,7-dihydroxiflavone, is one of the flavonoids
commonly used as a traditional medicine and found in many
plant extracts, honey, and propolis [26, 27]. Much research
demonstrates that CR has antioxidant, anti-inflammatory, anti-
cancer, anti-diabetic, anti-allergic, antiapoptotic properties
[28–30]. CR has antioxidant properties since the hydroxyl
groups in its structure have an elimination effect on free radicals
[31, 32]. Furthermore, CR has been shown to have anti-
inflammatory effect by lowering levels of certain cytokines,
prostaglandin E (PGE), cyclooxygenase-2 (COX-2), and nitric
oxide (NO) [33, 34]. The daily intake of CR is 0.5–3 g for
people [35]. However, CR has been reported to cause toxicity
even at low doses in the fish liver cell line [36].

There is no definite information in the literature on whether
CR has a protective effect against kidney damage caused by
lead, a toxic heavy metal. That’s why the present study was
conducted to investigate the protective effects of CR on kid-
ney damage caused by PbAc through using some biochemical
and histopathological methods.

Materials and methods

Drugs and chemicals

All chemicals used in the experiment, including lead acetate
(lead (II) acetate trihydrate [Pb(CH3CO2)2 3H2O], cas no:

6080-56-4, purity: 99.5–102.0%, mp: 75°C) and chrysin
(5,7-dihydroxyflavone [C15H10O4], cas no: 480–40-0, purity
97%,mp: 284–286°C) were of the highest purity and obtained
from Sigma-Aldrich Chemical Company (St Louis, MO,
USA).

Animals

Thirty-five Sprague-Dawley male rats purchased from
Atatürk University Medical Experimental Application and
Research Center were used in the experiment. The animals
were about 10–12 weeks old and weighed 250–270 g when
the experiment began. The environment in which they were
kept had 24 ± 1 ° C (room temperature) temperature, 45 ± 5%
humidity, and 12-h light/dark cycles. They were fed ad
libitumwith standard laboratory feed and tap water. Rats were
adapted to the environment for 1 week before drug adminis-
tration. Approval was obtained from the Local Ethics
Committee for Animal Experiments of Ataturk University in
order to make the applications (Approval no: 2019-12/163).

Treatment protocol

PbAc and CR doses were determined with reference to previ-
ous studies [37, 38]. In this study, 5 different groups were
formed with 7 male rats in each group. The groups were de-
signed as follows:

– Group 1 (control group): saline was given orally to rats
for 7 days.

– Group 2 (CR-50 group): 50 mg/kg/BW CR was given
orally to rats for 7 days.

Fig. 1 Schematic diagram of the
experimental design
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– Group 3 (PbAc group): 30 mg/kg/BW PbAc was given
orally to rats for 7 days.

– Group 4 (PbAc + CR-25 group): 30 mg/kg/BW PbAc
was given orally to rats 30 min after 25 mg/kg/BW CR
the administration for 7 days.

– Group 5 (PbAc + CR-50 group): 30 mg/kg/BW PbAc
was given orally to rats 30 min after the administration
of 50 mg/kg/BW CR for 7 days.

Collection of samples

Twenty-four hours after the last drug administration, the ani-
mals’ body weights were measured and then they decapitated
under mild isoflurane (IsoFlo; Abbott, Queenborough, UK)
anesthesia. As soon as they were decapitated, blood samples
were collected from their Vena jugularis. Blood samples were
collected in anticoagulant free tubes and centrifuged at
1200×g for 15 min. Blood serum was used to determine renal
function. After the kidneys from rats were washed with ice-
cold physiologic saline (0.85%NaCl), one of them was stored
at − 80 ° C for biochemical analysis and the other in 10%
buffered formalin solution for histological examination until
used.

Determination of serum urea and creatinine levels

Serum urea [39] and creatinine [40] levels were analyzed with
a commercial kit (Diasis Diagnostic Systems, Istanbul,
Turkey) according to the manufacturer’s instructions.

Preparation of tissue homogenates

To obtain homogenate from the kidneys, the tissues were di-
luted 1:20 v/w with phosphate-buffered saline (PBS; pH 7.4).
The resulting mixture was rapidly homogenized with a tissue
lysate device (TissueLyser II, Qiagen). The homogenate was
then centrifuged at + 4°C and 3000 rpm for 30 min. The
supernatant was used for biochemical analysis.

