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Abstract
Przewalski’s gazelle (Procapra przewalskii) is an endangered ungulate in the Qinghai–Tibet Plateau of China. This study aimed
to determine the influence of selenium (Se) deprivation in the natural habitat on the immune index and antioxidant capacity of
P. przewalskii. Samples of soil and forage were collected from affected and healthy areas, and animal tissues were collected from
affected and healthy P. przewalskii. The samples were used for measuring mineral content and for hematological and biochemical
analyses. The results showed that Se concentrations were significantly lower in the soil and mixed forage samples from the
affected area than in those from the healthy area. The Se concentrations were significantly lower in blood and hair samples from
affected P. przewalskii than in those from healthy P. przewalskii. Meanwhile, hemoglobin, packed cell volume, and platelet count
of affected P. przewalskiiwere significantly lower than those of healthy P. przewalskii. The serum level of glutathione peroxidase
and total antioxidant capacity were significantly lower and the serum levels of malondialdehyde, total nitric oxide synthase, and
lipid peroxide were significantly higher in affected P. przewalskii. The serum levels of interleukin (IL)-1β, IL-2, tumor necrosis
factor-alpha, immunoglobulin A (IgA), and IgG significantly decreased and the serum levels of IL-6 and IgM significantly
reduced in affected P. przewalskii compared with healthy P. przewalskii. Therefore, the findings indicated that Se deprivation in
soil and forage caused oxidative stress damage and posed a serious threat to the immune function of P. przewalskii.
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Introduction

The Przewalski’s gazelle (Procapra przewalskii) is endemic
and a well-known endangered ungulate in the Qinghai–Tibet
Plateau of China. It belongs to Artiodactyla (order), Bovidae
(family), Antilopinae (subfamily), and Procapra (genus) [1,
2]. Historically, the species was widely distributed throughout
the provinces or autonomous regions of Tibet, Inner
Mongolia, Ningxia, Qinghai, Xinjiang, and Gansu [3]. Its
population has decreased sharply, and its range has shrunk
due to habitat fragmentation, resource competition, pasture
fencing, excessive poaching, and disorder in the last century.

Such that this gazelle is found only in the deserts around the
Qinghai Lake on the Tibetan plateau; fewer than 300 remained
from 1986 to 1994 [4–7]. Of China’s endemic mammals, the
P. przewalskii has become the least populous species. Hence,
it has been classified as endangered by the International Union
for Conservation of Nature Red List of Threatened Species
and has been listed as a category I species under the Wild
Animal Protection Law in China [6, 7].

Selenium (Se) is an essential trace element in wildlife and
livestock. It occurs in selenoproteins in the form of
selenocysteine, which is involved in antioxidant activity, im-
mune modulation, endocrine function, bone metabolism, io-
dine metabolism, and reproductive processes [8]. The Qinghai
Lake Basin of Tibetan Plateau is the only existing natural
habitat of P. przewalskii, with the total population size esti-
mated at 1860 individuals in the 2017 survey. Previous studies
reported Se deprivation–related illnesses of livestock in the
Qinghai Lake Basin. Li et al. (2018) found that the Se con-
centrations in the blood, liver, and muscles of Tibetan sheep
were significantly lower than the reference values of healthy
animals in the Hudong area of the Qinghai Lake Basin
(P < 0.01) [9]. Huo et al. (2019) reported an illness related to
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the Se-deficient pasture in yaks in the Hudong area of the
Qinghai Lake. The main signs of the illness included indiges-
tion, emaciation, diarrhea, loss of appetite, allotriophagia,
growth retardation, and fecundity decline. The most serious
case was abortion or sudden death. The pathological symp-
toms included degeneration and necrosis of skeletal muscle,
myocardium, and liver tissue. This sickness was controlled by
sodium selenite [10]. Shen et al. (2018) reported that the nat-
ural habitat of P. przewalskii in the upper reaches of the Buha
River area was Se deprived; the Se concentrations in the
mixed forage were significantly lower compared with the ref-
erence values of ruminants (P < 0.01) [11]. However, to date,
no study has investigated the influence of Se-deficient envi-
ronment on the P. przewalskii.

