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Abstract
Trace elements are vital for a variety of functions in the brain. However, an imbalance can result in oxidative stress. It is important
to ascertain the normal levels in different brain regions, as such information is still lacking. Therefore, this study aimed to provide
baseline trace element concentrations from a South African population, as well as determine trace element differences between
sex and brain regions. Samples from the caudate nucleus, putamen, globus pallidus and hippocampus were analysed using
inductively coupled plasma mass spectrometry. Aluminium, antimony, arsenic, barium, boron, cadmium, calcium, chromium,
cobalt, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, phosphorus, potassium, selenium, silicon,
sodium, strontium, vanadium and zinc were assessed. A multiple median regression model was used to determine differences
between sex and regions. Twenty-nine male and 13 female cadavers from a Western Cape, South African population were
included (mean age 35 years, range 19 to 45). Trace element levels were comparable to those of other populations, although
magnesium was considerably lower. While there were no sex differences, significant anatomical regional differences existed; the
caudate nucleus and hippocampus were the most similar, and the globus pallidus and hippocampus the most different. In
conclusion, this is the first article to report the trace element concentrations of brain regions from a South African population.
Low magnesium levels in the brain may be linked to a dietary deficiency, and migraines, depression and epilepsy have been
linked to low magnesium levels. Future research should be directed to increase the dietary intake of magnesium.

Keywords Brain . Corpus striatum . Hippocampus . Inductively coupled plasma mass spectrometry . South Africa . Trace
elements

Introduction

Trace elements are vital for a variety of functions in the brain,
provided optimal concentrations are maintained. Several ele-
ments are involved in depression and anxiety, such as magne-
sium, zinc, copper, selenium and manganese [1, 2]. In some
neurodegenerative diseases (Alzheimer’s disease, Parkinson’s

disease, Huntington’s disease and multiple sclerosis), certain
elements are increased or decreased in the affected brain re-
gions [3, 4]. Alterations in trace element levels have also been
observed with brain tumours [5]. Consequently, trace ele-
ments may be involved in these disorders [6]. An imbalance
of certain trace elements can result in oxidative stress and
damage, which can contribute to the aetiology of neurodegen-
erative diseases and brain tumours [7]. Thus, it is important to
establish baselines for trace element levels in different regions
of the brain. With this knowledge, the molecular biology of
certain neurodegenerative diseases can be better understood.

To the authors’ best knowledge, the trace element brain
levels of the South African population have not been investi-
gated. Different populations are exposed to different element
quantities, depending on the levels in water, air, food and soil
[8, 9]. Inadequate or excess trace element levels in the brain
may predispose a population group to neurodegenerative dis-
eases. Moreover, male and female trace element levels may be
different due to hormonal differences [10], and it would be of
interest to establish if males or females could be more prone to
neurodegenerative disease. Regional differences in trace ele-
ments have been noted in the brain; however, baseline
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information is sparse regarding trace elements in certain re-
gions. As trace element levels are related to function [11], and
if certain areas are affected differently by trace element levels,
this may assist with the aetiology of neurodegenerative dis-
eases. Therefore, this study aimed to firstly, provide baseline
trace element concentrations from a South African population
group within the Western Cape region, secondly, to determine
trace element differences between males and females, and
lastly, to determine the brain regional trace element
differences.

Methodology

Ethics Approval

All procedures performed in studies involving human partic-
ipants were in accordance with the ethical standards of the
institutional and/or national research committee (Health
Research Ethics Committee, Stellenbosch University, S17/
09/183) and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. Informed con-
sent was obtained from the Legally Authorized Representative
or from the next of kin.

Subject Specifics

Male and female cadavers were included from a South African
population within the Western Cape, between the ages of 18
and 45. Individuals older than 45 were excluded to limit neu-
rodegeneration due to age or dementia. Further exclusion
criteria included trauma to the head, evidence of neurodegen-
eration (visible atrophy, increased ventricles and sulcal space)
and presence of tumours since these factors may affect the
trace element concentration. The caudate nucleus, putamen,
globus pallidus and hippocampus were removed from the
right hemisphere and stored in sterile tubes containing 10%
buffered formalin. These regions were selected since studies
have commonly investigated the trace element imbalances in
these regions.

Sample Preparation

The methodology of Corrigan et al. [12] was used; however,
brains were removed from formalin embalmed cadavers.
Cadavers are routinely embalmed upon arrival to ensure lon-
gevity and reduced the transmission of infections. After for-
malin embalming, the brains were removed and cut in 1-cm
horizontal sections. Between 0.2 and 1.0 g of tissue was sam-
pled from the head of the caudate nucleus, putamen and
globus pallidus at the level where the distinction between the
globus pallidus and putamen becomes evident. The hippo-
campus was sampled at the next horizontal section.

Tissue was pre-digested for 15 min in Teflon beakers with
an acid solution of 1.0 mL H2O2 (30%) and 6.0 mL HNO3 (>
69%). Samples were heated in the CEM Microwave
Accelerated Reaction System (MARS 5: 800 psi, 210 °C,
ramp = 25 min, hold = 10 min). Afterwards, 1.0 mL content
was placed in plastic tubes containing 9.0 mL HCL (0.5%).