Determination of lipid peroxidation and antioxidant
enzyme activities in kidney tissue

The level of lipid peroxidation was determined by analyzing
the amount of malondialdehyde (MDA) at 532 nm according
to the method developed by Placer et al. [41]. The amount of
MDA was expressed as nmol/g tissue. Superoxide dismutase
activity was measured by the method designed by Sun et al.
[42]. The results were expressed as U/g protein. The measure-
ment of catalase activity was performed according to the
method of Aebi [43]. The results were expressed as catal/g
protein. Glutathione peroxidase (GPx) activity was measured
according to the method developed by Lawrence, Burk [44].

Results were expressed as U/g protein. The method developed
by Sedlak, Lindsay [45] was used to determine the level of
glutathione. Results were expressed as nmol/g of tissue. Total
protein analysis was performed according to the method de-
veloped by Lowry et al. [46] using bovine serum albumin
(BSA) as standard.

Determination of AQP-1 levels in renal tissue

Aquaporin-1 (AQP-1) levels was performed by using rat
enzyme-linked immunosorbent assay (ELISA) kit (cat. no:
201-11-0566; assay range: 0.15–40 ng/ml) obtained from
Sunred Biological Technology Company.

Determination of p53 levels in renal tissue

p53 levels were analyzed with rat ELISA kit according to the
manufacturer’s instructions (Sunred, Shanghai, China) (cat.
no: 201-11-0072; assay range: 0.05–10 ng/ml). The color in-
tensity at the end of the procedures was read at 450 nm with
the ELISA microplate reader (Bio-Tek, Winooski, VT, USA).

Determination of inflammatory response levels in
kidney tissue

Interleukin-33 (IL-33) (cat. no: 201-11-3102; assay range: 1.5
- 400 ng/L), COX-2 (cat. no: 201-11-0297; assay range: 0.5–
150 ng/ml), PGE-2 (cat. no: 201-11-0505; assay range: 0.05–
15 ng/ml), nuclear factor kappa-B (NF-κB) (cat. no: 201-11-
0288; assay range: 0.08–20 ng/ml), and inducible nitric oxide
synthase (iNOS) (cat. no: 201-11-0741; assay range: 0.8–200
ng/ml) in renal tissue were measured by ELISA to determine
the degree of inflammatory response levels in accordance with
the manufacturer’s instructions (Sunred, Shanghai, China).

Determination of DNA damage level in kidney tissue

The degree of DNA damage in kidney tissue was determined
by measuring the level of 8-hydroxy-2′-deoxyguanosine (8-
OHdG) using a commercial kit (Sunred, Shangai, China) (cat.
no: 201-11-0032; assay range: 0.05–20 ng/ml).

Histopathological examination of kidney tissue

Necropsy was performed for histopathological evaluation of
the renal tissues and tissue samples were fixed in 10% forma-
lin solution for 48 h. Tissues were embedded in paraffin
blocks with routine-tracking procedures. From each block
were taken 4-μm-thick cross-sections. All preparations were
stained with hematoxylin-eosin (HE) and examined with a
light microscope (Leica DM 1000, Germany).
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Immunohistochemical examination of kidney tissue

Cross-sections obtained from kidney tissues were trans-
f e r r e d t o a d h e s i v e ( p o l y - L -Ly s i n ) s l i d e s f o r
immunperoxidase examination and passed through xylol
and alcohol series. After washing with phosphate-buffered
saline (PBS), endogenous peroxidase was inactivated for
1 0 m in a t 3% H2O2 (Me r c k , K50505100 830
1.08600.1000). In the microwave oven set at 500 watts,
the antigen in the tissues was released by exposure to re-
trieval solution (abcam, ab93678) for 2 × 5 min. Tissues
were incubated with nephrin and tumor necrosis factor-α
(TNF-α) antibodies (catalog no. Ab-216692, Abcam, UK,
sc-52B83, Santa Cruz, USA) for 30 min,in an incubator set
at 37 °C. Immunohistochemistry procedures were followed
according to the kit instructions (AbcamHRP/DAB
Detection IHC kit). 3-3 ’Diaminobenzidine (DAB) was
used as chromogen. Background staining was performed
with hematoxylin. Immuno-positivity of the samples was
expressed as none (-), mild (+), moderate (++), and severe
(+++).