The objective of this study was to explore the effects of Se-
deficient pasture on the immune index and antioxidant capac-
ity of P. przewalskii, thus providing the scientific basis for
protecting the remaining P. przewalskii populations.

Material and Methods

Study Site

This study was conducted in the Kuaierma area (98° 42′–98°
50′ E, 37° 21′–37° 28′N) and the Bird Island area (99° 44′–99°
52′ E, 36° 59′–37° 01′ N). Kuaierma is located in the remote
upper reaches of the Buha River. The average Se concentra-
tions in the soil and forage are (0.033 ± 0.011) μg/g and (0.029
± 0.005) μg/g, respectively, based on the preliminary analysis.
This site was chosen as an affected area. The elevations of this
area range from 3200 to 3800 m [12]. The climate is charac-
terized by dry and cold winters, strong winds, strong ultraviolet
radiation, and a short frost-free period, with the annual precip-
itation of 350–450 mm. The average atmospheric temperature
is 0.3–1.1 °C, and the temperature extremes are −40 and 25 °C
[13, 14]. Themain grassland species include shining speargrass
(Achnatherum splendens), wheatgrass (Agropyron cristatum),
fringed sagebrush (Artemisia frigida), drilled wormwood
(Artemisia anethifolia), moorcraft sedge (Carex mooscroftii),
Chinese iris (Iris lactea), Kokono orinus (Orinus kokonorica),
wood betony (Pedicularis resupinata), and Chinese stellera
(Stellera chamaejasme) [12, 14]. Most of the plants are herba-
ceous and good food resources for P. przewalskii.

Experimental Animals

Sample Collections

Samples from soils, forages, and animals were collected in
June 2018 in the Kuaierma area (affected pasture) and Bird
Island area (healthy pasture). Ten soil samples were taken
from the surface layer (0–30 cm) of randomly distributed

locations in each area using a 30-mm-diameter cylindrical
corer. Each soil sample comprised four soil cores collected
at one site, each site with an interval of 500 m. Twenty mixed
forage samples were collected randomly from the same loca-
tions in quadrants of l × l m2. The forage samples were cut 1–
2 cm above the ground level to reduce soil contamination. The
mixed forage and soil samples were dried at 20–25 °C until a
constant weight was achieved, crushed, and passed through a
2-mm sieve; a 0.075-mm sieve was used to remove silver
sand. The soil and mixed pasture samples were kept in a vac-
uum desiccator until chemical analysis.

The use of P. przewalskii in these experiments was approved
by the Institutional Animal Care and Use Committee of
Southwest University of Science and Technology in China
(Project A00865) and guided by acceptable practices outlined
in the Guide for the Care and Use of Wildlife Animals in
Wildlife Research and Teaching Consortium (2012).
P. przewalskii was caught using a Model-l50 anesthesia gun
with ketamine hydrochloride (Anesthetic Medicinal Fujian
Gutian Pharmaceutical Co., Ltd., Fujian, China) between 17
and 20 o’clock on a sunny day in June. When the animal was
at a distance of 20–25 m, the ketamine hydrochloride injection
was continuously fired from a tranquilizer gun. The animal was
basically anesthetized when five shots (30 mg per shot) were
continuously emitted within 3 min, and the anesthesia was
maintained for about 20 min. Seven P. przewalskii were select-
ed from the Kuaierma area and Bird Island area, respectively.
The hair samples of selected P. przewalskiiwere taken from the
animal necks. Each sample was washed with acetone, rinsed
five times with deionized water, and then kept on a silica gel in
a desiccator until analyses. The blood samples were obtained
from the jugular vein using a vacuum blood collection tube
without anticoagulant for biochemical analysis and a vacuum
blood collection tube containing 1% sodium heparin as an an-
ticoagulant for hematological and trace element analyses. The
serum samples were separated by centrifugation (at 1200×g for
5 min) and stored in plastic vials at − 20 °C for subsequent
experiments. The selected P. przewalskii were released after
the samples were collected. No P. przewalskii was injured or
died during the entire sampling process.

