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Abstract
Zinc, Pb, Cd,Mn, Fe, Cr, and Cu levels in duckmeat from large-scale farms have been found to be significantly higher than those
from free-grazing duck farms. Zinc, Co, Mn, Cr, and Cu contamination levels in duck liver from large-scale farms were
significantly higher than those from free-grazing farms; only Cd in duck liver from free-grazing farms was higher than in liver
samples from large-scale farms at P < 0.05. Lead, Cd, Fe, and Cr levels in duck intestine samples from free-grazing farms were
higher than large-scale farms atP < 0.001.Moreover, the average concentrations of Pb in duckmeat and liver samples from large-
scale farms and Cd levels in duck liver samples from free-grazing farm also exceeded the FAO/WHO and Codex Alimentarius
limits by 100% (55/55), 100% (54/54), and 67.6% (23/34), respectively. PCA analysis showed a strong positive relationship
between the eight metals in meat, liver, and intestine was > 0.69, > 0.69, and > 0.72, in order. The relationship of the liver
combined with the intestine was > 0.65. This study indicated that consumers may incur health risks from long-term consumption
of duck due to high Pb and Cd concentrations from both types of farms, particularly from large-scale duck farms.
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Introduction

Heavy metals are dangerous environmental pollutants, partic-
ularly in areas with high anthropogenic pressure. In the past,
the increase in heavy metal pollution in the environment has
been associated with anthropogenic activities in the form of
effluent and emissions from mines and smelters. Mercury
(Hg), lead (Pb), cadmium (Cd), and arsenic (As) have been
determined to be toxic metals, depending on the manner of

dosage [1]. Moreover, even trace amounts of heavy metals in
plants, the atmosphere, soil, and water can cause serious ef-
fects to all biota. Heavy metals are not easily biodegradable
and can accumulate in human and animal organs [2, 3]. Lead
reduces the growth rate of birds, causes oxidative damage to
DNA, and causes reproductive effects such as reduced egg
production, leading to growth retardation and increased mor-
tality [4, 5]. In laboratory settings, Cd has been shown to cause
kidney toxicity, metallothionein induction, altered avoidance
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behavior, disrupted calcium metabolism, decreased food intake,
decreased growth rates, reduced egg production, thin eggshells in
response to normal changes in the body, and organmasses during
the reproductive time in female elders [6–9]. Female poultry
could take up heavy metal from different sources and release
these metals into their organ and eggs [10–13]. Meanwhile,
ducks are vulnerable to the accumulation of toxic through con-
taminated feeds. Ducks can serve as a useful bioindicator species
for environmental monitoring at higher trophic level of the food
chain [14, 15]. Moreover, acute and chronic exposure in duck
could be related to environmental contaminants, since they are
fed a wide variety of feedstocks [16, 17].

Free-grazing ducks play a major role in the agricultural
economy of Eastern Asia in terms of egg and meat production
[18]. Most of Thailand’s intensive poultry farming is clustered
in the central region of the country [19]. In particular, duck
production is concentrated along the Chao Phraya River,
which also supports multiple rice production cycles per year
[20]. Free-grazing ducks are common in South East Asia,
particularly in Thailand, where double-crops of rice provide
excellent year-round foraging for ducks. They are released
into the paddy fields after harvest and feed on leftover rice
grains, wild rice, insects, and aquatic animals [18]. In
Thailand, the number of ducks was estimated at 26,287,094
animals, whereas only 21.9% were in free-grazing duck pro-
duction in 2017 [21]. According to the Bureau of Product
Standards and Quality Systems, National Bureau of
Agricultural Commodity and Food Standards, Ministry of
Agriculture and Cooperatives (2016), on the other hand, the
average per capita consumption of duck meat reached 0.38 g/
day. However, no available information on the average per
capita consumption of duck liver and intestines [22].