Determination of elemental content of kidney tissue

In this study, ICP-MS NexION® 2000 (PerkinElmer®
Inc., USA) device with quartz nebulizer gasifier, cyclonic
spray chember, and integrated auto-sampler was used for
the element analysis of samples. The washing solution
containing 1% hydrochloric acid ultra-pure water was pre-
pared using 18.3 MΩ ultra-pure water and the ICP-MS
method was performed. In the preparation of the sample,
0.2 g were weighed, and transferred to the microwave
oven teflon cups and added 10 mL nitric acid. ICP-MS
calibration solutions were prepared by dilution with com-
mercially available multi-element standards of 1% (nitric
acid, ultra-pure water). In addition, ICP-MS calibration
was performed before each measurement. With a peristal-
tic pump, the samples were sent to the cyclonic spray
chamber with argon gas flow. ICP-MS NexION instru-
ment software was used to control the instrument, includ-
ing calibration, interferences, data collection, and data
analysis. In addition to argon gas, helium gas was used
to prevent interference.

Statistical analysis

Statistical analysis of biochemical data was done with
one-way ANOVA test in IBM SPSS program (version
20.0; IBM Co, North Castle, NY). Tukey’s multiple
comparison test was used for comparisons between
the groups. All values were expressed as mean ± stan-
dard error (SEM), and p < 0.05 was considered signif-
icant. Kruskal-Wallis test, which is one of the nonpara-
metric tests, was applied to the data obtained from
histopathological examinations in order to determine
the differences between the groups. The comparison
of binary groups was done using Mann-Whitney U
test. SPSS 13.0 package program was used for these
statistical analyzes.

Results

Analysis results of serum urea and creatinine levels

The results indicated that PbAc increases serum urea and cre-
atinine levels by disrupting kidney function (P < 0.05). CR
was found to reduce serum urea and creatinine levels by de-
creasing kidney toxicity caused by PbAc in a dose-dependent
manner (25 and 50 mg/kg/BW). It was determined that there
was no significant difference between the control and CR
groups. Furthermore, it was observed that the rats who lost
weight with PbAc administration reached the weight of the
animals in the control group with CR treatment. Serum urea
and creatinine levels and body weights of all groups are pre-
sented in Table 1.

Analysis of lipid peroxidation and antioxidant
markers in kidney tissue

It was determined that PbAc administration increased MDA
levels by causing lipid peroxidation in kidney tissue and de-
creased the activities of antioxidant enzymes (SOD, CAT and
GPx) and GSH levels. On the other hand, it was found that CR
administration decreased lipid peroxidation; thus, MDA levels
reduced. It was also detected that CR treatment significantly
increased SOD, CAT, and GPx activities and GSH levels

Table 1 Effects of CR on kidney
function parameters and body
weights in PbAc-induced
nephrotoxicity in rats

Parameters Control CR-50 PbAc PbAc + CR-25 PbAc + CR-50

Urea (mg/dL) 3.68 ± 0.14d 3.49 ± 0.06d 9.23 ± 0.25a 6.58 ± 0.24b 5.05 ± 0.11c

Creatinine
(mg/dL)

0.45 ± 0.01d 0.43 ± 0.01d 2.16 ± 0.05a 1.31 ± 0.04b 0.87 ± 0.03c

Body weight (g) 278.29 ± 3.26ab 283.86 ± 2.43a 240.57 ± 1.95d 261.00 ± 4.90c 274.29 ± 3.40b

Data of rats in each group were expressed as mean ± SEM (n = 7). The different letters (a–d ) on the same line
indicate a statistically significant difference (p < 0.05) between the groups
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compared to PbAc group (P < 0.05). Lipid peroxidation and
the levels of antioxidant markers in kidney tissue are given in
Table 2.

Analysis results of AQP-1 levels in kidney tissue

AQP-1 levels are given in Fig. 2. The results demonstrated
that PbAc decreased AQP-1 levels due to the damage to the
kidneys. Furthermore, CR administration was observed to sig-
nificantly increase AQP-1 levels compared to PbAc group by
alleviating kidney damage P < 0.05.

Analysis results of p53 levels in kidney tissue

p53 levels analyzed by ELISAmethod are given in Fig. 3. The
results demonstrated that PbAc made cells undergo apoptosis
by increasing the p53 levels. CR was found to protect the cells
against apoptosis by suppressing p53 expression.