Element Analyses

Analyses were performed at the Central Analytical Facility,
Stellenbosch University, South Africa. Digested brain samples
were analysed using inductively coupled plasma mass spec-
trometry (Agilent 7900 ICP-MS, Agilent Technologies,
United States of America), and parameters are specified in
Table 1. National Institute of Standards and Technology
(NIST) traceable standards (calibration acceptance criteria:
R2 > 0.9995) were used for calibration and the United States
Environmental Protection Agency (US EPA) guidelines were
used for quality control (quality control standard: IV-28,
Inorganic Ventures, United States of America). Table 2 indi-
cates the quality control accuracy of each element. The fol-
lowing elements were assessed: aluminium, antimony, arse-
nic, barium, boron, cadmium, calcium, chromium, cobalt,
copper, iron, lead, magnesium, manganese, mercury, molyb-
denum, nickel, phosphorus, potassium, selenium, silicon, so-
dium, strontium, vanadium and zinc. A formalin blank was
included to exclude contamination.

Statistical Analysis

Descriptive statistics on trace element concentrations were
done using median and interquartile ranges for each region.
A multiple quantile (median) regression model was used to
determine if there were significant differences in trace element
concentrations between males and females, and between dif-
ferent brain regions, adjusting for the correlation of the mea-
surements within the same participant. A t test was done to
determine if there were significant differences in ages between
males and females. Since multiple brain regions (n = 4) were
compared the significance of brain region as a factor was
assessed using a post hoc chi-square test and if significant,
pairwise contrasts were investigated. A power analysis was
completed to ensure an 80% power, and significance was de-
termined at p < 0.05. Statistical analysis was performed using
STATA (StataCorp, version 15.1).

Results and Discussion

Forty-two cadavers were included, 29males (35.7 ± 6.5, range
19 to 45) and 13 females (33.5 ± 7.2, range 23 to 43). There
were no significant differences between ages as determined by
the t test. Most or all the values of aluminium, antimony,
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arsenic, boron, chromium, cobalt, lead, molybdenum, nickel,
potassium, silicon and vanadium were below the detection
limit and were excluded from further analysis. Thus, this study
reports the concentrations of iron, zinc, copper, manganese,
selenium, calcium, magnesium, phosphorus, sodium, stron-
tium, barium, cadmium and mercury.

Population Differences

Trace elements levels in the brain have been studied on
healthy or ageing populations from Austria [13], Belgium
[14], Brazil [15, 16], Canada [17–19], Denmark [20, 21],
Germany [22, 23], Hungary [24–28], India [4, 29], Japan
[30], Netherlands [31], Portugal [7, 32, 33], the UK [12, 34,
35] and the USA [3, 36–43]. Table 3 summarises the concen-
trations of the elements observed in the present study and in

the literature. Table 4 summarises the methodology of the
studies reported in Table 3.

Iron

Iron is vital for normal brain functioning, myelination, neuro-
transmitter synthesis and a cofactor for numerous enzymes
[41]. Moreover, iron is a catalyst of reactive oxygen species
(ROS), since iron transfers single electrons as it interchanges
between reduced and oxidised states [31]. Iron accumulation
results in ROS formation, membrane and DNA damage, as
well as protein aggregation [22]. Low iron levels can result in
poor myelination and cause mental deficits [44]. Our results
(23.6 to 103.2 μg/g) were similar to reports from India [4, 29],
USA [36, 39–41], the UK [12, 34], Canada [18], Brazil [15,
16] and Austria [13]. However, most other studies observed
higher iron concentrations (239.0 to 1056 μg/g), such as
Belgium [14], Canada [17, 19], Germany [22, 23], Hungary
[24–26], Japan [30], Portugal [7], UK [19, 35] and USA [37,
38]. Sources high in dietary iron include high protein foods
such as red meat, seafood, poultry, beans and lentils. These
differences may be due to the socioeconomic status of the
cadavers selected for the studies. Developing countries and
low socioeconomic groups tend to consume significantly less
protein (and iron) compared with the world average [45, 46],
and iron deficiency is the most common nutritional deficiency
[47]. Additionally, the protein consumed may be of a lesser
quality [48].

Zinc

Zinc is a cofactor for over 200 enzymes, and important for
normal brain functioning, neurotransmitter functioning, as
well as axon bundle development [12, 31, 43]. A zinc defi-
ciency can result in delayed growth, wound healing and

Table 1 Parameters of Agilent
7900 ICP-MS Parameter Value Unit

RF power 1600 W

Carrier gas (argon) 0.83 L min−1

Sample depth 10.00 Mm

Make-up gas 0.15 L min−1

He flow 5.00 mL min−1

H2 flow 6.00 mL min−1

Nebuliser 0.40 mL min−1 Micro mist

Element Cell gas Integration time (s)
7Li, 9Be, 11B No gas 0.1
88Sr, 137Ba He 0.1
72Ge, 103Rh, 115In, 118Sn He 0.2
27Al, 45Sc, 51V, 52Cr, 55Mn, 56Fe,
59Co, 60Ni, 63Cu, 66Zn, 89Y,
95Mo, 111Cd, 121Sb, 201Hg, 208Pb, 209Bi