Mineral Content Analysis

The sample solvent was prepared using a microwave digestion
system (Touchwin4.0, APL Instrument Co., Ltd., Chengdu,
China). The soil samples were heated in a microwave with a
mixture of nitric acid (HNO3), hydrofluoric acid (HF), and
perchloric acid (HClO4) (5:2:5) to dissolve the sample. The
forage and animal tissues (hair andwhole blood) were dissolved
in HNO3 and HClO4 (4:1) mixture by microwave heating [15].

The concentrations of copper (Cu), iron (Fe), zinc (Zn), and
manganese (Mn) in the samples of soil, forage, and animal
tissues were measured using an AA-7000 atomic absorption
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spectrophotometer (Shimadzu Corporation, Japan). The con-
centrations of Se and molybdenum (Mo) were determined
using a flameless atomic absorption spectrophotometer
(Perkin-Elmer 3030 graphite furnace with a Zeeman back-
ground correction). It was difficult to accurately determine
Mo concentrations in samples due to “memory” or carryover
effects. Therefore, two blanks (deionized water) were run after
each sample was tested to reduce memory effects. The accu-
racy of the analytical values was checked by referring to the
certified values of elements in the National Institute of
Standards and Technology Standard Reference Material bo-
vine liver SRM 1577a.

Hematological Examination

An automatic animal hematology analyzer (BC2800Vet,
Mindray Biomedical Electronics Co., Ltd., Shenzhen, China)
was used to measure routine hematological indexes in the
whole blood following the manufacturer’s instructions. These
routine blood indexes included hemoglobin (Hb), red blood cell
count (RBC), packed cell volume (PCV), mean corpuscular
hemoglobin (MCH), mean corpuscular volume (MCV), mean
corpuscular hemoglobin concentration (MCHC), white blood
cell count (WBC), and platelet count (PLT).

Biochemical Examination

The serum antioxidant capacity and immune index were de-
termined using diagnostic kits from the Jianchen
Bioengineering Institute (Nanjing, China) following the man-
ufacturer’s protocols. The activities of superoxide dismutase
(SOD) and glutathione peroxidase (GSH-Px) in the serum
were measured by the xanthine oxidase method and 5,5′-
dithio-2-dinitrobenzoicacid chromogenic reaction, respective-
ly. The serum catalase (CAT) and total antioxidant capacity (T-
AOC) assays were based on ammonium molybdate colorim-
etry. The serum malondialdehyde (MDA) content was mea-
sured with a thiobarbituric acid chromatometer. The serum
level of nitric oxide (NO) was determined by the nitric acid
reduction method. The serum total nitric oxide synthase (T-
NOS) activity was assayed according to the NOS-catalyzed L-
Arg method. The serum levels of lipid peroxide (LPO), inter-
leukin (IL)-1β, IL-2, interleukin 6 (IL-6), tumor necrosis
factor-alpha (TNF-α), immunoglobulin (Ig)A, IgG, and IgM
were quantitatively determined using enzyme-linked immu-
nosorbent assay.

Statistical Analysis

Data were statistically analyzed using the Statistical Package
for the Social Sciences (SPSS, version 23.0, Inc., Chicago,
Illinois, USA) software. They were expressed as mean ± stan-
dard deviation. The differences between the two groups were

analyzed using the Student’s t test, with the threshold of P =
0.05 (*P < 0.05, **P < 0.01).