Analysis of inflammatory response levels in kidney
tissue

Analysis results of inflammatory markers of kidney tissue are
presented in Table 3. The results showed that PbAc led to

inflammation by significantly increasing IL-33, PGE-2,
COX-2, NF-κB, and iNOS levels compared to the control
group. Nevertheless, CR was found to reduce PGE-2, COX-
2, NF-κB, and iNOS levels in a dose-dependent manner,
thereby alleviating inflammation in the kidney. It was found
that IL-33 levels did not make a significant difference between
PbAc + CR-25 and PbAc + CR-50 groups.

DNA damage level

As stated in Fig. 4, it was observed that there were increases in
8-OHdG levels since PbAc damaged DNA. CR was observed
to protect DNA from damage caused by PbAc and to limit the
rise of 8-OHdG levels.

Histopathological findings

Histopathological examination showed that the kidney tissues
of the rats in the control and CR-50 groups had normal ap-
pearance (Fig. 5a–b). Mononuclear cell infiltration in the in-
terstitium of the PbAc group, severe hydropic degeneration
and necrosis in the tubules, severe hyperemia in the vessels,
and hyaline cylinders in some tubulus lumens were observed
(Fig. 5c). Hydropic degeneration and mild coagulation

Table 2 Effects of CR on
oxidative stress parameters in
PbAc-induced nephrotoxicity in
rats

Parameters Control CR-50 PbAc PbAc + CR-25 PbAc + CR-50

MDA (nmol/g tissue) 37.99 ± 0.65d 36.82 ± 0.66d 60.24 ± 0.81a 50.38 ± 0.57b 44.77 ± 0.56c

GSH (nmol/g tissue) 2.71 ± 0.03a 2.76 ± 0.03a 1.54 ± 0.03d 1.86 ± 0.02c 2.06 ± 0.04b

SOD (U/g protein) 23.42 ± 0.59a 23.96 ± 0.50a 12.85 ± 0.30d 15.02 ± 0.37c 17.46 ± 0.63b

CAT (katal/g protein) 34.42 ± 0.63a 34.37 ± 0.73a 22.36 ± 0.56c 26.08 ± 0.27b 27.55 ± 0.49b

GPx (U/g protein) 26.68 ± 0.48a 26.96 ± 0.43a 15.82 ± 0.22d 17.91 ± 0.36c 21.56 ± 0.44b

Data of rats in each group were expressed as mean ± SEM (n = 7). The different letters (a–d ) on the same line
indicate a statistically significant difference (p < 0.05) between the groups. (MDA, malondialdehyde; GSH,
glutathione; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase)

Fig. 2 Effects of CR on AQP-1
levels in PbAc-induced
nephrotoxicity in rats. Data of rats
in each group were expressed as
mean ± SEM (n = 7). Different
letters (a–d) indicate statistical
difference among the groups (p <
0.05)
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necrosis, mild mononuclear cell (MNH) infiltration, and hy-
peremia in interstitial areas were detected in moderate tubulus
epithelium in the PbAc + CR-25 group (Fig. 5d). In the PbAc
+ CR-50 group, the lesions were very mild and statistically
significant P ˂ 0.05 differences were found when compared to
the PbAc group (Fig. 5e). Histopathological findings of all
groups are summarized in Table 4.

Immunohistochemical findings

As a result of immunohistochemical examination of the renal
tissues, severe nephrin expression was observed in the tubulus
epithelium in the control and CR-50 groups, but TNF-α ex-
pression was not observed (Fig. 6, 7a–b). Negative nephrin
expression in tubular epithelium in PbAc group and severe
TNF-α expression in interstitial tissues, perivascular, and glo-
meruli were determined (Fig. 6, 7c). Nephrine was slightly
expressed in renal tubule epithelium of the PbAc + CR-25
group (Fig. 6d) and TNF-α expression was moderate in the
interstitial area (Fig. 7d). In the PbAc + CR-50 group,
nephrine expression was severe in the tubulus epithelium
(Fig. 6e). Mild TNF-α expression was detected in the intersti-
tial area (Fig. 7e). In this group, expression levels of immu-
nohistochemical markers were statistically significant (P ˂

0.05) differences when compared with PbAc group.
Immunohistochemical findings are summarized in Table 4.