Free-grazing duck farms were one type of private farm
having a high potential for chemical exposure from the envi-
ronment, particularly from heavy metals and insecticides
[23–25]. The contamination in this farm type was found to
be higher than other systems since free-grazing entails direct
contact with the outdoor environment. In addition, between
free-range and broiler chickens, free-range chickens accumu-
late significantly higher concentrations of Pb and Cd in the
liver than broiler chickens [26]. Moreover, home-produced
eggs from chickens foraging on soil contaminated with envi-
ronmental pollution accumulate pollutants, such as dioxins
and Pb, which showed higher concentrations than commer-
cially produced eggs [27]. However, this hypothesis has never
been proven in the situation of free-grazing ducks and large-
scale duck farm systems in Thailand.

The aim of this study was to compare the contamination
levels of heavy metals including zinc (Zn), Pb, Cd, cobalt
(Co), manganese (Mn), iron (Fe), chromium (Cr), and copper
(Cu) in duck meat, liver, and intestine samples from the two
types of duck farming systems to find the correlation of metals
in organs and to evaluate their attendant health risks.

Materials and Methods

Sample Collection

Thirty-five duck Anas platyrhynchos f. domestica samples
each of meat, liver, and intestine were collected from seven
free-grazing duck farms in Sing Buri, Nakhon Pathom,
Pathum Thani, Ayutthaya, Kanchanaburi, and Prachuap
Khiri Khan provinces, Thailand. In addition, 55 samples of
duck meat, liver, and intestine were collected from 4 large-
scale farms (> 5000 ducks) in Nakhon Pathom province,
Thailand. All ducks were killed and slaughtered in a slaugh-
terhouse in Nakhon Pathom province between August and
December 2015, after which they were recruited for immedi-
ate analysis.

Heavy Metal Analysis

Duck meat, liver, and intestine samples were cleaned with
18.2 MΩ distilled water (Ultrapure Water Purification
System, Thermo Scientific™) and then kept at − 20 °C in a
freezer (Medium Stainless Steel LLOYD Chest Freezer-Hard
Top-LHT565DD). Afterward, they were dried in an oven
(Osworld Scientific Equipment Pvt. Ltd) at 60 °C for 24 h
[28] and manipulated according to the standard method of
analysis following the AOAC [29]. Briefly, 1 g of all the
coalesced duckmeat, liver, and intestine samples was digested
with nitric acid (nitric acid 65%, Grade ISO, MERCK), hy-
drogen peroxide (hydrogen peroxide 30%, Grade ISO,
MERCK), and sulfuric acid (sulfuric acid 98%, AR Grade,
Scitrader) at 5:5:1, then heated on a stirring hotplate
(Thermo Scientific™ Explosion-Proof SAFE-T SHP9) at
150 °C until all sample solutions became yellowish. After
cooling, the sample solutions were filtrated and topped up to
25 ml, then diluted with 20% nitric acid before being analyzed
using inductively coupled plasma optical emission spectrom-
etry (ICP-OES), ULTIMA2, Jobin Yvon Holiba, Italy, ICP
conditions for generator; solid-state, 40.68 MHz, water-
cooled, and continuous wavelength coverage from 120 to
800 nm with far-UVoption for improved sensitivity for halo-
gen analysis or alternative wavelengths.

Method Performance

The spiked used the ICP multi-element standard solution TV
1000μgmL−1 each in 1mol L−1 HNO3 (As, Al, B, Ba, Bi, Ca,
Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Tl,
and Zn). The concentrations of recoveredmetals were 0.2, 0.5,
1, 5, 20, and 50 mg kg−1 in all samples with four replications
for each spike level, which showed the following: Zn, percent-
age recovery = 89.8; Pb, percentage recovery = 84.2; Cd, per-
centage recovery = 102.1; Co, percentage recovery = 101.5;
Mn, percentage recovery = 98.8; Fe, percentage recovery =
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85.4; Cr, percentage recovery = 107; Cu, percentage recov-
ery = 95.7. The relative standard deviation (RSD) in the rep-
licates was always < 5%, while the calibration level ranges
were 0.5, 1, 5, and 10 mL L−1. The analytical detection of
limits (LOD) and limit of quantitation (LOQ) were Zn =
0.002409 mg L−1; 0.00439 mg L−1, Pb = 0.005429 mg L−1;
0.0107 mL L−1, Cd = 0.001348 mg L−1; 0.002454 mg L−1,
Co = 0.001229 mg L−1 ; 0.002664 mg L−1 , Mn =
0.006472 mg L−1; 0.00895 mg L−1, Fe = 0.00583 mg L−1;
0.0094 mL L−1, Cr = 0.00145 mg L−1; 0.003032 mg L−1,
and Cu = 0.019483 mg L−1; 0.02481 mg L−1, respectively.