Results

Mineral Element Concentrations in Soil and Forage

The concentrations of mineral elements in soil and forage are
shown in Table 1. The Se concentrations in soil and mixed
forage from the affected pastoral grassland were significantly
lower than those from the healthy pasture (P < 0.01). The con-
centrations of Cu and Mo in the soil and mixed forage from
the affected pastoral grassland were significantly lower than
those from the healthy pasture (P < 0.05). No significant dif-
ference was found in the concentrations of other elements.

Mineral Element Concentrations in Animal Tissues

The concentrations of mineral elements in animal tissues are
shown in Table 2. The Se concentrations in the blood and hair
from affected P. przewalskii were significantly lower than
those from healthy P. przewalskii (P < 0.01). The Fe concen-
trations in the blood from affected P. przewalskii were signif-
icantly lower than those from healthy P. przewalskii
(P < 0.05).

Hematological Results of P. przewalskii

The hematological values of P. przewalskii are shown in
Table 3. Hb, PCV, and PLT of affected P. przewalskii were
significantly lower than those of healthy P. przewalskii
(P < 0.01). RBC and MCV of affected P. przewalskii were
significantly lower than those of healthy P. przewalskii
(P < 0.05). No significant difference was observed in MCH,
MCHC, and WBC.

Antioxidant Capacity of P. przewalskii

The serum antioxidant capacity of P. przewalskii in the affect-
ed and healthy areas is presented in Table 4. The serum levels
of GSH-PX and T-AOC in affected P. przewalskii were sig-
nificantly lower than those in the healthy P. przewalskii
(P < 0.01). The serum SOD and CAT activities in affected
P. przewalskii were significantly lower than those in healthy
P. przewalskii (P < 0.05). The serum levels of MDA, T-NOS,
and LPO in affected P. przewalskii were significantly higher
than those in healthy P. przewalskii (P < 0.01). The serum
levels of NO in affected P. przewalskii were significantly
higher than those in healthy P. przewalskii (P < 0.05).
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Immune Function of P. przewalskii

Table 5 shows significantly lower levels of IL-1β, IL-2,
TNF-α, IgA, and IgG in the serum samples from affected
P. przewalskii compared with healthy P. przewalskii
(P < 0.01). The serum levels of IL-6 and IgM in affected
P. przewalskii were significantly lower than those in healthy
P. przewalskii (P < 0.05).

Discussion

The alpine meadow ecosystem of the Qinghai–Tibet Plateau
has an important gene pool of wildlife and plants. The Buha
River is the largest river in the Qinghai Lake; its upper reach is
one of the main natural habitats of P. przewalskii. Mineral
elements play an important role in maintaining the evolution,
development, and reproduction of livestock and wildlife
[16–18]. In this study, the Se concentrations in the soil and
mixed forage from the Kuaierma area were significantly lower
than those from the Bird Island area (P < 0.01). The contents
of Cu and Mo in the soil and mixed forage from the Kuaierma
area were significantly lower than those from the Bird Island

area (P < 0.05). In general, the Se contents in the soil and
forage lower than 0.1 μg/g DM should be insufficient. Also,
the content lower than 0.040 μg/g and 0.050 μg/g DM in the
soil and forage separately should be considered as serious Se
deficiency for ruminants [11, 19]. The mineral content in the
blood and hair is the most direct indicator of the nutritional
status of animals [20, 21]. At the same time, the Se content in
the blood and hair of P. przewalskii grazing in the Kuerma
area is also significantly lower than that in the Bird Island area
and that in the healthy Tibetan yaks, camels, and sheep
[21–24]. The ability of a feed to meet animal requirements
for Cu depends more on the absorption of Cu than on the
concentration of Cu that the feed contains. This is because
Mo first forms thiomolybdate with sulfur and then forms a
Cu-containing protein complex with Cu in the rumen, which
is not conducive to the absorption of Cu [14]. Normally the
requirements for ruminants were met by a Cu content of 7–
8 μg/g DM in the forage. However, if ruminants are exposed
to a containing no Mo, the Cu content of 1 μg/g DM in the
mixed forage could meet the requirements of ruminants [11,
12]. The Cu requirement of P. przewalskii should be lower
than normal due to the relatively low Mo content of forage
in this study area.