Levels of elements in kidney tissue

According to the data obtained by ICP-MS method, the PbAc
and PbAc + CR-25 groups were found to have the highest Pb
accumulation in kidney tissue compared to the control group
(P < 0.05). It was determined that 50 mg/kg/BW administra-
tion of CR reduced Pb accumulation caused by PbAc. The
groups with the highest K level were found to have CR ad-
ministration with PbAc. In the PbAc and CR groups, K levels
were significantly lower than the control group (P < 0.05), but
there was no significant difference between them (P > 0.05).
The PbAc group had the highest Na levels in the kidney tissue
compared to the control group. In the CR-50 group, Na levels
decreased significantly (P < 0.05), but there was no significant
difference between CR administration with PbAc and control
groups (P > 0.05). PbAc + CR-25 and PbAc + CR-50 were the
groups with the highest Ca levels compared to the control
group. While there was no significant difference between
CR-50 and PbAc groups (P > 0.05), it was found that Ca
levels decreased compared to the control group (P < 0.05). It
was observed that CR decreased significantly Fe levels in

Fig. 3 Effects of CR on p53
levels in PbAc-induced
nephrotoxicity in rats. Data of rats
in each group were expressed as
mean ± SEM (n = 7). Different
letters (a–d) indicate statistical
difference among the groups (p <
0.05)

Table 3 Effects of CR on
inflammation parameters in
PbAc-induced nephrotoxicity in
rats

Parameters Control CR-50 PbAc PbAc +CR-25 PbAc +CR-50

NF-κB (ng/g tissue) 37.70 ± 0.76d 36.04 ± 0.59d 69.75 ± 0.73a 58.89 ± 0.99b 49.35 ± 0.80c

IL-33 (ng/g tissue) 1.49 ± 0.03c 1.40 ± 0.03c 2.25 ± 0.04a 1.76 ± 0.05b 1.71 ± 0.04b

PGE-2 (ng/g tissue) 9.71 ± 0.31d 9.01 ± 0.25d 19.42 ± 0.30a 16.43 ± 0.27b 13.64 ± 0.34c

COX-2 (ng/g
tissue)

397.38 ± 3.91d 390.31 ± 4.59d 552.02 ± 4.07a 500.40 ± 4.79b 449.61 ± 6.51c

iNOS (ng/g tissue) 181.68 ± 2.78d 176.50 ± 2.17d 267.20 ± 3.32a 240.86 ± 2.87b 216.74 ± 4.35c

Data of rats in each group were expressed as mean ± SEM (n = 7). The different letters (a–d ) on the same line
indicate a statistically significant difference (p < 0.05) between the groups. (NF-kB, nuclear factor kappa-B; IL-33,
interleukin-33; PGE-2, prostaglandin E2; COX-2, cyclooxygenase-2; iNOS, inducible nitric oxide synthase)
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kidney tissue compared to control group (P < 0.05). Cu and
Zn levels were significantly higher in the PbAc group than in
the control group (P < 0.05); nevertheless, it was found that
CR administration reduced this increase caused by PbAc from
the control group to low levels. Levels of all elements in the
kidney tissue in different groups are given in Table 5.

Discussion

The protective effects of naturally occurring antioxidant sub-
stances against heavy metal toxicity have been the subject of
many studies, and researchers have achieved promising results
[4, 47, 48]. In this study, the protective effects of CR against
kidney damage of rats exposed to PbAc orally were investi-
gated. Biochemical, histopathological, and immunohisto-
chemical results showed that PbAc caused damage in the kid-
neys. However, it was determined that the administration of
CR to rats before PbAc administration had a positive effect on
these results and had a protective effect against kidney
damage.

The kidneys are highly vulnerable to toxic damage because
they are exposed directly to blood plasma through their open
fenestrae [49]. That’s why, it is thought that one of the organs
primarily affected by toxic substances is kidneys and kidney
function disorders occur. The measurements of serum urea
and creatinine levels are frequently used to evaluate kidney
function [50]. It is known that an increase in serum urea and
creatinine levels is associated with kidney failure [51]. Abdel-
Moneim et al. [49] reported that PbAc caused an increase in
serum urea and creatinine levels possibly because it led to
kidney dysfunction and kidney failure. In this study, it was
detected that there was a significant increase in serum urea and
creatinine levels in animals treated with PbAc. In addition, as
a result of histopathological examinations, it was observed
that PbAc caused severe hydropic degeneration and necrosis
in the tubules. It was determined that CR administration

alleviates PbAc-induced lesions in tissues and reduces urea
and creatinine levels to normal levels.