Statistical Analysis

All the data on the metal contaminants was tested for normal
distribution by using the Shapiro-Wilk test, after which it was
analyzed and fitted to the non-parametric model. The metal
concentration data was analyzed by using the Mann-Whitney
U test to compare the differences between means by using
GraphPad Prism Statistical 5.0, 2012, GraphPad Software,
Institute. Principle component analysis (PCA) was conducted
to assess the main characteristics of the relationship between
the metal levels in tissue by using R studio 7.6 build, R-tools
Technology Inc.

Results

Meat

The average and standard deviation of Pb levels in duck meat
from the large-scale farms (3.13 ± 1.13 mg kg−1 dry weight)
were significantly higher than Pb in the duck meat from free-
grazing duck farms (0.06 ± 0.21 mg kg−1 dry weight) at
P < 0.001. Interestingly, many meat samples from the large-
scale farms exceeded the levels of Pb cited as safe in the
notification by the Ministry of Public Health No. 98
(B.E.2529) of Thailand, Commission Regulation (EC) no.
1881/2006, and FAO/WHO and the Codex Alimentarius stan-
dard (2002) at 92.7% (51/55), 100% (55/55), and 100% (55/
55), respectively, as shown in Table 1. In addition, the Cd
levels in meat from the large-scale farms (0.33 ±
0.14 mg kg−1 dry weight) were significantly higher than the
Cd levels in the duck meat samples from the free-grazing
farms (0.03 ± 0.04mg kg−1 dry weight) atP < 0.001, as shown
in Table 1. Interestingly, the number of meat samples from the
large-scale farms in which the Cd exceeded the limits in the
Commission Regulation (EC), FAO/WHO and Codex
Alimentarius standard was 96.4% (53/55) and 96.4% (53/
55), as shown in Table 1. The concentrations of Zn, Mn, and
Cu in duck meat samples from the large-scale farms were
significantly higher than Zn, Mn, and Cu levels in the duck
meat from the free-grazing ducks at P < 0.001, as shown in Ta
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Table 1. Fe and Cr levels in the duck meat samples from the
large-scale farms were significantly higher than Fe and Cr
levels in the duck meat from the free-grazing ducks at
P < 0.05, as shown in Table 1.

Liver

Zinc levels were found to be the highest in duck liver, follow-
ed by the intestine and meat, respectively. Moreover, Zn levels
in duck livers from the large-scale farms (214 ± 91.3 mg kg−1

dry weight) were significantly higher than the levels in duck
livers from the free-grazing duck farms (116 ± 39.4 mg kg−1

dry weight) at P < 0.001, as shown in Table 1. The highest
levels of Pb were found in the liver followed by the intestine
and meat, respectively. The number of liver samples from the
large-scale farms in which the level of Pb exceeded limits in
the notification of the Ministry of Public Health of Thailand
[30], Commission Regulation (EC) [31], and FAO/WHO and
Codex Alimentarius standards [32] was 94.4% (51/54), 100%
(54/54), and 100% (54/54) of the samples respectively, as
shown in Table 2. In the case of Cd, the duck liver samples
contained the highest levels, more than both intestines and
meat. The study found that the Cd levels in the duck liver
samples from free-grazing farms (0.93 ± 0.85 mg kg−1 dry
weight) were significantly higher than the Cd levels in the
duck livers from large-scale farms (0.48 ± 0.23 mg kg−1 dry
weight) at P < 0.05, as shown in Table 1. In fact, a number of
liver samples from the free-grazing duck farms exceeded the
Commission Regulation (EC) and FAO/WHO and Codex
Alimentarius standard for Cd levels in 67.6% (23/34) and
67.6% (23/34) of samples, as shown in Table 2.