He 0.3

75As, 77Se He 0.5

Table 2 Quality control accuracy of each element (%)

Element Accuracy Element Accuracy

Aluminium 107.19% Manganese 95.58%

Antimony 100.72% Mercury 90.69%

Arsenic 100.12% Molybdenum 100.50%

Barium 99.79% Nickel 99.11%

Boron 103.54% Phosphorus 102.50%

Cadmium 98.80% Potassium 110.34%

Calcium 107.33% Selenium 99.14%

Chromium 98.69% Silicon 93.33%

Cobalt 99.01% Sodium 104.72%

Copper 102.92% Strontium 99.48%

Iron 101.83% Vanadium 99.57%

Lead 100.62% Zinc 104.86%

Magnesium 111.19%
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depression, as well as altered functioning of axons [1, 12, 31],
while elevated zinc levels can lead to epileptic seizures [43].
Our results were similar to reports from India [4, 29] and
Canada [17]. However, most other studies had much higher
zinc concentrations, such as Austria [13], Brazil [15, 16],
Eastern Canada [19], Germany [22, 23], Hungary [24–26],
Japan [30], Netherlands [31], Portugal [32], UK [12, 19, 35]
and USA [37, 39–43]. Low zinc levels may be related to
decreased dietary zinc, foods high in phytates and insufficient
zinc soil levels. Foods high in zinc include meat, seafood,
cereals, legumes, seeds and dairy [49]. In developing or low-
income countries, plant-based complementary foods, such as
cereals and legumes, are a major source of calories. These
foods typically contain high levels of phytates which reduce
zinc absorption [50, 51]. Moreover, zinc levels of plants are
determent by the soil; zinc-deficient soil causes zinc-deficient
plants [52].

Copper

Copper is important for the catalytic activity of enzymes, in-
cluding ceruloplasmin, Cu/Zn superoxide dismutase (SOD),
cytochrome c and dopamineβ-hydroxylase [53]. Also, copper
plays a role in electron transport, and dyshomeostasis could
lead to ROS production [31, 53]. Copper levels range between
4.0 and 47.2 μg/g in the literature. However, the present study
noted levels between 2.3 and 4.1 μg/g. The lowest reports are
from India [4, 29], Austria [13] and UK [12, 35], and the
highest reports from Canada [17, 19], Portugal [32],
Hungary [24–26] and the USA [37, 38, 42]. It is possible that
copper levels may increase with age, although few studies
have been conducted [32, 54]. Our population had a lower
mean age compared with most other studies (Table 4); thus,
this could account for the lower copper levels. Copper is pri-
marily ingested through food, and high levels of copper are
found in legumes, meat, seafood and cereal [49]. Diets defi-
cient in these foods may result in low brain copper levels.
Additionally, factors affecting copper absorption include high
levels of hemicellulose, fructose, zinc, iron, molybdenum and
tin [55].

Manganese

Manganese is a cofactor for enzymes, such as glutamine syn-
thetase, that are essential for glial and neuronal functioning as
well as neurotransmitter synthesis [56]. Additionally, manga-
nese as well as zinc and copper, form part of SOD to reduce
oxidative stress [31]. An imbalance of manganese can lead to
ROS formation, and reduced manganese levels could increase
susceptibility to seizures [56]. Manganese is also toxic in high
amounts, typically through occupational exposure [57]. Our
results are the most similar to reports from Ward and Mason
[19], who investigated cadavers from Eastern Canada and the

UK. Other reports from the UK [12] were considerably lower
(0.00109 μg/g) compared with all other reports, while reports
from Denmark [20, 21], USA [3, 38], Austria [13], Portugal
[32], Belgium [14], Hungary [24–26] and Canada [17] were
higher (0.218–4.85 μg/g). Manganese is mainly consumed
through food, and the highest amount is found in nuts, le-
gumes, cereals and pineapples [58]. A diet deficient in these
foods may result in lack of manganese; however, a true defi-
ciency is uncommon [57]. High ferritin and calcium may also
reduce manganese absorption [59].

Selenium

Selenium is an essential trace element that plays a vital role in
the protection of brain cells against peroxidative damage, in
the form of selenocysteine and selenoproteins. Glutathione
peroxidase is a selenoenzyme that removes peroxides and thus
decreases oxidative damage [60]. In addition, selenium
dyshomeostasis has been implicated in neurodegenerative dis-
eases [12, 16, 19, 41], brain tumours [61] and HIV infection
[62]. A deficiency is more common; however, selenium tox-
icity (resulting in diarrhoea, hair loss, and fatigue) has also
been described [63]. The concentration of selenium in the
brain ranged between 0.08 and 1.093 μg/g in the literature.
Our results were similar to UK [12, 35], Denmark [20] and
USA [39, 41], while reports from Brazil [15, 16], Eastern
Canada [19] and Germany [64] were considerably higher.
Authors have noted that selenium levels differ depending on
geographical region [65, 66]. The biggest determinant is the
amount of selenium in the soil, which in turn determines the
amount of selenium in the food [67]. According to the Institute
for Soil, Water and Climate, Agricultural Research Council,
South Africa, the Western Cape has low selenium soil content
[68]. Furthermore, plants with the highest levels of selenium-
containing amino acids have the highest levels of selenium,
such as Allium (onion family) and Brassica (mustard family)
[67]. Additional factors that can influence selenium levels
include high alcohol consumption and smoking [66].