The disruption of the balance between the antioxidant sys-
tem in the body and the production of reactive oxygen species
causes oxidative stress [52, 53]. The possible mechanism of
Pb toxicity is thought to be oxidative stress [15]. Lipid perox-
idation provides important contributions in determining renal
cell damage. MDA is the degradation product of lipid perox-
idation. On the other hand, SOD, CAT, and GPx are antiox-
idant enzymes that provide antioxidant defense in the body
[54]. Studies reported that Pb, by linking to SH- groups of
antioxidant enzymes, decreased the activities of these en-
zymes and caused the depletion of GSH, a non-enzymatic
antioxidant and lipid peroxidation. Therefore, in the treatment
of Pb toxicity, it is aimed both to remove Pb from the body
and to prevent the occurrence of oxidative stress by cleaning
the reactive oxygen species [15]. In the current study, it was
seen that PbAc increased MDA levels by causing lipid perox-
idation. It was observed that CH reduced lipid peroxidation,
increased enzymatic and non-enzymatic markers and
protected membrane integrity in kidney tissue due to the anti-
oxidant properties of hydroxyl groups in its structure.

Aquaporins, which are water channel proteins, are trans-
membrane glycoproteins that allow the entry or release of
water across the permeable epithelium, such as renal tubular
epithelium [55, 56]. To date, many types of AQP have been
cloned and characterized. The expression and/or physiological
regulation of AQP-1, AQP-2, AQP-3, AQP-4, AQP-6, AQP-
7, AQP-8, and AQP-11 are well documented in the kidney
[57] AQP1 is abundantly expressed in the apical and
basolateral areas of the proximal tubular cells and in the de-
scending limb cells of the Henle loop. AQP1 helps quickly
reabsorption of large quantities of filtered water [58]. It has
been reported that toxicity and dysfunction in kidneys consid-
erably affect the levels of AQPs and that AQP-1 levels in the
kidney tissues of rats with different toxic agents dramatically
decrease [19, 55, 59]. Nephrin is an important structural

Fig. 4 Effects of CR on 8-OHdG
levels in PbAc-induced
nephrotoxicity in rats. Data of rats
in each group were expressed as
mean ± SEM (n = 7). Different
letters (a–d) indicate statistical
difference among the groups (p <
0.05)
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protein of the glomerular filtration barrier and is responsible
for ultrafiltration [60, 61]. Decrease in nephrine levels causes
glomerular dysfunction and proteinuria [60]. Preservation of
nephrine expression is thought to be a potential therapeutic
approach to alleviate podocyte loss and glomerular damage
in glomerular disease [62]. In the present study, it was deter-
mined that PbAc had toxic effects in the kidneys, which led to
kidney dysfunction and significantly reduced AQP-1 and
nephrin levels. CR was found to reduce the toxic effects of
PbAc and alleviate kidney dysfunction and increase AQP-1
and nephrin levels.

The mechanism of lead toxicity is quite complicated.
However, according to the studies done, it has been reported
that one of Pb’s toxicity mechanisms is the apoptosis pathway
[63]. Apoptosis induced by various chemicals or environmen-
tal stimuli occurs under the control of many genes, including
p53 [64]. Under normal conditions, p53 expression is kept in a
low levels due to the extremely short half-life of the polypep-
tide. Nonetheless, in the cases where ROS levels increase and
following the damage to DNA, p53 protein levels increase
significantly in a short time [63]. PbAc can directly damage
DNA, or by causing oxidative stress, it can indirectly damage

Fig. 5 a–e Histopathological examination of rat kidney tissue. a–b
Control and CR-50 group: kidney tissue with normal histological
structure; c PbAc group: tubular epithelium with hydropic degeneration
(arrowheads), necrosis (thin arrows), mononuclear cell infiltration in
interstitial areas (stars) and severe hyperemia (arrows) in vessels,
hyaline cylinders in tubulus lumens (thick arrows). d PbAc + CR-25:

mild mononuclear cell infiltration in interstitial areas (star), tubular
epithelium with moderate degeneration (arrowheads), mild necrosis
(thin arrow), hyaline cylinders in tubulus lumens (thick arrows). e PbAc
+ CR-50: tubular epithelium with mild hydropic degeneration
(arrowheads), H&E; bar, 20 μm
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Table 4 Histopathological and immunohistochemical results of the effects of CR on PbAc-induced nephrotoxicity

