
Biological Trace Element Research (2021) 199:344–370

Green Synthesis of Metallic Nanoparticles and Their Prospective
Biotechnological Applications: an Overview

Salem S. Salem1
& Amr Fouda1

Received: 25 February 2020 /Accepted: 26 March 2020
# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The green synthesis of nanoparticles (NPs) using living cells is a promising and novelty tool in bionanotechnology. Chemical and
physical methods are used to synthesize NPs; however, biological methods are preferred due to its eco-friendly, clean, safe, cost-
effective, easy, and effective sources for high productivity and purity. High pressure or temperature is not required for the green
synthesis of NPs, and the use of toxic and hazardous substances and the addition of external reducing, stabilizing, or capping
agents are avoided. Intra- or extracellular biosynthesis of NPs can be achieved by numerous biological entities including bacteria,
fungi, yeast, algae, actinomycetes, and plant extracts. Recently, numerous methods are used to increase the productivity of
nanoparticles with variable size, shape, and stability. The different mechanical, optical, magnetic, and chemical properties of
NPs have been related to their shape, size, surface charge, and surface area. Detection and characterization of biosynthesized NPs
are conducted using different techniques such as UV–vis spectroscopy, FT-IR, TEM, SEM, AFM, DLS, XRD, zeta potential
analyses, etc. NPs synthesized by the green approach can be incorporated into different biotechnological fields as antimicrobial,
antitumor, and antioxidant agents; as a control for phytopathogens; and as bioremediative factors, and they are also used in the
food and textile industries, in smart agriculture, and in wastewater treatment. This review will address biological entities that can
be used for the green synthesis of NPs and their prospects for biotechnological applications.
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Introduction

The term nanotechnology incorporates the production of nov-
el materials at the nanoscale range between 1 and 100 nm.
Nanoparticles (NPs) with attractive shapes are synthesized
by numerous physical and chemical methods. Nowadays, bi-
ological syntheses are preferred because they are safe, clean,
cheap and easily scaled up for the well-built scale synthesis of
NPs. NPs have great applications in different fields as mag-
netic devices, photocatalysts, microelectronic devices, anti-
corrosive coatings, biomedicals, and electrocatalysts and also
in powder metallurgy. The biotechnological applications of
NPs have increased day by day due to its cutting-edge char-
acter, biocompatibility, anti-inflammatory and antimicrobial
activity, effective drug delivery, bioactivity, bioavailability,
tumor targeting, and bio-absorption [1–11]. On the other hand,

NPs can be used in industrial and electronic fields as catalysts
and as conductors in transistors and in cancer detection appa-
ratus [12, 13]. Recently, magnetic NPs have been used in
multidisciplinary fields such as in cancer treatment, drug de-
livery, tumor detection, resonance imaging, and separation
processes [14]. Biological activities of magnetic NPs could
be attributed to their smaller size, magnetic properties, high
biocompatibility, and easy surface modifications [15].

Green synthesis of NPs using different biological entities
can overcome many of the destructive effects of physical and
chemical techniques. These include the biosynthesis of NPs at
mild pH, pressure, and temperature and do not require toxic or
hazardous substances as well as avoid the addition of external
reducing, capping, and stabilizing agents [16]. Recently, var-
ious published reports enumerate different forms of metal,
metal oxide, and dioxide NPs including core/shell (CS) NPs
[17]; polymer-coated NPs [18]; Ag-NPs [19]; Cu-NPs [20];
CuO-NPs [4]; ZnO-NPs [8]; Au-NPs [21]; Pt-, Pd-, Si-, and
Ni-NPs [22–25]; FeO-NPs [26]; TiO2-NPs [27]; and ZrO2-
NPs [28]. Each one of these NPs has its specific characters
and applications. NPs have different classifications according
to their properties as shown in Fig. 1.

* Amr Fouda
amr_fh83@yahoo.com; amr_fh83@azhar.edu.eg

1 Department of Botany and Microbiology, Faculty of Science,
Al-Azhar University, Nasr City, Cairo, Egypt

https://doi.org/10.1007/s12011-020-02138-3

/ Published online: 6 May 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s12011-020-02138-3&domain=pdf
mailto:amr_fh83@yahoo.com
mailto:amr_fh83@azhar.edu.eg


Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview

Methods for NPs Synthesis

Two approaches of nanoparticle synthesis are known as top-
down and bottom-up methods. In the top-down method, the
rupture of bulk materials to fine particles is conducted by
various techniques such as evaporation–condensation, laser
ablation, or other physical methods as seen in Fig. 2. In con-
trast, in the bottom-up method, the atoms are assembled to
nuclei and then grown to NPs. Biological and chemical
methods which are used for NPs synthesis are considered
bottom-up approach.

An array of chemical, physical, and biological techniques
have been utilized to synthesize nanomaterials with specific
shapes and sizes [30].

Physical and Chemical Techniques for NPs Synthesis

A number of researchers have developed different chemical
and physical methods to accomplish the synthesis of NPs such
as geometries which can be utilized in varied applications.
Photolithography, ball milling, ion beam lithography,
microcontact printing, dip pen lithography, evaporation–con-
densation, electrochemical synthesis, and nanoimprint lithog-
raphy are reflected as novel techniques for realizing such sole
geometries in NPs [31]. The geometries can be also accom-
plished by physical methods [32]. On the other hand, the
chemical procedures start with reducing the metal ions to met-
al atoms which is followed by controlled bulk of atoms [33].

Generally, chemical and physical methods have been expand-
ed for the synthesis of numerous types of NPs owing to their
specificity and creation of monodisperse NPs [34]. Various
methods, such as metal ion reduction by any type of reducing
agents as hydrazine hydrate, sodium citrate, and sodium bo-
rohydride [35]; solvothermal synthesis [36]; sol–gel technique
and microwave-assisted synthesis [37]; laser ablation and
microemulsion [38]; and ion sputtering, gamma-ray irradia-
tion, electrochemical reduction, and autoclaving, have been
used for the synthesis of metal NPs [39]. The greatest com-
monly used techniques for NPs synthesis are related to one or
more disadvantages such as high operation cost, toxicity, and
energy inefficiency, thus raising many environmental
concerns.

These methods often need numerous treating steps, con-
trolled pressure, pH, temperature, much expensive equipment,
and toxic chemicals. In addition, these techniques also gener-
ate several by-products which are toxic to ecosystems. A va-
riety of different chemical methods, so-called bottom-up con-
struction techniques of NPs, are thus now settled in polar as
well as in nonpolar solvents. Therefore, today, metallic NPs
can be synthesized in numerous shapes, sizes, solvents, and
material compositions [40]. The various physical and chemi-
cal techniques which are used for NP synthesis are costly, and
they produce highly toxic and dangerous chemicals which
cause different biological hazards. Therefore, the requirement
of generating an eco-friendly method using biological and
green synthesis approaches is urgently recommended [41].

Fig. 1 Classification of NPs according to different approaches [29]
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Green Synthesis of NPs

Green or the biological synthesis of NPs avoids many of the
harmful features by allowing the synthesis of NPs at mild
pressure, temperature, and pH and at a significantly lower cost
[42]. The green synthesis of NPs by biomass filtrate obtained
from various biological systems such as yeast, bacteria, acti-
nomycetes, fungi, algae, and plant extract has been reported.

Various microorganisms, especially bacteria and fungi,
have been investigated to produce different metal NPs of sil-
ver, gold, zinc, titanium, copper, alginate, and magnesium
[43]. Several reports have appeared that metal NPs, such as
silver, gold, silver–gold alloy, tellurium, platinum, copper,
zinc, selenium, palladium, silica, zirconium, quantum dots,
titanium, and magnetite, can be biosynthesized by actinomy-
cetes, bacteria, fungi, and viruses [5, 8, 20, 44, 45]. Recently,
different organisms including unicellular and multicellular are
used for the green synthesis of NPs as represented in Fig. 3.