Calcium

Calcium is an intracellular messenger that is vital for neuronal
functioning and viability, as well as chemical and electrical
stimulation [69]. There are several calcium-dependent pro-
cesses in the brain, including synaptic plasticity, neurotrans-
mission and phosphorylation [70]. Increased calcium levels
can lead to DNA fragmentation and apoptosis [54], while a
reduction can result in memory and learning impairments, as
well as impaired neurotransmission [70]. There is a wide
range of calcium concentrations reported in the literature,
ranging from 58.2 to 630 μg/g. The results of Tohno et al.
[30] were a great deal higher, ranging between 3972 to
4112 μg/g. The reason for these high values is unclear,
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although it may be due to a measurement conversion error.
Our results (111.4 to 133.8 μg/g) were the most similar to
reports from India [4, 29], while Austria [13] had lower levels.
Higher levels are reported from Canada [17, 19], USA [38],
Hungary [25, 27], UK [12, 35], Germany [27] and Portugal
[33]. Dietary calcium is mostly consumed through dairy prod-
ucts such as yoghurt, milk and cheese [46, 71]. According to
Charlton et al. [72], South Africans consume less than half the
recommended daily allowance of calcium. Furthermore, stud-
ies have noted that individuals from a low socioeconomic

background consume less dairy products [46]. This may be
due to availability, cost, lack of power to housing and health
beliefs.

Magnesium

Magnesium is essential for the proliferation of cells and calci-
um transport and has a role in regulating oxidative stress [73].
Moreover, magnesium homeostasis is vital for the regulation
of N-methyl-D-aspartate (NMDA) receptors, which are

Table 4 Information on the methodology of the studies on trace element concentrations