Table 1 Mineral contents in soil and forage (μg/g)

Element Soil Forage

Affected area Healthy area Affected area Healthy area

Cu 5.17 ± 1.54* 6.28 ± 1.73 3.39 ± 0.84* 4.63 ± 0.97

Mn 263.84 ± 37.41 254.39 ± 45.27 65.32 ± 14.26 62.61 ± 17.54

Fe 7648.23 ± 756.39 7942.67 ± 638.64 739.47 ± 185.69 768.45 ± 213.85

Zn 39.57 ± 6.52 43.28 ± 7.35 35.21 ± 7.92 38.50 ± 9.78

Se 0.032 ± 0.0061** 0.093 ± 0.012 0.029 ± 0.0056** 0.094 ± 0.015

Mo 1.67 ± 0.38* 1.92 ± 0.45 1.58 ± 0.24* 1.92 ± 0.60

Cu, copper; Mn, manganese; Fe, iron; Zn, zinc; Se, selenium; Mo, molybdenum
* Significant differences at the level of P < 0.05
**Highly significant differences at the level of P < 0.01; the same below

Table 2 Mineral contents in blood and hair (μg/g)

Element Blood Hair

Affected animals Healthy animals Affected animals Healthy animals

Cu 0.79 ± 0.15 0.76 ± 0.12 4.93 ± 0.35 5.21 ± 0.39

Mn 0.51 ± 0.067 0.55 ± 0.064 5.67 ± 0.42 5.80 ± 0.36

Fe 526.43 ± 51.28* 598.57 ± 63.22 336.54 ± 27.69 354.79 ± 22.81

Zn 8.27 ± 1.85 7.49 ± 1.32 124.82 ± 33.32 126.67 ± 27.14

Se 0.041 ± 0.0025** 0.13 ± 0.011 0.052 ± 0.0010** 0.14 ± 0.026

Mo 0.33 ± 0.037 0.35 ± 0.049 0.49 ± 0.11 0.53 ± 0.15

Cu, copper; Mn, manganese; Fe, iron; Zn, zinc; Se, selenium; Mo, molybdenum
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Se is an essential nutrient for animals and performs numer-
ous biological functions in organisms [25–27]. Some reports
showed a significant relationship between Se deficiency and
anemia, which was associated with an increased generation of
reactive oxygen species and exposure of erythrocytes to a high
degree of oxidative stress [28]. Hematological parameters are
the diagnostic indicators used for assessing the degree of ane-
mia in animals [29, 30]. In the present study, Hb, PCV, RBC,
and MCV in the affected P. przewalskii significantly de-
creased, indicating that the affectedP. przewalskii had subclin-
ical anemia. Se is an essential component of GSH-Px, an
enzyme that catalyzes the reduction of hydrogen peroxide
and different organic peroxides to protect cells against perox-
idation and to control the concentrations of intracellular per-
oxides [31]. Thus, the subclinical anemia in Se-deficient
P. przewalskii was possibly explained by a much lower activ-
ity of GSH-Px in erythrocytes, which caused increased lipid
peroxidation ofmembrane lipids, denaturation of hemoglobin,
decreased osmotic resistance of erythrocytes, and ultimately
chronic anemia [32–35]. Moreover, recent studies also

showed inefficient erythropoiesis with defective erythroid dif-
ferentiation and maturation in Se-deficient animals [35–37].