The green synthesis of NPs reflects a bottom-up approach
where NPs are formed due to the oxidation/reduction process
of metallic ions by secreted biomolecules such as enzymes,
proteins, sugars, carbohydrates, etc. [46]. However, a com-
plete understanding of microbial NP synthesis mechanism is
yet to be completely developed because each kind of micro-
organisms interrelates with metallic ions using several routes.
The biochemical processing and the interaction activities of a
specific microorganism as well as the effect of environmental
conditions such as temperature and pH eventually affect the
size, shape, and morphology of the synthesized NPs [47].

Therefore, the main challenges that can hinder the green syn-
thesis processes can be briefly summarized in the following
points: optimization processes that are required for the green
synthesis of NPs with specific sizes and shapes are reflected in
their biological activities. Also, determining the role of each
compound in the biofabrication process requires complete
chemical analysis for biological biomass filtrate. Scale-up
NP production needs more studies for commercial uses. The
mechanism of NP fabrication requires more explanations. On
the other hand, the synthesis of nanomaterial by green ap-
proaches needs co-operation between basic science, chemical
engineering, and industrial media to produce novel commer-
cial materials.

Nanoparticles are formed either by intracellular or extracel-
lular depending on the type of microorganisms [5]. For the
biological synthesis of NPs, living cell extracts have been
exploited by researchers. The main biological routes used
for the synthesis of NPs are briefly discussed in the following
sections.

Bacterial-Mediated NPs Synthesis

Bacteria are preferred to synthesize NPs due to its required
slight conditions, easy purification, and high yield. Therefore,
bacteria have become the widely studied microorganism, with
the title of “the factory of nanomaterials.” In recent years,
Bacillus thuringiensis was used to synthesize Ag-NPs with
size ranging from 43.52 to 142.97 nm [48]. Also, bacterial
species belonging to Bacillus licheniformis, Klebsiella
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pneumonia, and Morganella psychrotolerans were used for
Ag-NPs synthesis [49]. On the other hand, titanium dioxide
nanoparticle was synthesized by Bacillus subtilis and
Lactobacillus sp. [50]. Gold nanoparticles were synthesized
by Pseudomonas aeruginosa, Rhodopseudomonas capsulata,
Escherichia coli DH5α, Bacillus subtilis, and Bacillus
licheniformis [51], while Escherichia coli, Clostridium
thermoaceticum, and Rhodopseudomonas palustriswere used
previously for the synthesis of cadmium nanoparticles [52].
Bacteria can be used as biocatalyst for inorganic material syn-
thesis; they can act as bioscaffold for mineralization or take an
active part in nanoparticle synthesis [53]. Bacteria can synthe-
size nanomaterials in broth media during an incubation period
either as extracellular or intracellular. This phenomenon
makes the biosynthesis of NPs using bacteria a reasonable,
flexible, and suitable technique for large-scale production.
Data represented in Table 1 summarize the sizes and different
applications of NPs synthesized by different bacterial species.

Synthesis of NPs by Actinomycetes

Actinomycetes are good sources for the biosynthesis of NPs with
appreciable surface and size characteristics due to awide range of
secreted secondarymetabolites. Actinobacteria have the ability to
produce metallic NPs either through intra- or extracellular meth-
odologies. Extracellular production has gotten additional com-
mercial advantages in contrast to the intracellular one since poly-
dispersity plays an important role [91]. The literature reports
widely on the intra- or extracellular synthesis of metallic
nanomaterials by actinomycetes [4, 20, 92]. Gold NPs are suc-
cessfully synthesized by Rhodococcus sp., Thermoactinomycete
sp., Streptomyces viridogens, S. hygroscopicus, Nocardia

farcinica, and Thermomonospora [93].On the other hand, silver,
copper, zinc, and manganese nanoparticles [4, 20, 94, 95] were
successfully synthesized by using Streptomyces spp. A represen-
tative list of the size and applications of NPs synthesized by
actinomycetes is shown in Table 2.

Synthesis of NPs by Fungi and Yeast

Fungi have been extensively used for NPs biosynthesis due to
the high efficiencies of fungal metabolites to fabricate different
NPs [5, 8, 116]. Fungi are considered a good current addition to
the catalog ofmicroorganisms that are used for NPs fabrications.
The widespread use of different fungal species can be attributed
to their ability to secrete well-built amounts of proteins or en-
zymes and they are easier to trade in the laboratory [117]. The
use of fungi in synthesizing metallic NPs has received great
interest due to having certain advantages that overcome other
organisms. The ease of scaling up and downstream handling, the
economic feasibility, and the presence of mycelia presenting an
increased surface region are valuable advantages that should be
taken into consideration [42]. Also, fungi have been given more
attention as they are involved in the study on biological synthe-
sis of metallic nanomaterials due to their tolerance and metal
bioaccumulation capability [118]. The broadness of fungi
scale-up has resulted in a split favor of utilizing them in the
synthesis of NPs (e.g., utilizing a thin solid substrate fermenta-
tion system). Since fungi are very effectual secretors of extracel-
lular enzymes or proteins, therefore achieving vast construction
of enzymes is viable [119]. The economic facility and livability
of using biomass is another advantage for the application of the
green approach facilitated by fungal cells or metabolites to syn-
thesize metallic nanomaterials (Fig. 4). Moreover, several
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Table 1 A representative list of size and applications of different NPs synthesized by bacterial species

NPs Synthesized by Size Applications Reference

Ag Pseudomonas sp. 20–70 nm Antibacterial activity [49]

Bacillus thuringiensis 43.5–142.9 nm Larvicidal activity against Culex
quinquefasciatus and Aedes aegypti

[48]

Bacillus licheniformis 40 nm – [54]

Ochrobactrum anhtropi 38–85 nm Antibacterial activity [55]

Bacillus spp. 77–92 nm Antimicrobial activity, antiviral activity [56]

Pantoea ananatis 8.06–91.31 nm Antibacterial against multidrug resistant [57]

Bacillus brevis NCIM 2533 41–68 nm Antibacterial activity [58]

Bacillus mojavensis BTCB15 105 nm Antibacterial activity against multidrug resistant [53]

Actinobacter 13 nm Antibacterial activity [59]

Sinomonas mesophila 4–50 nm Antimicrobial activity [60]

Bacillus endophyticus 5 nm Antimicrobial activity [61]

Bacillus brevis 41–68 nm Antibacterial activity [58]

Bacillus licheniformis Dahb1 18–63 nm Antibiofilm activity [62]

Bacillus methylotrophicus DC3 10–30 Antimicrobial activity [63]

Au–Ag Stenotrophomonas GSG2 Gold (10–50); silver (40–60) – [64]

Cu Kocuria flava 5–30 nm – [65]

Shewanella loihica 10–16 nm Antibacterial activity [66]

Shewanella oneidensisMR-1 20–40 nm Biocatalysts [67]

Pt Shewanella loihica 1–10 nm Decolorization of dyes [68]

Shewanella oneidensisMR-1 2.83–61.03 nm Biocatalysts for reduction of 4-nitrophenol [69]

Pd Shewanella loihica 1–12 nm Degradation of dyes [68]

Shewanella oneidensisMR-1 10–100 nm Electrocatalysts [70]

Pd–Pt Shewanella loihica 2–7 nm Degradation of dyes [68]

TeO3–SeO3 Ochrobactrum sp. – Reduce of toxic substances [71]

Au Pseudomonas aeruginosa 15–30 nm – [72]

Rhodopseudomonas capsulata 10–20 nm – [73]

Escherichia coli DH5α 25 nm Direct electrochemistry of hemoglobin [74]

Bacillus subtilis 20–25 nm Degradation of dyes [51]