Study Year Methodology Tissue Age (years) Country Number

Harrison et al. [37] 1968 AAS DW – USA 28

Hock et al. [23] 1975 NAA DW Mean 50, 23–66 Germany 10

Larsen et al. [20, 21] 1979, 1981 NAA WW 15–81 Denmark 5

Goldberg and Allen [38] 1981 AAS DW – USA 3

Markesbery et al. [39] 1984 INAA WW Adult < 85 USA 28

Markesbery et al. [3] 1984 INAA WW Adult < 85 USA 28

Ward and Mason [19] 1987 NAA DW Mean 61, 52–69 Eastern Canada 30

Duflou et al. [14] 1988 PIXE WW 7–69 Belgium 12

Thompson et al. [40] 1988 NAA WW Mean 70, 52–89 USA 23

Uitti et al. [17] 1989 AES, AAS DW Mean 70 Canada 12

Andrási et al. [26] 1990 ICP-AES, NAA DW 65–75 Hungary 11

Corrigan et al. [35] 1991 NAA, INAA DW Mean 82.3 ± 7.3 UK 6

Chen et al. [18] 1993 AAS WW 19–90 Canada 6

Corrigan et al. [12] 1993 ICP-MS WW Mean 78.5 ± 9.0 UK 12

Andrási et al. [25] 1994 ICP-AES, INAA DW 65–75 Hungary 11

Andrási et al. [24] 1995 ICP-AES, INAA DW Mean 70 Hungary 20

Deibel et al. [42] 1996 INAA DW Mean 81.7 USA 11

Rajan et al. [4] 1997 ICP-AES WW 50–60 India 8

Cornett et al. [41] 1998 INAA WW 69–98 USA 21

Griffiths et al. [34] 1999 AAS WW Mean 83.3 ± 2.1 UK 6

Rao et al. [29] 1999 ICP-AES – – India 4

Andrási et al. [22] 2000 INAA DW Mean 58, 51–73 Germany 5

Rulon et al. [43] 2000 INAA WW Mean 82.8 ± 1.9 USA 8

Panayi et al. [31] 2002 ICP-MS WW Mean 66.8 ± 17.8 Netherlands 10

Belavari et al. [28] 2004 INAA DW Mean 75 Hungary 5

Peltz-Csaszma et al. [27] 2005 ETAAS, ICP-OES DW Mean 58, 53–72 Hungary 3

House et al. [36] 2007 AAS WW Mean 89 USA 2

Leite et al. [16] 2008 NAA DW Mean 79, 51–94 Brazil 21

Tohno et al. [30] 2013 ICP-AES DW Mean 83.3 ± 7.5 Japan 45

Saiki et al. [15] 2013 INAA DW Mean 78, 51–95 Brazil 31

Krebs et al. [13] 2014 ICP-MS WW Mean 61, 48–81 Austria 11

Ramos et al. [7, 32] 2014 AAS DW Mean 71 ± 12 Portugal 42

Correia et al. [33] 2014 AAS DW Mean 71 ± 12 Portugal 42

Present study 2019 ICP-MS WW Mena 35, 19–45 South Africa 42

AAS atomic absorption spectrometry, AES atomic emission spectroscopy, DW dry weight, ETAAS electrothermal atomic absorption spectrometry, ICP-
AES inductively coupled plasma atomic emission spectroscopy, ICP-MS inductively coupled plasma mass spectroscopy, ICP-OES inductively coupled
plasma optical emission spectrometry, INAA instrumental neutron activation analysis, NAA neutron activation analysis, PIXE particle-induced X-ray
emission, UK United Kingdom, USA United States of America, WW wet weight
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required for synaptic transmission and neuronal plasticity.
Reduced extracellular magnesium can result in hyperexcit-
ability of NDMA receptors and disrupted calcium transport
can lead to ROS formation. Low magnesium levels have been
linked to migraines, depression and epilepsy [2]. The magne-
sium concentration in the literature ranged between 94.9 and
804.0 μg/g, which is considerably higher compared with the
levels observed in the present study (20.8–25.4 μg/g). The
highest reports are from Hungary [25–27], USA [37],
Germany [27], Portugal [33], Canada [17, 19], Japan [30]
and UK [19], while Austria [13] and India [4] had the lowest
magnesium levels. Tohno et al. [30] noted that magnesium
increased with age, and most of the authors include older
participants in their studies compared with the present study
(Table 4). The lack of magnesium in the diets of individuals
from the Western Cape may have contributed directly to the
considerably lower brain levels. Studies have noted that indi-
viduals from the Western Cape consume around 228 mg of
magnesium daily, which is less than the recommended daily
allowance of 310 to 420 mg [72]. Developing countries and
individuals with a low socioeconomic background tend to
consume less minerals, vitamins, monosaturated fats and pro-
tein [46]. Foods such as cereals, rice, nuts and leafy greens are
sources high in magnesium [71].

Phosphorus

Phosphorus is essential for adenosine triphosphate (ATP) pro-
duction as well as the structural integrity of cells [74]. The role
of phosphorus in the brain is unknown, although inorganic
phosphate has been associated with premature ageing and
increased ROS in a mice-model [75]. An excessive amount
of phosphorus intake has been linked to bone resorption and
fractures [76], while a low intake has been linked to obesity
[74]. Few authors have assessed phosphorus levels in the
brain. Phosphorus levels range between 1889 and 3718 μg/g
in the literature, with the exception of Corrigan et al. [35] who
observed levels between 9.7 and 10.3 μg/g. This may be due
to different methodology used; Corrigan et al. [35] used neu-
tron activation analysis to detect phosphorus, while other au-
thors used inductively coupled plasma-atomic emission spec-
trometry (Table 4) [4, 29, 30]. Neutron activation analysis may
not be sensitive enough to detect phosphorus. Our results were
similar to reports from Japan [30], while India [29] had lower
levels. This may be due to less consumption of food high in
phosphorus, such as meat, dairy and processed food with
added phosphorus [76].

Sodium

Sodium is important for electrolyte balance and water reten-
tion. In the brain, Na+ ions and sodium channels are crucial for
the generation of nerve impulses [77], and hyponatremia can

result in neurological damage [78]. Brain sodium levels range
from 2689 to 9000μg/g in the literature [4, 15, 16, 26, 28, 29],
with the exception of Tohno et al. [30] who observed levels
between 37.0 and 56.0 μg/g. The reasons for these low values
are unclear, as similar methodology was used. The present
study observed sodium levels similar to reports from India
[4, 29], while reports from Hungary [26, 28] and Brazil [15,
16] were higher. Dietary sodium is mostly consumed as sodi-
um chloride. Developed and developing countries get their
sodium from different sources, and processed foods have the
highest sodium content [79]. In SouthAfrica, the consumption
of processed food has increased in the last two decades [80],
and bread is the greatest contributor to high dietary sodium
intake [72].

Strontium

Strontium is associated with calcium metabolism and may
play a role in bone formation [27]. The role of strontium in
the brain is unknown, although high concentrations may be
related to epilepsy [81]. A possible role in neurotransmission
has been suggested, since strontium can replace calcium at
motor end-plates and stimulate the release of acetylcholine
[81]. Four studies have investigated strontium levels in the
brain, and levels vary among population groups. Our results
were similar to reports from Hungary [27], Germany [27],
Eastern Canada [19] and the UK [19], while other studies
done in Hungary [25] had higher values, and a study done in
the UK [12] had lower values. Strontium is typically ingested
through food, and foods containing high levels of strontium
include leafy vegetables, dairy products, spices and grains
[82].