The main cause of oxidative stress is the excessive accu-
mulation of free radicals in an animal organism, which may
cause impairment of cell structure and organization [25, 38].
The free radicals can be scavenged by antioxidant compounds
[39]. The antioxidant system is the defense system for scav-
enging free radicals, comprising non-enzymatic and enzymat-
ic systems. The non-enzymatic system includes mainly vita-
min E, vitamin C, cysteine, glutathione (GSH), Cu, Fe, Zn,
and Se. The enzymatic system consists of SOD, GSH-Px,
CAT, and other antioxidant enzymes [40–43]. SOD facilitates
efficient dismutation of superoxide radical or hydrogen ion
into hydrogen peroxide, which is scavenged by GSH-Px and
CAT [44, 45]. GSH-Px plays an important role in reducing
organic hydroperoxides such as lipid hydroperoxides to their
corresponding alcohols or reducing free hydrogen peroxide to
water [45]. The T-AOC is the comprehensive indicator for
evaluating levels of antioxidant enzymes and the non-
enzymatic system in animal organisms. It can reflect the com-
pensatory capacity to external stimuli and the metabolism ca-
pacity of free radicals in organisms [44]. Decreased function
of the T-AOC defense system cannot keep the antioxidant
system active, leading to the abundance of lipid peroxides
and free radicals. MDA is the most common product of lipid
peroxidation, and its level can directly reflect the degree of
lipid oxidative injury [44–46]. The expression level of NOS
increases and a large amount of NO is released when the
animal remains in an Se-deprived environment for a long
time; the change in NO metabolism causes oxidative stress
[47, 48]. In the present study, serum biochemical assays indi-
cated that Se deficiency caused a decrease in the levels of
GSH-Px, T-AOC, CAT, and SOD and an increase in the levels
of MDA, LPO, T-NOS, and NO in the Se-deficient
P. przewalskii, indicating that Se deprivation induced the dys-
function of the antioxidant system, disrupted the relative bal-
ance between the oxidant and antioxidant systems, and caused
severe oxidative stress in P. przewalskii.

Table 3 Hematological parameters in Procapra przewalskii

Hematological parameters Affected animals Healthy animals

Hb (g/L) 145.31 ± 6.47** 185.39 ± 8.35

RBC (× 1012/L) 9.46 ± 0.36* 11.93 ± 0.42

PCV (%) 44.67 ± 1.72** 58.15 ± 1.96

MCV (fl) 47.22 ± 0.58* 48.74 ± 0.41

MCH (pg) 15.36 ± 0.49 15.54 ± 0.23

MCHC (g/L) 326.10 ± 15.28 318.84 ± 9.65

WBC (109/L) 12.77 ± 0.33 11.39 ± 2.52

PLT (× 109/L) 413.59 ± 14.62** 465.48 ± 27.35

Hb, hemoglobin; RBC, red blood cell; PCV, packed cell volume; MCV,
mean corpuscular volume;MCH, mean corpuscular hemoglobin;MCHC,
mean corpuscular hemoglobin concentration; WBC, white blood cell;
PLT, blood platelet

Table 4 Serum antioxidant indexes in Procapra przewalskii

Item Affected animals Healthy animals

GSH-PX (U/mL) 37.49 ± 4.25** 68.47 ± 6.42

SOD (U/mL) 76.25 ± 8.33* 93.52 ± 13.55

CAT (U/mL) 3.83 ± 0.65* 5.29 ± 0.94

T-AOC (U/mL) 3.94 ± 0.72** 7.48 ± 1.36

MDA (nmol/mL) 12.68 ± 2.51 3.58 ± 1.17**

T-NOS (U/mL) 61.50 ± 8.25 37.52 ± 3.64**

NO (μmol/mL) 8.56 ± 1.79 5.43 ± 1.05*

LPO (mmol/mL) 3.25 ± 0.54 1.47 ± 0.26**

GSH-PX, glutathione peroxidase; SOD, superoxide dismutase; CAT, cat-
alase; T-AOC, total antioxidant capacity;MDA, malondialdehyde; T-NOS,
total nitric oxide synthase; NO, nitric oxide; LPO, lipid peroxide