Shewanella loihica 2–15 nm Degradation of dyes [68]

Micrococcus yunnanensis 53 nm Antibacterial and anticancer activity [75]

Mycobacterium sp. 5–55 nm Anticancer activity [76]

Halomonas salina 30–100 nm – [77]

Shewanella oneidensisMR-1 3–15 nm Biocatalysts for reduction of nitroaromatic
compounds

[78]

CdS E. coli 2–5 nm – [52]

Pseudomonas aeruginosa 20–40 Removal of heavy metal as cadmium [79]

TiO2 Bacillus mycoides 40–60 nm Used in solar cells [80]

Bacillus amyloliquefaciens 15.2–87.6 nm Photocatalytic for dye removal [50]

Aeromonas hydrophila 28–54 nm Antibacterial activity [81]

Lactobacillus sp. 8–35 nm – [82]

Te Shewanella baltica 8–75 nm Photocatalytic activity [83]

Co3O4 Bacillus subtilis 2–5 nm – [84]

Se Lysinibacillus sp. ZYM‑1 100–200 nm Photocatalytic activity [85]

Bacillus subtilis 50–400 nm H2O2 sensoristic device [86]

ZnO Bacillus megaterium NCIM2326 45–95 nm Antimicrobial activity [87]

ZnO Halomonas elongata IBRC-M 10214 18.11 nm Antimicrobial activity [88]

Sphingobacterium thalpophilum 40 nm Antimicrobial activity [89]

Staphylococcus aureus 10–50 nm Antimicrobial activity [90]
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species of fungi grow rapidly and formed huge amount of mass
cells and maintaining them in a specific laboratory is actual easy
[8]. Fungi can form metal NPs in different structures as meso-
and nanostructures via reducing enzyme extra- or intracellularly
and the process of biomimetic mineralization [120].

The synthesis of NPs using fungi and their biotechnological
applications, especially in medicine, are considered under the
term of myco-nanotechnology. This scientific term is the bound-
ary between “mycology” and “nanotechnology” and has signif-
icant potential, due to the extensive range and variety of the fungi
[5, 32, 45]. Different species of fungi can be used to produce gold
and silver nanoparticles such as Phanerochaete chrysosporium,
Pleurotus sajorcaju, Coriolus versicolor, and Schizophyllum
commune [121, 122]. Other species including Aspergillus niger,
Aspergillus terreus, Fusarium keratoplasticum, Fusarium

oxysporum, and Alternaria alternata have been reported to
biosynthesize zinc oxide and iron oxide nanoparticles [5, 123].
Fusarium spp., Fusarium keratoplasticum, Helminthosporium
tetramera, and Schizophyllum radiatum were used for the bio-
synthesis of Ag-NPs [124–127]. Interestingly, Penicillium
aurantiogriseum, P. waksmanii, P. citrinum, Fusarium
oxysporum, and Aspergillus sydowii were used for Au biosyn-
thesis [128–130], while Aspergillus sp. was used for the biosyn-
thesis of iron nanoparticles [131]. Fusarium oxysporum can be
used to produce zinc sulfide (ZnS), lead sulfide (PbS), cadmium
sulfide (CdS), and molybdenum sulfide (MoS) nanomaterials,
when the appropriate salt is added to the growth medium [132].

A few studies reported the successful biosynthesis of Ag-
NPs by yeasts, counting the yeast strain MKY3, Candida
albicans, Saccharomyces boulardii, and Candida utilis

Table 2 A representative list of size and applications of different NPs synthesized by actinomycetes species

NPs Synthesized by Size Applications Reference

Ag Streptomyces spp. 11–63 nm Antimicrobial, antioxidant, larvicidal activities [19]

Nocardiopsis sp. MBRC-1 45 nm Antimicrobial activity, in vitro cytotoxicity
against HeLa cell line

[96]

Streptacidiphilus durhamensis 8–48 nm Antimicrobial activity [97]

Streptomyces rochei MHM13 22–85 Antimicrobial activity and enhancement of
antibiotic action

[98]

Streptomyces sp. 15–25 nm – [94]

Saccaropolyspora hirsuta 10–30 nm Antimicrobial activity [99]

Streptomyces parvulus 100 nm Antimicrobial activity [100]

Streptomyces seoulensis 121 nm Antimicrobial activity [100]

Streptomyces owasiensis 160 nm Antimicrobial activity [100]

Nocardiopsis flavascens 5–50 nm Cytotoxicity [101]

Streptomyces fradiae 100–200 nm Antioxidant activity [102]

Streptomyces griseoplanus 19–20 nm Antifungal against plant pathogen [103]

Rhodococcus sp. 5–50 nm Antimicrobial activity [104]

Streptomyces sp. Al-Dhabi-87 20–50 nm Antimicrobial activity, antibacterial
activity against multidrug-resistant bacteria

[105]

Ag–Au Streptomyces sp. 8.4 nm (Ag); 10 nm
(Au)

Antibacterial activity [93]

Gordonia amicalis HS-11 5–25 nm Antioxidant activity [102]

CuO Streptomyces sp. 78–80 nm Antimicrobial, antioxidant, cytotoxicity, biocontrol of
phytopathogen, and larvicidal activities

[4]

Cu Streptomyces capillispiralis Ca-1 3.6–59 nm Antimicrobial, biocontrol of phytopathogen, and
larvicidal activities

[20]

Au Streptomycetes viridogens HM10 18–20 nm Antibacterial activity [106]

Streptomyces sp. 90 nm Antifungal activity [107]

Nocardiopsis sp. MBRC-48 11.57 nm Antimicrobial and cytotoxicity activities [108]

Streptomyces griseoruber 5–50 nm Dye degradation [109]

Rhodococcus sp. 5–15 nm – [110]

Streptomyces hygroscopicus 10–20 nm – [111]

Streptomyces sp. 5–50 nm Antimalarial activity [112]

Se Streptomyces minutiscleroticus
M10A62

10–250 nm Antibiofilm, antiviral; antioxidant activity,
antiproliferative activity

[113]

Streptomyces bikiniensis Ess_amA-1 17 nm Anticancer activity [114]

ZnO Streptomyces sp. 20–50 Antimicrobial activity [115]
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[133]. Extremophilic yeasts that have been isolated from acid
source drainage are used as biocatalyst for gold and silver NPs
synthesis [134]. The yeast strain Magnusiomyces ingens
LHF1 has been explored for intracellular production of stable
selenium nanoparticles [135]. Data in Table 3 summarize the
sizes and applications of different NPs synthesized by fungi
and yeasts.

Algal-Mediated NPs Synthesis

Algae are seamicroorganisms that have been reported not only to
uptake heavymetals from the environment, but also to synthesize
metallic NPs. For example, the dried algal cells of Chlorella
vulgaris were expanded to produce Au-NPs by reduced tetra-
chloroaurate ions to form Au-NPs [172]. Studies are ongoing
on the bioreduction and biosorption of Au (III) ions by Fucus
vesiculosuswhich is defined as a brown alga [173]. Bioreduction
withFucus vesiculosusmight be expanded as a replacement eco-
friendly treatment for claiming Au from leachates of microelec-
tronic scraps and dilute hydrometallurgical mixes. Diatoms can
be used as a resource for fabrication of siliceous materials [174].
The phytoplanktonic alga, Phaeodactulum tricornatum, pos-
sesses phytochelatin-covered CdS nanocrystals fabricated in re-
sponse to Cd [175]. Rapid formation of Au-NPs through extra-
cellular biosynthesis has been created viable in a marine alga of
Sargassum wightii Greville [176]. Konishi et al. [177] reported
that Shewanella algaehas have the ability to reduce aqueous
PtCl6 to elemental Pt at neutral pH under room temperature
within 60 min using lactate as the electron donor. Biogenic Pt-
NPs of 5 nm are observed in the periplasm, which is a preferable
position for simple and quick recovery [177]. Brayner and co-
authors described the synthesis of platinum, gold, palladium, and
silver NPs using cyanobacteria [178]. Other alga like Turbinaria
conoides was used for gold nanoparticle biosynthesis [179]. On
the other hand, four marine macroalgae, viz., Pterocladia
capillacae, Jania rubins, Ulva faciata, and Colpmenia sinusa,
were used for the biosynthesis of Ag-NPs [179–181]. As seen in

Table 4, there are some representative examples for NPs synthe-
sized by different algae with their size and applications.