Barium

Barium has no known biological function and is toxic in high
doses. Limited studies have assessed barium concentrations.
Our results (0.048 to 0.077 μg/g) are higher compared with
reports from the UK [12], but less compared with Eastern
Canada [19] and Hungary [25]. Andrási et al. [25] noted the
highest barium concentrations (10 to 15 μg/g, Table 3), and
the reason for this is unclear. The authors used similar meth-
odology and age groups compared with the other authors
(Table 4); thus, this difference could be due to higher expo-
sure. Barium is typically exposed through water, food or air
pollution [83]. Brazil nuts contain remarkably high levels of
barium (3000 to 4000 μg/g) [84], while water sources such as
groundwater and well water may contain higher levels of bar-
ium salts [83]. Exposure of barium can cause degeneration of
neurons in the inner ear, possibly through the inhibition of K+

channels [85]. However, limited human studies have been
completed.
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Cadmium

Cadmium is a non-essential heavy metal that decreases neu-
rotransmitter synthesis, increases the blood-brain barrier per-
meability and reduces SOD, glutathione peroxidase and cata-
lase leading to increased oxidative damage [86]. Only three
studies [4, 19, 31] could be found that have reported the cad-
mium concentration in the brains of healthy controls, and
these were all in the hippocampus. These levels ranged from
0.021 to 0.642 μg/g; the highest concentrations were from a
UK population [19]. These values were higher compared with
the present studies average of 0.006 ± 0.004 μg/g. Cadmium
is typically ingested through the diet and is present in tobacco
smoke, which could account for the differences in population
averages. It was found that crustaceans and molluscs
contained high amounts of cadmium compared with other
food items [87].

Mercury

Mercury is a toxic heavy metal that causes oxidative damage
and neurodegeneration. Elemental, inorganic and organic
mercury compounds are present, with organic methylmercury
being the most concerning. Methylmercury interacts with and
oxidises sulfhydryl-containing proteins and nonprotein thiols
(cysteine and glutathione), altering their functioning.
Sulfhydryl-containing proteins include antioxidant enzymes
and neurotransmitter receptors [88]. The mercury concentra-
tion has not previously been reported in the caudate nucleus
and putamen. The present study had lower levels of mercury
compared with studies done in the USA [39, 41], Eastern
Canada [19] and the UK [19]. Non-occupational exposure is
typically through a diet high in seafood, and possibly though
dental amalgams [88].

Sex Differences

There were no significant sex differences in the present study
(Table 5), and limited research has been published on trace
element levels in the brain concerning sex differences. Iron
deficiency has commonly been noted in women [89]; howev-
er, the present study observed only a non-significant decrease
in brain iron levels. Similarly, most studies found no signifi-
cant difference in brain iron levels between women and men
[7, 8]. Brain copper levels were only non-significantly de-
creased in women in our study, which is in agreement with
the results of Rahil et al. [8] and Ramos et al. [32]. In contrast,
serum copper levels are typically increased in women com-
pared with men [90]. Correia et al. [33] found that females had
a higher concentration of calcium compared with men, and
this is in agreement with our results (20.0% increase in wom-
en, p = .183). No significant difference in magnesium levels
has been reported [33], and this is consistent with the present

study results. Trace elements can be altered in women due to
hormones, menstruation, pregnancy and contraceptives.

Oestrogen affects the serum concentration of several trace
elements. In a study byUlas and Cay [10], ovariectomized rats
had decreased serum iron, calcium, copper, zinc, selenium,
manganese, chromium and phosphorus. The magnesium con-
centration remained unchanged. With oestrogen treatment,
these trace elements increased, although magnesium was un-
altered. These trace element concentration changes may be
related to increased renal excretion since the urinary output
of trace elements decreased after receiving oestrogen [91].
Moreover, oestrogen alters the activity of hepcidin and
hypoxia-inducible factor 1a; elevated oestrogen inhibits
hepcidin, which alters ferroportin that permits the flow of iron
from hepatocytes, enterocytes and macrophages into the
blood. Hypoxia-inducible factor 1a also inhibits hepcidin [92].

Oestrogen stimulates calcium absorption; however, the ex-
act mechanisms are unknown. It has been suggested that
oestrogen modifies the vitamin D endocrine system, increases
the act ive form of vi tamin D (calc i fero l , 1 ,25-
dihydroxycholecalciferol), modifies the vitamin D receptor,
increases retinol levels or acts directly via the oestrogen re-
ceptor [93]. Furthermore, oestrogen also has a role in bone
resorption; oestrogen suppresses RANK ligand (receptor
activator of NF-κB) induced osteoclast resorption, thus a de-
crease in oestrogen will increase RANK ligand production
and increase bone resorption. With bone resorption, calcium
and magnesium are released into the blood [94].

Iron is decreased in women due to menstrual blood loss.
Harvey et al. [95] observed that iron was decreased after men-
struation and that 1 mg/day of menstrual loss resulted in a
6.9-μg/L decrease in serum ferritin. The duration of menstru-
ation and volume of menstrual blood loss has also been asso-
ciated with increased iron loss [96].

Comparing women taking contraceptives to controls, re-
ductions in zinc, selenium and magnesium have been noted,
while copper, iron, calcium and cadmium was increased.
There was no change in lead, manganese and phosphorus
concentration [97]. A copper increase has especially been
studied, and this increase may be due to the release of copper
from the copper coil in intra uterine devices [97]. Additionally,
copper increases may be due to the reduction of ceruloplasmin
that has been associated with contraceptive use [98].
Contraceptive use has been linked to an increase in serum iron
[97], possibly due to the decreased menstrual blood loss [95].
However, the contraceptive use of the cadavers included in
this study was unknown.