Table 5 Serum immune indexes in Procapra przewalskii

Item Affected animals Healthy animals

IL-1β (ng/L) 67.35 ± 8.58** 114.82 ± 23.62

IL-2 (ng/L) 153.69 ± 24.76** 269.50 ± 38.13

IL-6 (ng/L) 362.85 ± 44.85* 438.74 ± 67.39

TNF-α (ng/L) 486.67 ± 52.64** 626.98 ± 73.50

IgA (g/L) 0.68 ± 0.075** 0.91 ± 0.11

IgG (g/L) 7.39 ± 0.61** 11.26 ± 0.84

IgM (g/L) 2.97 ± 0.25* 3.45 ± 0.29

IL-1β, interleukin-1β; IL-2, interleukin-2; IL-6, interleukin 6; TNF-α,
tumor necrosis factor-alpha; IgA, immunoglobulin A; IgG, immunoglob-
ulin G; IgM, immunoglobulin M
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The immune system of animals is a defense system in-
volved in immune response and immune function, which
maintains the relative stability of the internal environment,
including the adaptive and innate immune systems.
Selenomethionine and selenocysteine are present in tissues
and cells of the immune system, regulating immune functions
in vivo through complex biological processes [49, 50]. When
the animal is in a state of Se deprivation, the proliferation and
differentiation of T and B lymphocytes is inhibited. The de-
crease in the levels of lymphokines leads to a decrease in the
killing ability of natural killer cells and Tcells in vitro, and the
immune function of the body is significantly reduced [51, 52].
IL-1β is a polypeptide adjustment factor produced by mono-
nuclear macrophages, which has an immunoregulatory func-
tion [53, 54]. IL-2 is an important growth factor in the devel-
opment of T cells. It is produced by activated T cells and
combines with the IL-2 receptor on the surface of T lympho-
cytes to stimulate T cell proliferation further [55, 56]. IL-6 is a
lymphatic factor produced by activated Tcells and fibroblasts.
It can stimulate B cell precursor cells to produce antibodies
and enhance the function of natural killer cells [55–57]. In the
present study, the serum levels of IL-1β, IL-2, IL-6, and
TNF-α were lower in the Se-deficient P. przewalskii, suggest-
ing that Se deprivation weakened the immune function of
P. przewalskii. IgG is produced mainly by plasma cells in
the spleen and lymph nodes and has immune activity with
antiviral and antibacterial effects [58]. Serotype IgA is the
second most abundant immunoglobulin present in the blood;
it can effectively engage polymorphonuclear cells via the in-
teraction with the FcαRI receptor. The ligation of FcαRI by
IgA-containing immune complexes can trigger antibody-
dependent cell-mediated cytotoxicity by neutrophils, degran-
ulation of eosinophils, and phagocytosis by monocytes and
macrophages. Insufficient Se intake results in the decreased
synthesis of immunoglobulins in animals [58–60]. Ashley
et al. found that Se deprivation decreased the content of IgM
in the colostrum of sows [61]. Quan et al. demonstrated that Se
deprivation induced lower levels of IgA, IgG, and IgM in
Keshan patients than in normal people [62]. Wang et al. re-
ported that serum levels of IgG, IgA, and IgM significantly
decreased in Se-deficient calves [63]. The present study found
that the serum levels of IgA, IgG, and IgM significantly de-
creased in the Se-deficient P. przewalskii, indicating that Se
deficiency led to insufficient immunoglobulin in
P. przewalskii.

In conclusion, the findings indicated that Se deficiency in
the soil and forage weakened antioxidant capacity and in-
duced oxidative stress damage. It also significantly affected
the levels of cytokines, thus posing a serious threat to the
immune function of P. przewalskii. Therefore, to protect the
remaining P. przewalskii populations and maintain the integ-
rity of their ecological environment, it is extremely important
to increase the Se nutrition of mixed pastures by applying Se-

containing fertilizers and reseeding and increasing the propor-
tion of plants with high Se concentration. Also, removing
fences, establishing habitat corridors, expanding habitats,
and increasing feeding areas may be beneficial to maintain
the Se balance of P. przewalskii.
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