Synthesis of NPs by Viruses

The usage of viruses in the biosynthesis of nanoparticles is a
novel method that has been capable to produce inorganic
nanomaterials such as cadmium sulfide (CdS), silicon dioxide
(SiO2), iron oxide (Fe2O3), and zinc sulfide (ZnS).
Semiconductor nanomaterials such as ZnS and CdS are of in-
terest to the green chemistry and electronics industry ap-
proaches for their synthesis has been widely investigated. The
use of whole viruses to synthesize quantum dots has been
inspected over the previous decade [226]. The bacteriophage
has an exact detection moiety for ZnS surfaces. In 2003,
Chuanbin Mao’s group found a new synthesis route to a semi-
conductor nanoscale heterostructure using M13 bacteriophage
[229]. Also, Yoon Sung Nam and his group arrived at the bio-
synthesis of a high-performance, flexible nanogenerator using
anisotropic BaTiO3 nanocrystals on an M13 viral template by
the genetically programmed nature assembly of metal ion pre-
cursors [230]. An attractive characteristic of viruses is their
complicated surface protecting the capsid protein structure that
forms an extremely sensitive surface with the cooperation of
metal ions [47]. In a similar study, low concentrations of TMVs
(tobacco mosaic virus) were inserted to Au or Ag solutions
before the addition plant cell extracts of Hordeum vulgare or
Nicotiana benthamiana. The presence of the virus not only
decreased the size of the biosynthesized NPs, but also radically
increased their numbers in contrast to the solutions without the
virus [225]. Illustrative examples for NPs synthesized by dif-
ferent viruses are listed in Table 4.

Synthesis of NPs by Plant Extracts

Biosynthesis of metallic nanoparticles using plant extracts is
firstly reported byGardea-Torresdey et al. [231], who reported

Fig. 4 Advantages of fungi as
biofactories for NPs production
[120]
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Table 3 A representative list of size and applications of different NPs synthesized by fungal and yeast species

NPs Synthesized by Size Applications Reference

Fungi

Ag Rhizopus stolonifer 2.86 nm – [136]

Candida glabrata 2–15 nm Antibacterial activity [137]

Trametes trogii 5–65 nm – [138]

Trichoderma longibrachiatum 10 nm Antimicrobial against phytopathogen [122]

Fusarium oxysporum 21.3–37 nm Antibacterial activity [139]

Aspergillus terreus 16–57 nm Antibacterial activity [140]

Ganoderma sessiliforme 45 nm Antibacterial, antioxidant, and anticancer activities [141]

Rhodotorula glutinis 15.45 nm Antifungal, cytotoxicity, and dye degradation [142]

Aspergillus sp. 5–30 nm Antibacterial and cytotoxicity activities [45]

Fusarium keratoplasticumA1-3 6 to 36 nm Increasing antibacterial activity of cotton fabrics [124]

Arthroderma fulvum 15.5 nm Antifungal activity [143]

Penicillium aculeatum Su1 4–55 nm Antimicrobial activity, drug delivery [144]

Fusarium oxysporum 405 10–50 nm Colloidal stability [145]

Fusarium oxysporum 5–13 nm Antibacterial and antitumor activities [146]

Metarhizium anisopliae 28–38 nm Larvicidal activity [147]

Trichoderma harzianum 20–30 nm Antifungal activity [148]

Fusarium oxysporum 34–44 nm Antibacterial activity [149]

Candida albicans ATCC 10231 10–20 nm – [150]

Ag/AgCl Macrophomina phaseolina 5–30 nm Antibacterial activity [117]

Au Cladosporium cladosporioides 60 nm Antibacterial and antioxidant activities [151]

Trichoderma harzianum 32–44 nm Dye degradation; antibacterial activity [152]

Pleurotus ostreatus 10–30 nm Antimicrobial, anticancer activities [121]

Aspergillus sp. 2.5–6.7 nm Reduction of nitrophenol compounds [153]

Rhizopus oryzae 16–43 nm Hemocompatible activity [154]

Pt Penicillium chrysogenum 5–40 nm Cytotoxicity [155]

ZnO Aspergillus niger 53–69 nm Dye degradation; antibacterial activity [156]

Candida albicans 25 nm Synthesis of steroidal pyrazolines [157]

Fusarium keratoplasticumA1-3 10 to 42 nm Antibacterial, cytotoxicity activities, and loaded on textile [5]

Aspergillus niger G3-1 8–38 nm Antibacterial, cytotoxicity activities and medical textile [5]

Aspergillus terreus 10–45 nm Antibacterial, cytotoxicity, medical textile
and UV protection

[8]

Pichia kudriavzevii 10–61 nm Antibacterial and antioxidant activities [158]

Te Aspergillus welwitschiae 60 nm Antibacterial activity against MRSA [159]

ZnS; ZnS-Gd Aspergillus flavus 12–24 nm (ZnS);
10–18 nm (ZnS-Gd)

Detection of heavy metals in water [160]

Fe2O3 Alternaria alternata 75–650 nm – [123]

Al2O3 Colletotrichum sp. 30–50 Antimicrobial activity [161]

CoO Aspergillus nidulans 20.3 nm – [162]

Yeast

Ag Rhodotorula sp. ATL72 8–21 nm Antimicrobial activity [133]

Saccharomyces cerevisiae 2–7 nm – [34]

Saccharomyces cerevisiae 2–20 nm – [163]

Cryptococcus laurentii 35–400 nm Antifungal against plant pathogen [164]

Rhodotorula glutinis 15–220 nm Antifungal against plant pathogen [164]

Rhodotorula mucilaginosa 11 Bioremediation [165]

Rhodotorula glutinis 15.5 nm Antifungal activity; reduction of nitrophenol
compound; and dye degradation

[166]

Au–Ag alloy Commercial yeast – Electrochemical sensor [167]

Ag and Au Phaffia rhodozyma 5–9 nm (Ag); 4–7 nm (Au) Antifungal activity [134]
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the synthesis of Ag-NPs using Alfalfa sprouts. The major im-
portant and special feature of nanoparticles is that they exhibit
larger surface region to volume ratio [232]. Plant extracts such
as soya, Aloe barbadensisMiller, and Tridax procumbens leaf
cell extract have been used for the synthesis of Cu and CuO-
NPs [233, 234]. Recently, plant-mediated biosynthesis of
ZnO-NPs has been accomplished in Parthenium
hysterophorus, Sapindus rarak, Passiflora foetida, Acalypha
indica, Ficus benghalensis, and Zingiber officinale [235].
Several reports were made on the biosynthesis of nanoparti-
cles (Au, Ag, ZnO, Fe, etc.) using aqueous extracts of numer-
ous plant parts. An aqueous leaf cell extract of Couroupita
guianensis and Turnera ulmifolia for the biosynthesis of Ag-
NPs [236, 237], Allium cepa cell extract for Au-NPs [238],
Eucalyptus leaf extract for the construction of Fe-NPs and
composites [239], and plant extracts of Punica granatum for
the biosynthesis of ZnO-NPs [240] were used.

The green synthesis of NPs using plant extracts has more
advantages than using microorganisms because it is a single-
stepmethod, is nonpathogenic and economic, produces a huge
amount of metabolites, is cost-effective, and is an eco-friendly
approach [241]. Plant-mediated biosynthesis of NPs with their
size and applications is summarized in Table 5.