Cobalt levels in the duck liver samples from the large-scale
farms (0.44 ± 0.27 mg kg−1 dry weight) were significantly
higher than the Co levels in the duck livers from the free-
grazing ducks (0.27 ± 0.26 mg kg−1 dry weight) at P < 0.05.
Moreover, the concentration of Mn in the duck livers from
large-scale farms (21.4 ± 11.2 mg kg−1 dry weight) was sig-
nificantly higher than Mn levels in the duck liver from the
free-grazing ducks (11.2 ± 4.66 mg kg−1 dry weight) at
P < 0.001, as shown in Table 1. In the three organs investigat-
ed, the highest levels of Fe were found in the liver, followed
by the intestines and meat, respectively. Cr levels in the duck
livers from large-scale farms (0.52 ± 0.59mg kg−1 dry weight)
were significantly higher than Cr levels in the duck livers from
the free-grazing ducks (0.36 ± 0.82 mg kg−1 dry weight) at
P < 0.05, as shown in Table 1. The highest levels of Cu were
contained in the liver samples, followed by the meat and in-
testine samples, respectively. Cu levels in the duck livers from
the large-scale farms (239 ± 85.8 mg kg−1 dry weight) were
significantly higher than the Cu levels in the duck livers from
the free-grazing ducks (92.5 ± 61.6 mg kg−1 dry weight) at
P < 0.001, as shown in Table 1.

Intestine

The concentration of Pb in the duck intestines from the free-
grazing duck farms (2.07 ± 0.76 mg kg−1 dry weight) was
significantly higher than the Pb levels in duck intestines from
the large-scale farms (1.44 ± 0.64 mg kg−1 dry weight) at
P < 0.001, as shown in Table 1. In 97.1% (33/34) of the intes-
tine samples from the free-grazing duck farms and 76.0% (38/
50) of the intestine samples from the large-scale farms, Pb
exceeded the limits set by the notification of the Ministry of
Public Health of Thailand, as shown in Table 2. Zn, Mn, and
Cr levels in the duck intestines from the large-scale farms were
significantly higher than Zn, Mn, and Cr levels in the duck
intestines from the free-grazing duck farms at P < 0.001, as
shown in Table 1. However, Cd and Fe levels in the duck
intestine samples from the free-grazing ducks were signifi-
cantly higher than the Cd and Fe levels in the duck intestine
from the large-scale farms at P < 0.001. Cobalt, Mn, and Cr
levels were the highest in the intestine samples, followed by
the liver and meat samples, respectively, as shown in Table 1.

Principal Component Analysis

The PCA analysis was used to identify the two main groups of
metals in meat duck. Both components accounted for 68.9%
of the total variance and had a strong positive relationship (>
0.69). Component 1 accounted for 43.4%, while component 2
accounted for 25.5% of the total variance. The loading plot
showed a significant relationship for Pb and Cd, Zn and Mn,
Fe and Zn, and Pb and Co in the meat samples as shown in
Fig. 1a.

Whereas the principal components in the liver and intestine
were accounted for at 66.3% and 60.2%, respectively, the total
variance for components 1 and 2 were 47.7% and 18.64% in
the liver and 39.0% and 21.1% in the intestine samples, re-
spectively. The loading plot showed a highly positive relation-
ship (> 0.69) for Zn and Co, Zn and Mn, Zn and Cr, and Co
and Cr in the liver samples, as shown in Fig. 1b, and a positive
relationship (> 0.72) for Zn and Co, Zn and Cu, and Co and
Mn in the intestine samples, as shown in Fig. 1c. In addition,
the combination of principal components in both the liver and
intestine accounted for 65.5% of the total variance (compo-
nents 1 and 2 explaining 38.8% and 26.7%, respectively).
Factor loading had a highly positive relationship (> 0.65) for
Zn and Fe, Zn and Cu, Pb and Fe, and Co andMn, as shown in
Fig. 1d.