Control (n = 7) CR-50 (n = 7) PbAc (n = 7) PbAc + CR-25 (n = 7) PbAc + CR-50 (n = 7)

Degeneration in tubules - - +++ +++ +

Necrosis in tubules - - +++ ++ -

Mononuclear cell infiltration - - +++ + -

Hyperemia in veins - - +++ +++ ++

Hyaline deposition in tubular lumens - - +++ ++ +

Nephrin +++ +++ + ++ +++

TNF-α - - +++ ++ +

None (-), mild (+), moderate (++), and severe (+++)

Fig. 6 a–e Nephrin expression in the rat kidney tissue. a–b Control and
CR-50 group: severe nephrin expression (arrowheads) in tubular
epithelium; c PbAc group: negative nephrin expression; d PbAc + CR-

25: mild nephrin expression (arrowheads) in tubulus epithelia; e PbAc +
CR-50, moderate nephrin expression in tubular epithelium (arrowheads),
IHC-P; bar, 20 μm
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Fig. 7 a–e TNF-α expression in the rat kidney tissue. a–b Control and
CR-50 group, negative TNF-α expression; c PbAc group: severe TNF-α
expression (arrowheads) at interstitial intervals; d PbAc + CR-25:

moderate TNF-α expression (arrowheads); e PbAc + CR-50: mild
TNF-α expression at interstitial intervals (arrowheads), IHC-P; bar, 20
μm

Table 5 Effects of CR on renal element contents in PbAc-induced nephrotoxicity in rats

Parameters Control CR-50 PbAc PbAc + CR-25 PbAc + CR-50

Pb (mg/kg) 1.19 ± 0.01a 1.05 ± 0.09a 8.24 ± 0.05c 8.13 ± 0.05c 7.65 ± 0.10b

K (mg/kg) 9445.74 ± 3.32b 4478.31 ± 4.10a 4433.12 ± 5.50a 12,505.78 ± 3.32c 13,606.90 ± 6.16d

Na (mg/kg) 1480.26 ± 3.30b 1029.36 ± 1.10a 1870.77 ± 3.32c 1485.95 ± 5.44b 1379.54 ± 6.13b

Ca (mg/g) 41.87 ± 0.08b 25.49 ± 0.07a 25.32 ± 0.03a 50.88 ± 0.07c 50.54 ± 0.24c

Fe (mg/kg) 77.63 ± 0.03d 36.62 ± 0.05a 65.42 ± 0.04c 54.37 ± 0.07b 42.56 ± 0.06a

Cu (μg/kg) 54.15 ± 0.02c 62.21 ± 0.06d 142.19 ± 0.05e 45.20 ± 0.07b 32.42 ± 0.09a

Zn (mg/kg) 9.12 ± 0.02c 7.66 ± 0.09b 17.05 ± 0.11d 7.10 ± 0.11b 5.32 ± 0.10a

Data of rats in each group were expressed as mean ± SEM (n = 7). The different letters (a–d ) on the same line indicate a statistically significant difference
(p < 0.05) between the groups. (Pb, lead; K, potassium; Na, sodium; Ca, calcium; Fe, iron; Cu, copper; Zn, zinc)
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cells and DNA [65]. This explains the situation in the current
study that PbAc causes severe damage to the kidneys by in-
ducing an increase in p53 levels. However, it has been deter-
mined that CR reduces p53 levels by alleviating oxidative
stress and DNA damage due to its antioxidant effect, thus
protecting kidneys from PbAc toxicity.