Factors Affecting NPs Synthesis

Adjusting the sizes and shapes of metal nanomaterials appears
either to be compelled by their environmental development or
shifted by functional molecules [5]. Improving the reaction
conditions for the synthesis of nanoparticles, including tem-
perature, pH, incubation period, aeration, salt concentration,
redox conditions, mixing ratio, and irradiation, has been in-
vestigated [289, 290]. The size and shape of NPs depend on
chemical and physical factors. The optimum metal ion con-
centration, temperature, and pH of the reaction mixture play
key roles in nanoparticle synthesis. The rate of intracellular
nanoparticle creation and then the size of the NPs could, to an
amount, be influenced by scheming parameters such as tem-
perature, pH, substrate concentration, and exposure period to
substrate [291].

NPs Characterization

Physicochemical characterization of generated NPs is an im-
portant stage that should be carefully considered before nano-
particle application. Studying the size, shape, surface area,
homogeneity, stability, and other features will provide valu-
able information of nanoscale systems and insight into the
synthesis control of nanoparticles for commercial applica-
tions. Some common techniques of characterization such as
the color change test; UV–visible spectrometry; Fourier trans-
formation infrared spectroscopy (FT-IR); electron microscopy
including transmission, high-resolution, scanning, and field-
emission scanning (TEM, HR-TEM, SEM, and FE-SEM);
energy-dispersive spectroscopy (EDX-map); dynamic light
scattering (DLS); powder X-ray diffraction (XRD); vibrating
sample magnetometer (VAM); thermogravimetric analysis
(TGA); and other instruments are shown with their functions
in Table 6 [5, 292–298].

Biotechnological Applications of NPs

The advantages of nanotechnology are growing quickly in
several fields [255, 281]. Nanoparticles are applicable tomany
emerging technologies such as in sunscreens and cosmetics,
water filtrations, ink, glare filters, stain-resistant clothing, ag-
riculture and pharmaceutical, finished fabrics, and dressings
for injuries or burns [8, 185]. The major biotechnological ap-
plications of NPs will be addressed below.

Antimicrobial Activities and Cytotoxicity Agents

The major challenges for medicinal practitioners are
summarized in the appearance of new drug-resistant microbes.
Therefore, the development of novel drugs is necessary to
cope with various diseases. The applications of NPs in medi-
cine have different advantages such as in early detection sys-
tems, diagnosis using NP-based imaging, and treatment of
different diseases caused by drug-resistant microbes [171,
275]. The development of nanotechnology and methods used
for the synthesis of nanocomposites/NPs has likewise revolu-
tionized the field of biomedicine because of their

Table 3 (continued)

NPs Synthesized by Size Applications Reference

Au Saccharomyces cerevisiae – Enhancement of surface plasmon applications [168]

Magnusiomyces ingens LHF1 20–28 nm Reduction of nitrophenol compounds [169]

Pd Saccharomyces cerevisiae 32 nm Dye degradations [170]

ZnO Pichia kudriavzevii 10–61 nm Antimicrobial and antioxidant activities [158]

Se Magnusiomyces ingens LHF1 70–90 nm Antibacterial activity [135]

CdTe Saccharomyces cerevisiae 2.0–3.6 nm Applications in bio-imaging and biolabeling [171]
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Table 4 A representative list of size and applications of different NPs synthesized by algae and viruses

NPs Synthesized by Size Applications References

Algae

Ag Red algae Portieria
hornemannii

60–70 nm Antibacterial activity against fish pathogens [182]

Marine macroalgae Padina sp. ~ 25–60 nm Antibacterial and antioxidant activities [183]

Microchaete NCCU-342 60–80 nm Dye decolorization ability [184]

Macroalgae (Ulva lactuca L.) 31 ± 8 nm Cancer therapy [185]

Brown alga Padina pavonia 49.58–86.37 nm One-pot method for synthesis [186]

Gelidium amansii 27–54 nm Antimicrobial property [187]

Caulerpa serrulata 10 ± 2 nm Catalytic and antibacterial activities [188]

Acanthophora specifera 33–81 nm Antimicrobial activity [189]

Gracilaria birdiae 20.3 nm Antibacterial activity [190]

Sargassum muticum 43–79 nm Control tool against mosquito vectors and bacterial
pathogens

[191]

Anabaena flos-aquae 5–25 nm Anticancer and cytotoxic activity against T47D cell
lines

[192]

Polysiphonia algae 5–25 nm Anticancer activity against MCF-7 cell line [193]

Au Marine algae Gelidiella
acerosa

5.8–117.6 nm Biological potential [194]

Macroalgae (Ulva lactuca L) 7.9 nm Cancer therapies [185]

Marine algae extract 8–20 nm One-pot method for synthesis [195]

Brown algae Cystoseira
baccata

8.4 nm Cancer therapies [196]

Pithophora oedogonia 32.06 nm Determination of carbendazim molecules in soil [197]

Sargassum tenerrimum 5–45 nm Evaluation of their catalytic activity [198]

Spirulina platensis 20–30 nm Antibacterial efficacy [199]

Pd Chlorella vulgaris 70 nm Catalytic activity [200]

Chlorella vulgaris 5–20 nm Easy and fast bioprocess [201]

Sargassum bovinum 5–10 nm Electrocatalytic activities [202]

Sargassum ilicifolium 60–80 nm – [203]

ZnO Microalgae Chlorella extract 20 ± 2.2 nm Photocatalytic activity [204]

Sargassum muticum 30–57 nm Supplemental drug in cancer treatments [205]

Chlamydomonas reinhardtii 55–80 nm Photocatalytic activity [206]

Agathosma betulina 15.8 nm One-pot method for synthesis [207]

Sargassum muticum 30–57 nm One-pot method for synthesis [208]

CuO Brown alga Cystoseira
trinodis

6–7.8 nm Photocatalytic and antibacterial activities [209]

Green alga Botryococcus
braunii

10–70 nm Antimicrobial activity [210]

Brown algae Sargassum
polycystum

– Antimicrobial and anticancer activities [211]

Bifurcaria bifurcata 5–45 nm Antimicrobial activity [212]

Fe3O4 Brown seaweed extract 11.2–33.7 nm Antimicrobial potency [213]

Brown seaweed 10–19.5 nm Bioremediation [214]

Sargassum muticum 18 ± 4 nm High functional bioactivity [215]

CuFe2O4@Ag Chlorella vulgaris 20 nm Antibacterial activity, antibiofilm activity, inhibit
efflux pump genes in Staphylococcus

[216]

Fe3O4@Ag Spirulina platensis 30–68 nm Effect on the expression of norA and norB genes in
Staphylococcus aureus

[217]

Fe3O4/Ag Spirulina platensis 30–50 nm Anticancer activity [218]

Viruses

Au nanowires Tobacco mosaic virus 50 nm in diameter and
150–400 nm in length

Properties of nanowires [219]

Nanoconjugates Hepatitis E virus 27–34 nm Cancer therapy [220]
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antimicrobial and immunoassay activities [223, 242]. Various
types of NPs, including metals and metal oxides such as Ag,
Au, Ag2O, ZnO, TiO2, CaO, CuO, MgO, and SiO2, are de-
veloped by different researchers to use in medical applications
[4, 8, 20, 299–303]. Plant- and different microbe-mediated
biosyntheses of NPs are suitable candidates for a novel pro-
duction of antimicrobial nanomaterials [19, 183].