The Calculation of Average Daily Intake for Metals
from Duck Meat for Consumption

The average daily intake of Pb, Cd, and Cu was calculated and
compared with the World Health Organization-Food
Agriculture Organization provisional tolerated daily intake
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[33] and Recommended Daily Intake (RDI) of minerals [34]. In
Thailand, the average per capita consumption of duckmeat during
2016was 0.38 g/day according to theBureau of Product Standards
andQuality Systems,National Bureau ofAgricultural Commodity
and Food Standards, Ministry of Agriculture and Cooperatives,
Thailand [22]. Therefore, the daily intakes of Pb, Cd, and Cu from
duck meat were calculated using the following formula:

Average daily intakes mg day−1
� �

¼ Level of metal in duck mg kg−1
� �

� Average per capita consumption of duck meat kg day−1
� �

The calculated data for the average daily intake of metals
revealed that concentrations of Pb, Cd, and Cu from all the
farms studied did not exceed the standard limits as shown in
Table 2.

Discussion

In this study, it was found that Zn, Mn, Co, Cr, and Cu con-
centrations in the meat and liver samples from the large-scale
duck farms were significantly higher than in ducks from the
free-grazing farms. Moreover, Pb, Cd, and Fe levels in duck
meat samples from the large-scale farms were significantly
higher than those from the free-grazing farms. Our previous
study found that 83.33% (5/6) of large farms used commercial
feeds; in contritely, 62.5% (5/8) of free-grazing farms treated
the ducks by grazing. Moreover, the commercial feeds from
the large-scale farms had significantly higher levels of Cd
(0.41 ± 0.1 mg kg−1) and Pb (3.58 ± 0.56 mg kg−1) than the
commercial feeds and the self-mixed feed from small-scale
farms (< 5000 animals) and free-grazing farm in Thailand.
Meanwhile, we found that canal water was the main drinking
water source for free-grazing farms at 87.5% (7/8). In

Table 2 Comparison of zinc, Pb, Cd, Co, Mn, Fe, Cr, and Cu levels in duck meat, liver, and intestine, plus average daily intakes of metals from duck
meat consumption with standard

Samples Standard limit Farm types Zn Pb Cd Co Mn Fe Cr Cu

Meat NMPHT – 1.0 – – – – – –

Free grazing – 2.86% (1/35) – – – – – –

Large farm – 92.7% (51/55) – – – – – –

EC – 0.1 0.05 – – – – –

Free grazing – 14.3% (5/35) 34.3% (12/35) – – – – –

Large farm – 100% (55/55) 96.4% (53/55) – – – – –

FAO/WHO – 0.1 0.050 – – – – –

Free grazing – 14.3% (5/35) 34.3% (12/35) – – – – –

Large farm – 100% (55/55) 96.4% (53/55) – – – – –

Liver NMPHT – 1.0 – – – – – –

Free grazing – 64.7% (22/34) – – – – – –

Large farm – 94.4% (51/54) – – – – – –

EC – 0.10 0.50 – – – – –

Free grazing – 70.6% (24/34) 67.6 (23/34) – – – – –

Large farm – 100% (54/54) 42.6 (31/54) – – – – –

FAO/WHO – 0.10 0.50 – – – – –

Free grazing – 70.6% (24/34) 67.6% (23/34) – – – – –

Large farm – 100% (54/54) 42.6% (31/54) – – – – –

Intestines NMPHT – 1.0 – – – – – –

Free grazing – 97.1% (33/34) – – – – – –

Large farm – 76.0% (38/50) – – – – – –

The average daily intakes of metals from
duck meat consumption (mg day−1)

WHOprovisional tolerated daily intakes in
mg/day per capita [33]