Brain Regional Differences

There were several significant differences between different
brain regions (Table 6). Overall, the caudate nucleus and
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hippocampus were the most similar, and the globus pallidus
and hippocampus the most different.

It is difficult to compare regional differences with the liter-
ature, since studies have reported varied results, and do not
always include all four regions studied in the present study.
The regional distribution of iron is consistent with the litera-
ture [7, 37, 38]; the highest concentration was observed in the
globus pallidus, and the lowest in the hippocampus. Zinc had
the highest concentration in the globus pallidus, and the low-
est in the caudate nucleus. This is inconsistent with the litera-
ture; most authors observed the highest concentration in the
hippocampus, and lowest in the globus pallidus [23, 32, 37].
Most literature [25, 32, 37, 38] observed the highest copper in
the putamen, and the lowest in the hippocampus. However,
the present study observed the highest in the globus pallidus
and the lowest in the caudate nucleus. Most studies [3, 20, 21,
25, 32, 38, 39] observed the highest and lowest manganese
concentrations in the putamen and hippocampus, respectively.
However, the present study observed the highest manganese
level in the globus pallidus, and the lowest in the
hippocampus.

Selenium, calcium, magnesium, barium and strontium
have seldom been investigated in all four regions. Selenium
was highest in the putamen and lowest in the hippocampus,
which is consistent with the literature [20, 23]. Calcium was
mostly uniformly distributed, which is consistent with the re-
sults of Correia et al. [33]; however, Goldberg and Allen [38]
observed a high calcium level in the hippocampus and a low
concentration in the globus pallidus. Literature on magnesium
distribution is still lacking and contradicting [33, 37]; the pres-
ent study observed high levels in the putamen and low levels
in the caudate nucleus. Barium was highest in the globus
pallidus and lowest in the hippocampus, which is consistent
with the literature [25]. Strontium levels were high in the
globus pallidus and low in the caudate nucleus. Only one other
study included all four regions and found the highest stron-
tium levels in the hippocampus and the lowest in the putamen
[25].

Phosphorus, sodium, cadmium and mercury have not been
investigated in all four regions in healthy brains. In the present
study, sodium levels were highest in the hippocampus, and
lowest in the putamen. Cadmium was uniformly distributed.
Phosphorus and mercury levels were highest in the globus
pallidus and lowest in the caudate nucleus.

Various studies have noted the regional distributions of
trace elements. The reason for this is still unclear, possibly
related to the function of the different regions [11]. Different
trace elements are involved in different metabolic actions,
such as increased iron in regions of motor function [22].
Iron is crucial for myelination, which can account for higher
iron levels in white matter regions [99]. Metallothionein is
vital for copper, zinc and manganese homeostasis, and is lo-
cated in the cytosol and thus higher in grey matter regions

[31]. Manganese is also bound to glutamine synthetase in
astrocytes [100]. Zinc is stored as zinc metalloproteins in glial
cells and neurons, or as ionic zinc in synaptic vesicles [101].
Additionally, zinc may be increased in the hippocampus due
to its role as a neuromodulator [22], although this was not
observed in the present study. Copper is higher in glial cells
compared with neurons, specifically periventricular glial cells
possibly due to the proximity to the cerebrospinal fluid [102].
Selenium tends to be more concentrated in grey matter and
glandular regions, although the reason is unclear [60].

The number of blood vessels present in a brain region
could affect the concentration of trace elements. The cau-
date nucleus and putamen have denser microvascular re-
gions compared with the globus pallidus [103], and it has
been reported that grey matter is more densely supplied
compared with white matter regions [104]. Calcification
of blood vessels with age may also impact the trace ele-
ment levels. Larsen et al. [20] included considerably youn-
ger participants (range 15 to 81 years) compared with
Ramos and colleagues [7, 32, 33] (range 53 to 101 years,
mean 71) and Andrási et al. [25] (range 65 to 75 years).
The results of Larsen et al. [20] was comparable with the
results of Ramos and colleagues [7, 32, 33]; however, the
discrepancies could possibly be due to the varying age
ranges included by Andrási et al. [25], Goldberg and
Allen [38] and Harrison et al. [37]. Age has been noted
to alter trace element concentrations, and that these alter-
ations may become more pronounced in certain regions.

Limitations

Limitations for this study include that the medical history
of the cadavers is not available; thus, any existing

Table 5 Comparison between male and female trace element
concentrations (μg/g wet weight)