Recently, the green-synthesized ZnO-NPs showed antimicro-
bial activities against different pathogenic Gram-negative and
Gram-positive bacteria such as E. coli, Pseudomonas
aeruginosa, Salmonella typhimurium, Listeria monocytogenes,
Staphylococcus aureus, and Bacillus subtilis [19, 276]. On the
other hand, Au-NPs and Ag-NPs exhibit highly antibacterial
activity toward pathogenic Gram-negative bacteria such as
E. coli, Klebsiella pneumonia, Salmonella typhimurium,
Pseudomonas aeruginosa, Proteus mirabilis, Shigella
dysenteriae, Enterobacter aerogenes, and Citrobacter sp. Also,
the biosynthesized Au-NPs and Ag-NPs have activities against
pathogenic Gram-positive bacteria such as Staphylococcus
epidermidis, Staphylococcus aureus including MRSA,
Streptococcus pyogenes, Enterococcus faecalis, and Bacillus
subtilis [105, 117, 242, 245]. The activities of NPs as antifungal
agents for different pathogenic fungi have been widely evaluated
[107, 148]. Several studies have reported the activities of
biosynthesized Ag-NPs as antifungal agents against multicellular
and unicellular fungi such as Trichophyton mentagrophytes,
Aspergillus flavus, Candida glabrata, Aspergillus fumigatus,
Candida parapsilosis, Cryptococcus neoformans, Candida
krusei, Fusarium solani, Trichophyton rubrum, Cryptococcus
gatt i i , Candida tropicalis , Sporothrix schenckii ,
Epidermophyton floccosum, Candida albicans, and Mucor
hiemalis. In the same regard, Ag-NPs showed activities against
plant pathogenic fungi such as Aspergillus niger, Colletotrichum
sp.,Fusarium sp.,Culvularia lunata, andRhizoctonia solani [19,
103, 304–306]. Recently, cancer diagnosis and treatment have
receivedmore attention. A largemultiplicity in nanomaterials has

been evaluated to improve its efficacy in cancer therapy as well
as to reduce negative impacts compared with conventional ther-
apies [251]. The toxicity impact of NPs synthesized by green
methods is evaluated mainly by changes in viability and cell
morphology, as well as metabolic activities [8, 141]. NPs have
been localized in the mitochondria, inducing functional damage
and structural as well as oxidative emphasis [307]. The physico-
chemical properties of NPs have a critical important role in cy-
totoxicity effect. The nature and size of NPs, its surface area, and
its surface functionalization (capping agents) are important fac-
tors that affect their toxicity [5]. The small-sized NPs are more
toxic compared with the bigger ones [305].

There are three defined prospective mechanisms that ex-
plain the antimicrobial activity of metal NPs: firstly, damage
of the cell wall and cell membrane; secondly, damage of in-
tracellular microbial components after penetration of the cell
wall; and finally, oxidative stress mechanism (Fig. 5).

The cell wall and cell membrane protect microbes against
external harmful condition and remain a transport mechanism
of nutrients in/out of the cell. According to cell wall compo-
nents, Gram-positive bacteria possess a thick layer of peptido-
glycan, while Gram-negative contain thin layer of peptidogly-
can [308, 309]. The metallic NPs exhibit higher antibacterial
activity against Gram-negative bacteria more than those re-
corded for Gram-positive bacteria [310]. This activity may
be attributed to the negative charge of lipopolysaccharides
(LPS) in Gram-negative bacteria that permit adhesion of
NPs to bacterial cell wall. The metallic NPs interact with bac-
terial cell wall through attraction between the microbial cell
wall’s negative charge and NPs’ positive charge [311]. Due to
this interaction, the permeability function of the cell mem-
brane changes and, hence, the bacterial integrity disrupts and
causes cell death [312]. Interestingly, the cellular components
such as protein, nucleic acid, ions, and enzymes escape out of
the cell membrane and adversely influence cellular activity
[313]. Therefore, the degradation of bacterial cell wall and cell

Table 4 (continued)

NPs Synthesized by Size Applications References

Au Bacteriophage 20–50 nm
50–150 nm
150–500 nm

Biosensor electrode [221]

Au-DNs M13 virus Biosensor platform [222]

Nanocarriers Potato virus X 12 nm Doxorubicin delivery in cancer therapy [223]

TiO2 M13 virus 20–40 nm Photo-electrochemical properties [224]

Metal
nanoparticles

Cowpea mosaic virus and
Tobacco mosaic virus

≤ 100 nm Nanotechnology industry. [225]

Nanoassemblies Cucumber mosaic virus ~ 29 nm Anticancer activity, and drug delivery [226]

Pd Tobacco mosaic virus (TMV) 2.9–3.7 nm Multiwalled carbon nanotubes
Catalyst and recyclable

[227]

Ni, Co, Fe, Pd,
Co–Pd, Ni–Fe

Cowpeamosaic virus (CPMV) ≤ 35 nm One-pot method for synthesis [228]
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Table 5 A representative list of size and applications of different NPs synthesized by plant extracts

NPs Synthesized by Size (nm) Applications Reference

Ag Mulberry fruit (Morus alba L.) 80–150 Antibacterial activity [242]

Annona reticulata 7–8 Bactericidal activities [243]

Camellia sinensis 2–4 Cytotoxicity evaluation and antibacterial activity [244]

Persea americana 20–40 Antimicrobial properties [245]

Aqueous extract of E. scaber 37.86 Environmental and biological applications [246]

Panax ginseng 5–15 Anticancer and antiviral activities [247]

Dolichos lablab 4–16 Antimicrobial and anticancer activities [248]

Alternanthera bettzickiana 5–15 Antimicrobial and anticancer activities [249]

Ethanolic extract of Thymus vulgaris 30 Anticancer and antioxidant activities [250]

Au Red cabbage extracts ~ 25
18–30
5–70
27

Catalytic activity [251]

Tribulus terrestris ~ 7 Anti-Helicobacter pylori, cytotoxicity and catalytic activities [252]

Camellia sinensis 10 Antibacterial activity [253]

Nigella arvensis 3–37 Antibacterial, antioxidant, cytotoxicity, and catalytic activities [254]

Anacardium occidentale 10–30 In vitro antimicrobial and anticancer properties [255]

Alternanthera bettzickiana 80–120 Evaluation of bioactivities [256]

Rhazya stricta Decne 40 Biological activities against bacteria and Leishmania [257]

Elettaria cardamomum 15 Biological activities [258]

Cu Mulberry fruit (Morus alba L.) 50–200 Antibacterial activity [242]

Crotalaria candicans 30 Antibacterial activity [259]

Ziziphus spinachristi 5–20 Adsorption of tri-phenyl methane dye and antibacterial assay [260]

(Syzygium aromaticum) clove ~ 15–20 Antimicrobial properties [261]

Fe Tea leaves extract 30–100 Wastewater remediation [262]

Moringa oleifera 2.6–6.2 Removal of nitrate from water and antibacterial activity [263]

Trigonella foenum-graecum ~ 11 Dye degradation and antibacterial applications [264]

Se Plant extract of O. tenuiflorum 15–20 Medical and pharmaceutical applications [265]

Murraya koenigii 50–150 Larvicidal and bacteriostatic properties [266]

Zinziber officinale 100–150 Evaluation on antimicrobial and antioxidant activities [267]

Pt Xanthium strumarium 22 Biological studies [268]

Taraxacum laevigatum 2–7 Antibacterial activity [269]

Pd Mulberry fruit (Morus alba L.) 50–100 Antibacterial activity [242]

Couroupita guianensis Aubl. 5–15 Antibacterial and cytotoxicity activities [270]

Filicium decipiens 2–22 Antibacterial efficacy [271]

Ni Calotropis gigantea leaves ~ 60 Catalytic and antimicrobial potentials [272]

Mn Cinnamomum verum 50–100 Photocatalytic and antimicrobial activities [273]

ZnO Calliandra haematocephala 19.45 Photocatalytic dye degradation [274]

Aloe socotrina 15–50 Drug delivery approach [275]

Olive leaves 40.5–124 Antibacterial activity [276]

Tecoma castanifolia 70–75 Antioxidant, bactericidal, and anticancer activities [277]

Rhamnus virgata ~20 Evaluation of cytotoxic, antimicrobial, and antioxidant potentials [278]

Artocarpus gomezianus 30–40 Cytotoxicity, antibacterial, and antifungal activities [279]

Passiflora caerulea 30–50 Active against urinary tract infection pathogen [280]

TiO2 (Citrus reticulata) tangerine peels 50–150 Reduced environmental impact [281]

Glycyrrhiza glabra 69 Antibacterial activity [282]

Trigonella foenum graecum 20–90 Antimicrobial properties [283]

Artemisia haussknechtii 92.85 Antimicrobial and antioxidant activities [284]

CuO Cymbopogon citratus 11.4–14.5 Antibacterial and antibiofilm agents [285]
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membrane due to NPs adhesions is considered the first mon-
itor for antimicrobial activity. On the other hand, Ghosh and
co-authors [314] reported that the ability of NPs to interact

with proteins in bacterial outer membrane causes harmful
change in the bacterial cell wall.