– 0.429 0.05–0.071 – – – – –

Nogawa et al. (1989) and ATSDR (1999) – – 0.0002 – – – – –

Recommended Daily Intake (RDI) – – – – – – – 2

ATSRD (2004) – – – – – – – 0.01

Free grazing – 0.00002 0.00001 – – – – 0.0035

Large farm 0.00119 0.00013 0.0058

“–“ no standard limit, NMPHT Notification of Ministry of Public Health No. 98 (B.E.2529) of Thailand [30], EC (EC) Commission Regulation No.
1881/2006 [31], FAO/WHO FAO/WHO 2002 and Codex Alimentarius [32]
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addition, Pb concentration in the drinking water used by free-
grazing farms was 0.16 ± 0.02 mL L−1, which exceeds the
water standards for animal consumption (0.10 mL L−1).
Further, the drinking water had a high correlation on the
free-grazing duck farms between Pb levels in the egg and
the drinking water [35]. Therefore, this report may link to
the high contamination of Cd and Pb in duck tissues for both
large farms and free-grazing farms. There have been many
reports on heavy metals in duck meat and liver, while very
few studies have been done on metal levels in duck intestine.
According to current data, the levels of Pb, Cd, Zn, and Cu in
the duck samples from both types of farms tend to be higher
than the meat previously reported in ducks, geese, chickens,
hens, rabbits, and sheep slaughtered in the northern part of
Poland [36], in cocks from Chittagong city, Bangladesh
[37], and beef in Korea [38]. However, the levels of Mn and
Co from ducks on the large-scale farms in the present study
were higher than the reported levels in the liver samples of
mallards at Gimpo, Korea [39], ducks, chickens, geese, hens,
rabbits, and sheep in Poland [36], and duck meat from Taipei,
Taiwan [40], while the levels of Cr in the meat were not re-
ported. Moreover, Cd levels in the duck livers from the free-
grazing farms were found to be significantly higher than those
from the large-scale farms at P < 0.05. Cadmium induces
changes in the organs, particularly in the gonads, kidney,
and adrenal glands [41]. For example, Cd and Pb induced
apoptosis and a decrease in the number of erythrocytes in
mallard (Anas platyrhynchos) blood cells [42]. Moreover,
young animals are more susceptible to Cd than adults [43].
In this study, data on the average daily intake of duck meat
revealed that Cd in the duck meat samples from both types of
farms was lower than the standard limits. According to
Nogawa et al. and ATSDR, the chronic duration of oral con-
sumption of Cd with minimal risk levels for renal effects in
humans was 0.0002 mg kg−1 day−1 [44, 45]. In addition, long-
term low-dose Cd exposure could disrupt DNAmethylation in
human embryo lung fibroblast cells [46]. In addition, women
are highly vulnerable to Cd because of their relatively higher
absorption rate compared to men, which causes harm to both
the mother and new-born child. Cadmium partially crosses the
placental barrier and can potentially impact fetal development

through epigenetic mechanisms, causing changes to fetal gene
expression [47]. Therefore, the calculation of the provisional
tolerable daily intake presented suggests that consumers may
incur a health risk from Cd contamination from long-term
consumption of duck meat from both types of farms studied,
as the data shows in Table 2. In addition, health risks from
contamination can derive from the Cd concentrations in duck
meat as well as in contaminated liver and intestines.

Our data shows that Pb, Cd, Zn, Mn, Fe, Cr, and Cu con-
centrations in the liver samples from both types of farm were
higher than other reports in mallards, sea ducks, gadwall, can-
vasback, American wigeon, lesser scaup, greater scaup, buf-
flehead, black duck, pintail, ring-necked duck, and ruddy duck
as well as other reports in Spain, the USA, Poland, Korea, and
Greece [14, 48–52]. In addition, it has been reported that Cd
levels in gizzards of 0.24 mg kg−1 dry weight in mallards [51]
were higher than our findings on large-scale farms (0.08 ±
0.09 mg kg−1 dry weight), but similar to Cd levels found in
the intestine samples from ducks on free-grazing farms (0.28
± 0.33 mg kg−1 dry weight). Meanwhile, Pb, Cd, Fe, and Cr
levels in duck intestine from free-grazing duck farms were
found to be higher than those from large-scale farms at
P < 0.001. On the contrary, Zn and Mn levels in the duck
intestine samples from large-scale farms were higher than in
intestine samples from free-grazing duck farms at P < 0.001.
This finding is similar to other studies which indicated that
free-grazing systems have a high potential for chemical con-
tamination attributable to environmental contamination expo-
sure as the duck is in direct contact with the outdoor environ-
ments [23–25, 27]. This finding is similar to Yabe et al. who
reported that Cd accumulation in the liver of free-range
chickens was greater than in broiler chickens at P < 0.05
[25]. However, this finding is similar to our previous study
that reported that the levels of Pb, Cd, Cr, and Cu in eggs from
large-scale farms were significantly higher than from free-
grazing farms, and this might be the same contamination pat-
tern in meat and liver [35].