There is growing evidence of the link between oxidative
stress and inflammatory response. Oxidative stress provides
important contributions to the inflammation process. It has
been reported that oxidant molecules affect all phases of the
inflammatory process, such as the release of endogenous dan-
ger signal molecules, their perception by natural immune cells
from the Toll-like receptors (TLRs) and NOD-like receptor
(NLRs) families, and the activation of signal pathways that
initiate an adaptive cellular reaction to these signals [66].
The responses initiated by TLRs are transmitted by activation
of NF-κB [67]. Therefore, oxidative stress activates NF-κB
and initiates inflammation mechanism. This is one of the
strongest evidence supporting the link between oxidative
stress and inflammation in disease progression [68]. NF-κB
stimulates the release of pro-inflammatory cytokines, particu-
larly TNF-α. In addition, expression of iNOS and COX-2
proteins is regulated by NF-κB. Therefore, suppression of
NF-κB is of great therapeutic importance [19, 69]. Liu et al.
[70] reported that Pb affects kidney tissue and causes NF-κB
activation and inflammation. Flavonoids play an important
role in the regulation of cellular functions such as cell cycle
signals and modulation of inflammatory pathways [71].
Rehman et al. [72] showed that CR effectively inhibited the
increase in ferric nitrilotriacetate-mediated TNF-α, COX-2,
iNOS, and PGE2 expressions. Kandemir et al. [73] reported
that paracetamol-induced inflammation in kidney tissue im-
proves CR and decreases IL-33 levels. Similar to the literature,
in the present study, PbAc increased NF-κB, IL-33, PGE-2,
COX-2, and iNOS levels in renal tissue due to oxidative
stress. As a result, inflammation in the kidney tissue occurred.
CR reduced the inflammation caused by PbAc and decreased
NF-κB, IL-33, PGE-2, COX-2, and iNOS levels significantly
compared to PbAc group. Immunohistochemical examination
revealed that TNF-α was strongly expressed in the PbAc-
treated group, while CR decreased TNF-α expression.

DNA is a highly sensitive macromolecule to oxidative
damage [74]. 8-OHdG is a widely used biomarker for
determining oxidative damage in DNA [75]. ROS is
thought to play an active role in the formation of 8-
OHdG [19, 75]. According to the data obtained from this
study, PbAc increased the formation of 8-OHdG by caus-
ing oxidative damage in DNA. Also, CR improved PbAc-
induced oxidative DNA damage with antioxidant proper-
ties, approximating the formation of 8-OHdG to that of
the control group. Similarly, Rani et al. [76] reported that
CR significantly reduced the 8-OHdG level dose-
dependently.

In the studies evaluating the effectiveness of antioxidants
as chelating agents, although antioxidants are reported to be
not as effective as traditional chelators [77, 78], there are the
studies showing that flavonoids have chelating properties in
addition to their antioxidant properties [79]. It has been report-
ed that CR is also capable of metal chelation [80]. In our study,
we found that administration of 25 mg/kg/BW of CR did not
make a significant difference in the amount of Pb in renal
tissue compared to the PbAc group, but that of 50 mg/kg/
BW reduced chelation of Pb significantly.

There is sufficient information that heavy metals, in-
cluding Pb, may have adverse effects on the concentra-
tions of essential metals. However, the information about
the effect of electrolytes in the body is insufficient [81].
Xia et al. [82] reported that Pb has no effect on the
amount of Cu and Zn in kidney tissue. Aksu et al. [83]
stated that PbAc administration increases zinc accumula-
tion in the kidney and has no effect on Cu and Fe levels
and also increases Zn level with the use of phenolic com-
pounds. In our study, it was found that PbAc significantly
increased Cu, Zn, and Na amounts in kidney tissue and
decreased K, Ca, and Fe amounts in comparison to the
control group. However, it was seen that K and Ca in-
creased; Fe, Cu, and Zn decreased in the kidneys of the
rats given CR with PbAc, and Na did not make a signif-
icant difference compared to the control group. Given that
Zn homeostasis is provided by the kidneys, the informa-
tion that PbAc accumulates in the kidneys along with
damage to the kidneys confirms our data [83]. Also, Pb
causes Fe absorption to reduce by linking to similar areas
with Fe [84]. This explains why PbAc reduces the amount
of Fe in the kidney in the current study.

Conclusion

Our findings confirmed that PbAc led to toxicity in the kid-
neys because of inflammation and apoptosis associated with
oxidative stress. It was also detected that toxicity decreased
AQP-1 levels. However, it was concluded that the antioxidant,
anti-inflammatory and antiapoptotic properties of CR also ap-
ply to PbAc-induced nephrotoxicity, and that CR is a promis-
ing compound in the treatment of renal toxicity. Still, the
mechanism of this effect of CR needs to be supported by
further studies.
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