Table 6 The most common
instruments used for NPs
characterizations

Characterization tool Function

UV–visible spectrometry Detection of surface plasmon resonance (SPR) which is
attributed to reverberation of electron band on the sur-
face of metal NPs with light wave

Fourier transformation infrared spectroscopy
(FT-IR)

Detect functional groups which are responsible for
reducing, capping, and stabilizing of metal NPs

Transmission, high-resolution, and scanning
electron microscope (TEM, HR-TEM, and
SEM)

Clarify the size, aggregation, and morphological shapes of
NPs

Energy-dispersive spectroscopy (EDX) Study the elemental composition and purity of green
synthesized NPs

Dynamic light scattering (DLS) Detect distribution and size of NPs in colloidal solution,
detect agglomerations of NPs

Zeta potential Detect surface charge of NPs which responsible for
stability

Powder X-ray diffraction (XRD) Detect the crystallographic shape of NPs, crystalline
particle size

Atomic force microscope (AFM) Study the 2D and 3D shape of NPs

X-ray photoelectron spectroscopy (XPS) Study the surface chemistry, elemental composition,
electronic and chemical state of elements within metal
NPs

Vibrating sample magnetometer (VAM) Study the hysteresis loops and the magnetic properties of
the magnetic NPs

Thermogravimetric analysis (TGA) Thermal behavior analysis

Brunauer–Emmett–Teller (BET) Used to detect NPs surface area

Low-energy ion scattering (LEIS) Give information about thickness of self-assembled
monolayer

Photoluminescence (PL) spectroscopy Used for fluorescence NPs characterizations such as
quantum dots and metal nanoclusters

Nanoparticle tracking analysis (NTA) Used to detect NPs size and NPs size distribution in liquid
dispersion, analyze the capping efficiency in colloidal
suspensions, determine the refractive index which
explains the interaction between NPs and lights

Differential centrifugal sedimentation (DCS) Detect NPs size based on sedimentation rates

Mass spectrometry (MS) Study the elemental and molecular compositions and
chemical state of NPs, study the bioconjugation of NPs
with target biomolecules

Inductively coupled plasma-MS (ICP-MS) Assessment of NPs chemical compositions, size
distributions, and NPs concentrations

Ferromagnetic resonance (FMR) Detect NPs size and their distribution, NPs shape, surface
composition, magnetic anisotropic constant,
demagnetization field

Table 5 (continued)

NPs Synthesized by Size (nm) Applications Reference

Citrofortunella microcarpa (calamondin) 54–68 Dye removal from wastewater [234]

Cordia sebestena 20–35 Photodegradation and antibacterial activities [286]

FeO Avicennia marina 10–25 Antibiofilm activity and in vitro toxicity [287]

Skimmia laureola 56–350 Antibacterial efficacy [288]
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According to the degree of damage in the cell wall, metallic
NPs permeate the cell and cause irreversible effect in DNA
and protein. Once NPs enter the bacterial cell, it interacts with
DNA and converts it from normal state to condensed state,
and hence, DNA loses replication ability [315]. Moreover,
NPs cause enzyme inactivation due to reaction with a thiol
group which is found in cysteine amino acid.

Antitumor Activities

Despite the availability of medications, millions of people die
due to cancer every year. Additionally, the survival of patients
is subjected to negative side effects due to consumption of
available antineoplastic medicines. Therefore, the develop-
ment of new NP-based drugs has received more attention
due to its being more effective, providing little negative im-
pacts and targeting cancer cells. These activities may be attrib-
uted to the large surface area of NPs that facilitate the combi-
nation of high drug doses [316]. Several types of NP-sized
drug carriers such as polymeric micelles, liposomes,
dendrimers, and inorganic NPs have been checked in cancer
therapy to reduce the negative impacts of conventional anti-
cancer drugs and improve the antitumor drug efficacy of target
therapies [185, 265]. Inorganic nanomaterials, including metal
oxides and metal (zinc oxide, iron oxide, titanium dioxide,
gold, silver, and nickel particles), are promising materials ap-
plicable in medicine, such as in cell imaging, biosensing, gene
or drug delivery, and cancer therapy [205, 247, 255].

Textile Industry

The incorporation of NPs to textiles during manufacture has
increased in recent times because NPs improve the performance

of finished fabrics. For example, Ag-NPs have been expended
for enhanced antibacterial properties, self-cleaning properties,
and UV blocking of finished fabrics [42, 124]. Also, ZnO-NPs
are added to the textile industry for increasing UV locking and
antibacterial properties [5, 8]. UV blockers due to the addition of
inorganic NPs to the textile industry are preferable than UV
blockers due to organic NPs [317]. In fact, the most common
NPs, which are chemically stable and nontoxic when exposed to
UVand high temperature, are TiO2 and ZnO. Furthermore, NPs
have a large surface area to volume percentage that consequen-
tially results in a significant rise of the efficacy in UV blocking
radiation compared to bulk materials [5, 8, 318, 319]. Recently,
our published study is concerned with the different shapes of
ZnO-NPs (hexagonal and nanorod) synthesized by Fusarium
keratoplasticumA1-3 and Aspergillus nigerG3-1 and character-
ized by FT-IR, TEM, XRD, and DLS. The hexagonal and nano-
rod ZnO-NP shapes exhibit antibacterial and cytotoxicity effects
against normal and cancer cell lines. The safe dose of two NP
shapes is loaded on cotton fabrics to enhance their properties
such as antimicrobial activity against Gram-positive and Gram-
negative bacteria and UV blocking activity [5].

Wastewater Treatment

Water is the greatest vital core in our life. Nowadays, over-
population, lack of aquatic sustainability resources, and pol-
lution are considered the most common problems facing hu-
man essentials. Nanotechnology provides a new strategy for
solving most issues concerning water deficiency and quality
[160]. Recently, nanotechnology-based wastewater treatment
is able to provide high-performance treated water containing
less impurities and less toxic substances and the removal of
heavy metals [71]. Awide variety of nanomaterials are used in

Fig. 5 Prospective mechanisms
for antimicrobial activity for
metallic NPs
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the removal of toxic metals and inorganic and organic pollut-
ants, disinfection, and detection of pathogens [160, 214]. The
photocatalytic activities of Pd composite with ZnO-NPs allow
the removal of pathogenic microbes from wastewater [200,
206]. A variety of metals in nanoscales, such as Ag, CuO,
ZnO, TiO2, and carbon nanotubes, have high potential to be
used in the disinfection of wastewater and water [165, 234,
281]. According to an economic perspective, nanotechnology
is accepted as a new strategy for utilizing the challenges of
energy conservation and water resources. Unfortunately, the
budget of this new nanotechnology should be properly
achieved due to competition besides traditional technologies
of wastewater treatment [262].