Interestingly, it was found that most of the intestine sam-
ples, particularly from free-grazing farms, had higher levels of
Pb than the limits set by the regulation of the Ministry of
Public Health of Thailand, despite the body and liver weight

Fig. 1 PCA plot showing metal loadings on components from meat (a), liver (b), intestine (c), and combined between liver and intestine (d)
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of chickens typically decreasing after consuming a diet of Pb-
contaminated feeds [53].Mateo and Guitart reported that birds
died after exposure to Pb concentrations of more than
5 mg kg−1 dry weight [54]. Average levels of Pb in duck livers
from the free-grazing and large-scale farms were close to this
level, as shown in Table 1. In duck species, Pb concentration
was significantly different among tissue samples, with mean
concentrations of Pb being greater in the bones than in the
livers and kidneys of spot-billed ducks and mallards but not
in geese. Moreover, Pb concentration was correlated between
liver, kidney, and bone [55]. Data on the average daily intake
of duck meat revealed that Pb in duck meat samples from both
types of farms did not exceed the standard limits. However,
the JECFA (Joint FAO/WHO Expert Committee on Food
Additives) reported in 2011 that exposure to Pb of
0.003 mg kg−1 body weight day−1 affects the cardiovascular
system and increases the systolic blood pressure by 2 mmHg
(0.3 kPa) [56]. Furthermore, Pb exposure in humans leads to
adverse health effects, particularly in young children and preg-
nant women [57]. Fetal and childhood lead exposure has been
associated with attention deficit hyperactivity disorder (ADHD),
IQ deficits, and behavioral disorders, as well as decreased brain
volume in adults [58–60]. Moreover, children consuming
0.002 mg kg−1 body weight day−1 of Pb will display
neurodevelopmental effects associated with a decrease of 3 IQ
points. Therefore, consumers may incur health risks from long-
term consumption of duck meat contaminated with Pb at levels
similar to those found in this study, as seen in Table 2.
Furthermore, there is a possibility of health risks due to contam-
ination with Pb from a dietary source of duck meat as well as
duck liver and intestine.

Clinical symptom results showed Zn poisoning in the livers
of mallards at a contain rate of 1100 mg kg−1 dry weight [61].
However, Zn levels from all the samples in our study were
much lower than Zn toxicity levels for ducks. Puls [62] report-
ed that hepatic levels of Mn considered as high and toxic in
poultry were 4.0–6.0 mg kg−1 wet weight (approximately 15–
23 mg kg−1 dry weight), which, interestingly, is the same as in
our study. It was found that 64.8% (35/54) of samples from the
large-scale farms had levels of Mn higher than 15 mg kg−1 dry
weight, which may have an adverse impact on the health of
ducks. Isanhart et al. [63] reported that acute Cu toxicity was
observed in mallard livers with concentrations of between 270
and 1300 mg kg−1 dry weight. In our study, it was found that
33.3% (18/54) of samples had Cu levels of 270–1300mg kg−1

dry weight. In humans, the gastrointestinal tract is the most
sensitive target for Cu toxicity. Exposure to Cu at doses of
0.011–0.03 mg kg−1 could induce adverse gastrointestinal ef-
fects such as nausea, vomiting, abdominal pain, and diarrhea
[64, 65]. Moreover, ATSRD [66] reported that the minimal
risk level of Cu is 0.01 mg day−1, derived from acute oral
exposure to Cu. Our findings indicated that consumers may
incur health risks from long-term consumption of duck meat

from large-scale farms contaminated with Cu, as shown in
Table 2. In addition, health risks may result from contamina-
tion from dietary sources of Cu, not only in duckmeat but also
from contaminated duck livers and intestines. Conversely, the
five other elements were found to be below the RDI
(Recommended Daily Intake), which has not been found to
pose risk to health from consumption.