Female Male p value
Median ± SD Median ± SD

Iron 47.6 ± 31.170 55.5 ± 37.5 0.687

Zinc 6.6 ± 1.4 7.1 ± 21.1 0.710

Copper 2.5 ± 1.604 3.0 ± 1.2 0.367

Manganese 0.091 ± 0.102 0.087 ± 0.256 0.549

Selenium 0.116 ± 0.028 0.125 ± 0.040 0.841

Calcium 136.1 ± 56.5 113.4 ± 52.0 0.183

Magnesium 21.3 ± 5.3 24.0 ± 9.0 0.207

Phosphorus 2893.5 ± 318.0 3054.4 ± 469.1 0.678

Sodium 3258.0 ± 283.1 3372.5 ± 386.3 0.171

Strontium 0.281 ± 0.064 0.263 ± 0.114 0.480

Barium 0.060 ± 0.029 0.051 ± 0.035 0.543

Cadmium 0.008 ± 0.005 0.007 ± 0.003 0.341

Mercury 0.005 ± 0.009 0.003 ± 0.009 0.130
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neurodegenerative diseases are unknown. Most of these
diseases are present in older individuals; therefore, the
sample size only included individuals under the age of
45. Possible neurological diseases that are present in
younger individuals (depression, schizophrenia) could
not be excluded. Formalin may cause leaching of trace
elements; thus, samples must be analysed as soon as pos-
sible. Moreover, only the last known resident area of the
individuals is known. The cadavers are thus only a repre-
sentative of a Western Cape cadaver cohort. Lastly, com-
parison of literature using different metal analysing
methods is difficult, as different methods may have dis-
similar sensitivities.

Conclusion

In summary, this is the first article to report the trace element
concentrations of brain regions from a South African popula-
tion of the Western Cape. Trace element concentrations in the
brain are varied in the literature, and the present study’s results
were typically comparable with other population groups, such
as India, UK and Canada. However, the magnesium levels
were considerably lower compared with reported values from
the literature. There was no significant sex difference for trace
element concentrations; however, several regional differences
were observed in the brain. Regional distribution of iron, se-
lenium and barium were consistent with the literature, while

Table 6 Significant differences in
trace element concentrations
between the caudate nucleus,
putamen, globus pallidus and
hippocampus (μg/g wet weight)

Caudate
nucleus

Putamen Globus pallidus Hippocampus Overall
p value

Iron 47.1 ± 18.4 65.5 ± 28.6 103.2 ± 32.1 23.6 ± 11.5 0.001 A, B,
C,
D,
E, F

Zinc 5.5 ± 2.6 6.8 ± 25.7 8.4 ± 22.8 6.1 ± 7.5 0.001 A, B,
D,
e, F

Copper 2.3 ± 1.0 3.3 ± 1.0 4.1 ± 1.3 2.3 ± 1.0 0.001 A, B,
D,
e, F

Manganese 0.072 ± 0.074 0.090 ± 0.114 0.113 ± 0.279 0.070 ± 0.301 0.001 B, d, F

Selenium 0.124 ± 0.036 0.147 ± 0.034 0.124 ± 0.030 0.092 ± 0.027 0.001 A, C,
D,
E, F

Calcium 119.4 ± 63.9 121.9 ± 40.5 133.8 ± 72.2 111.4 ± 26.8 0.012 f

Magnesium 20.8 ± 7.2 25.4 ± 8.7 24.3 ± 9.6 20.9 ± 5.5 0.001 A, B,
e, f

Phosphorus 2754.6 ± 328.2 2894.7 ± 327.5 3348.3 ± 449.8 3045.6 ± 384.7 0.001 a, B,
C,
D,
e, F

Sodium 3309.6 ± 354.3 3291.9 ± 336.3 3421.8 ± 373.6 3441.2 ± 380.0 0.001 d

Strontium 0.234 ± 0.082 0.249 ± 0.092 0.330 ± 0.124 0.262 ± 0.064 0.001 B, c,
D,
F

Barium 0.056 ± 0.025 0.051 ± 0.031 0.077 ± 0.043 0.048 ± 0.022 0.001 b, D, F

Cadmium 0.007 ± 0.003 0.006 ± 0.004 0.007 ± 0.005 0.006 ± 0.004 0.448 –

Mercury 0.003 ± 0.008 0.004 ± 0.010 0.005 ± 0.011 0.003 ± 0.005 0.001 a, B

Letter A indicates significant difference at p < 0.001 between caudate nucleus and putamen; letter a indicates
significant difference at p < 0.05 between caudate nucleus and putamen; letter B indicates significant difference at
p < 0.001 between caudate nucleus and globus pallidus; letter b indicates significant difference at p < 0.05 be-
tween caudate nucleus and globus pallidus; letter C indicates significant difference at p < 0.001 between caudate
nucleus and hippocampus; letter c indicates significant difference at p < 0.05 between caudate nucleus and
hippocampus; letter D indicates significant difference at p < 0.001 between putamen and globus pallidus; letter
d indicates significant difference at p < 0.05 between putamen and globus pallidus; letter E indicates significant
difference at p < 0.001 between putamen and hippocampus; letter e indicates significant difference at p < 0.05
between putamen and hippocampus; letter F indicates significant difference at p < 0.001 between globus pallidus
and hippocampus; letter f indicates significant difference at p < 0.05 between globus pallidus and hippocampus
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zinc and manganese were only partially consistent with previ-
ous reports. Copper, calcium, magnesium and strontium were
inconsistent with the literature, and this is the first article to
report the concentrations of phosphorus, sodium, cadmium
and mercury in all four brain regions (caudate nucleus, puta-
men, globus pallidus and hippocampus). Low magnesium
levels in the brain may be linked to a dietary deficiency, and
migraines, depression and epilepsy have been linked to low
magnesium levels. Future research should be directed to in-
crease dietary intake magnesium.
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