Food Industry

In the food industry, NPs applications are represented in
nanoparticulate delivery systems, packaging, and food safety
and security. In the pending future, it is clear that nanotech-
nology will provide specific characteristics in two key areas of
food processing which are food packaging and food additives/
ingredients [3, 320]. Some nanometal oxides, such as ZnO-
NPs, were introduced to polymeric materials used in the man-
ufacture of packaging tissue in order to improve their antimi-
crobial properties [321]. The nanomaterials were used in pack-
aging operations, taking into account food safety. The re-
searchers suggested producing nutritional covers and con-
tainers with the incorporation of ZnO-NPs, which offered an-
tibacterial properties [322, 323]. Consequently, the usage of
packaging containers that are treated by nanomaterials is a
critical step and a good way to keep food fresh for a long time,
reducing contamination and preventing food changes due to
food-borne pathogens. Interestingly, Ag-NPs have the ability
to penetrate and destroy bacterial biofilms which increase bac-
terial resistance during cleaning and decontamination process-
es [62, 324]. According to a biotechnological view, the avail-
ability of these NPs in the food industry would be of benefit in
microbial biocontrol especially for those microbes that survive
via biofilm formation [325].

NPs and Agriculture

Agriculture is the main process for providing human food,
animal feed, desirable products, and necessary basic materials
for different industries such as fibers and leathers and
chemicals for industries such as starch, xylan, and sugars.
Improving the agricultural system will have good effects on
other sectors. Nanotechnology has positive impacts on differ-
ent sectors of agriculture. These advantages include control-
ling plant pathogenic microbes, and NPs can be used as
nanopesticides, nanoinsecticides, and nanofertilizers.

Nanofungicides

Fungi are the most common plant pathogens as compared to
bacteria, viruses, and insects [103, 326]. There are many fun-
gal genera, which are widespread phytopathogens such as
species of Fusarium spp., Phytopthora spp., Phoma spp.,
Aspergillus spp., and Phyllosticta spp. [327]. Plant pathogenic
fungi can be controlled by nanomaterials. Recently, Cu-NPs
and CuO-NPs were synthesized by endophytic Streptomyces
spp. and exhibited antifungal activity against plant pathogenic
fungi represented as Fusarium oxysporum, Alternaria
alternata, Aspergillus niger, and Pythium ultimum [4, 20].

Nanofertilizers

The major problems associated with the agricultural sector are
represented in excessive and continuous use of chemical fer-
tilizers, deficiency of water resources, and decrease of soil
fertility which eventually affect crop production. The applica-
bility of nanofertilizers leads to an increase in nutrient efficien-
cies, reduces soil toxicity, and reduces the negative effects
related with overtreatment of chemical fertilizers. Hence,
nanotechnology has a high efficacy for accomplishing sustain-
able agriculture, exceptionally in growing countries [328].
The presence of crystals or minerals, such as zeolites and
nanoclays, can be practically used as nanofertilizers [329].
In another investigation, Subbarao et al. [330] developed strat-
egies for the slow release of potash fertilizer with coating of
plaster of Paris, wax, etc. It helps in the slow release of fertil-
izers and minimizes fertilizer loss [331, 332].

Nanopesticides

Nanopesticides include a great change of products that consist
of inorganic ingredients (metal oxides) and/or organic ingre-
dients (polymers) in numerous forms (particles, micelles).
Recently, new formulations with nanoparticles have been ac-
complished and used in pesticides. Those metallic nanoparti-
cles have good effectiveness against phytopathogens, pests,
and insects that threaten the agricultural field in various coun-
tries around the world [326, 333–335]. Wang and co-authors
[336] accomplished a new emulsion based on nanoparticles
for used as pesticides against various pests that retard the
agriculture process. On the other hand, Goswami et al. [333]
concluded that the ability of different synthesized NPs, such as
Ag-NPs, Al2O3-NPs, TiO2-NPs, and ZnO-NPs, have the abil-
ity to control diseases in silkworm (Bombyx mori) caused by
Sitophilus oryzae and baculovirus B. mori nuclear polyhedro-
sis virus. Recently, materials that depend on natural resources
have been turned to green alternatives that are used in the
formation of many types of promising and suitable nanopar-
ticles to control many pests in various fields [334]. Recently,
our published study revealed that, the ability of Se-NPs
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synthesized by Penicillium corylophilum to control of 3rd in-
star of malaria vector Anopheles stephensi with low
LC50 value (25.0 ppm) [337]

Bioremediation

Nowadays, biotreatment of pollutants such as dyes including
azo dyes, acid dyes, cationic dyes, and others has received
more attention due to their highly persistent and xenobiotic
nature. Once these pollutants are disposed in water bodies
such as rivers, lakes, and other water streams, this leads to
an increase in water pollution and alteration in aquatic life
[338]. NPs represent the green approach for treatment of these
pollutants. Various studies reported the evaluation of the cat-
alytic characteristic of some nanomaterials in reducing the
hazards of environmental materials by using biological treat-
ment processes combined with nanoscience [339, 340].
Interestingly, nanoscale silver exhibits good catalytic efficacy
in decolorization of some organic dyes, which indicates that
the nanocatalyst has an industrial role in the degradation pro-
cess of organic dyes due to high efficiency and reaction rate
[338]. Both Au-NPs and Ag-NPs act as catalysts in the deg-
radation process of dyes, which increases the rate of reaction
and, hence, reduces the time needed for the dye-removing
process [341, 342]. Bastus et al. [343] postulated that the
efficacy of NPs in dye reduction consists of two steps: first,
inclusion of the accumulation of borohydride electrons on the
surface of NPs, while the second step involved the diffusion of
organic dye through its molecules on the surface of NPs and
their subsequent reduction induced by superficial electrons.
Reaction receipts are located on the surface of the surrounding
nanocatalyst consequent to the properties of the capping mol-
ecules affected and the presence of reaction kinetics. Bhargava
et al. [344] hypothesized that the surface proteins of the Au-
NPs formed by the fungus Cladosporium oxysporum AJP03
may improve the process of adsorption of organic dyes (rho-
damine B) such as amino acids that are attached to aromatic
rings to form hydrophobic spaces that can improve the inter-
action with the dye by the nanocatalyst.

Conclusion and Future Challenges

Recently, metals and metal oxide NPs are widely synthesized for
different biotechnological applications such as in biomedical,
agricultural, industrial sectors and treatment of environmental
pollutants. The green synthesis of NPs using biological entities
such as bacteria, actinomycetes, fungi, algae, and plants has been
developed as a significant part of biotechnology. The synthesis of
NPs using the green approach has different advantages such as
ease of synthesis and being cost-effective, eco-friendly, and easy
to scale-up, hence overcoming the disadvantages of conventional
methods. Therefore, increasing knowledge about green

chemistry as greener routes for NPs synthesis opens the way
for numerous biotechnological applications. Fundamentally, the
green production of metal/metal oxide NPs using green methods
has different uses, such as for antimicrobial and antitumor activ-
ity, controlling of different phytopathogens, the bioremediation
process, the food industry, the textile industry, and wastewater
treatment.

The major challenges that were observed during the green
synthesis of NPs can be summarized as follows:

& The synthesis of a specific size and shape by the green
method requires more optimization studies. Also, the pro-
duction of NPs with specific physicochemical characteris-
tics requires more studies especially for biomedical
applications.

& The mechanistic aspect used for the fabrication of NPs by
green methods requires more investigation.

& The metabolites involved in biological biomass filtrate
should be completely analyzed to detect the role of each
compound in NPs biofabrication.

& Scaling-up production of NPs by green methods is consid-
ered another challenge encountered in its commercialization.

& The stability of NPs with high yields correlated with op-
timizing factors such as pH, salt concentration, contact
time, and temperature. These factors differ according to
biological entities used.
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