In our study, the concentrations of essential metals like Fe,
Zn, and Cu were higher than nonessential metals like Pb and
Cd. The level of Zn > Cu>>Mn in both the liver and brain
tissue, while Pb > Cr in the brain and > Cd in the liver tissue
[52]. From our study, it can be concluded that the concentra-
tion of Fe > Zn > Cu > Pb >Mn > Cd > Cr > Co in the duck
meat, while Fe > Cu > Zn >Mn > Pb > Cd > Cr > Co in the
liver and Fe > Zn >Mn > Cu > Pb > Cr > Co > Cd in the intes-
tinal tissue, which is similar to the findings of Aloupi et al.
[52]. Since the liver is the target tissue for the accumulation of
both essential and nonessential heavy metals in animals and
metabolites from the body [67], it is suggested that the liver
may be the main target organ for heavy metal determination.

Metallothionein (MT) protein levels and Cd bioaccumulate
predominantly in the kidney then liver tissue [68].
Metallothionein is a cysteine-rich protein approximately 7 kDa,
with a high binding capacity and a low molecular weight 7 atom
per mole [69]. It is found in the liver, kidney, and intestine, but
can also be expressed in the brain and skin. In birds, Cd can
accumulate in many organs and tissue, including the lungs,
spleen, bone, and urinary bladder [70]. It adversely affects the
functions of these organs, but it is mostly accumulated in the liver
and kidney [71, 72]. Moreover, the liver is the main storage site
and an important target organ for Cu toxicity [73, 74]. However,
exposure to metals may, in general, contribute to poor physical
condition in ducks. However, it has been found that meat is a
minor site for the accumulation of metals, which is similar to our
finding that heavy metal concentrations in duck meat from both
types of farm were generally lower than levels found in the liver
and intestinal tissue [75, 76]. In addition, chicken gizzards
contained the highest concentrations of Pb compared to chicken
kidney and liver tissue [77]. In this study, Co, Mn, and Cr levels
were found to be the highest in the duck intestine.

The correlation of Pb or Cd with essential element concentra-
tions in tissues has been reported in sea birds from Russia [78]
and in mallards from Korea [79]. Interestingly, it was found that
Pb levels in the duckmeat in our studywere positively correlated
(r= 0.93) with Cd. This result was similar to the result of the
relationship of the metal-metal relationship in the muscle tissue
of dairy product (r= 0.63) reported by Kim et al. [38], and Kim
and Oh [79] found positive correlations in mallard liver tissue
between Zn and Pb, Cd and Pb, Fe and Cd, and Zn and Cd.
Moreover, Levengood and Skowron [80] reported a highly pos-
itive correlation between Cu and Zn in the liver, while positive
correlations were found in our study between Zn and Co, Zn and
Mn, Zn and Cr, and Co and Cr in the liver samples, whereas Zn
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and Co, Zn and Cu, and Co andMn in the intestine sample were
found to have a positive correlation. The interaction between
toxic and essential metals occurs when they are similarly metab-
olized [79]. Therefore, an understanding of the absolute relation-
ship for themetals distributed in the tissue of eachmatrixmust be
further elucidated and defined to determine the toxic mechanism
for the safety of food.

Conclusion

Our findings indicated that consumers may incur health risks
from long-term consumption of duck meat with high Pb, Cd,
and Cu concentrations from both types of farms (free range
and large scale), particularly duck meat from large-scale duck
farms.With respect to the determination of heavymetals in the
three organs, it was found that the highest levels of Zn, Pb, Cd,
Fe, and Cu contamination were found in the liver. As a result,
consumers should avoid the health risks related to the con-
sumption of contaminated duck liver, especially those posed
by Cd and Pb in duck livers from free-grazing duck farms,
whereas Co, Mn, Cr, and Cu were also found in the intestines
of these ducks. Thus, the consumption of different internal
duck organs could result in exposure to heavy metals. Long-
term monitoring of domestic duck production in Thailand
must be implemented. The information gained from this study
will be useful for authorized bodies to standardize the levels of
heavy metal contamination in duck tissues and prevent the
negative health effects of metal toxicity in human consumers
who could contract it through the food chain.
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