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Abstract
Nanotechnology is a vital part of health care system, including the dentistry. This branch of technology has been incorporated into
various fields of dentistry ranging from diagnosis to prevention and treatment. The latter involves application of numerous
biomaterials that help in restoration of esthetic and functional dentition. Over the past decade, these materials were modified
through the incorporation of metal nanoparticles (NP) like silver (Ag), gold (Au), titanium (Ti), zinc (Zn), copper (Cu), and
zirconia (Zr). They enhanced antimicrobial, mechanical, and regenerative properties of these materials. However, lately, the
toxicological implications of these nanometal particles have been realized. They were associated with cytotoxicity, genotoxicity
altered inflammatory processes, and reticuloendothelial system toxicity. As dental biomaterials containing metal NPs remain
functional in oral cavity over prolonged periods, it is important to know their toxicological effects in humans. With this
background, the present systematic review is aimed to gain an insight into the plausible applications and toxic implications of
nano-metal particles as related to dentistry.
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Introduction

Metals are an integral component of various dental restorative
and prosthetic materials. Their mechanical properties like
elastic modulus, tensile strength, and hardness confer strength
and durability to the dental restorations and prostheses, when
exposed to functional loads in the oral cavity [1]. The metals
applied in dentistry include both noble (e.g., gold (Au), silver
(Ag), palladium (Pd), and platinum (Pt)) and base metals (e.g.
copper (Cu), zinc (Zn), titanium (Ti), nickel (Ni), chromium
(Cr), zirconium (Zr), beryllium (Be), boron (B), and alumi-
num (Al)) [2]. They may be used alone or in the form of
alloys, for restorative and prosthetic purposes.

Lately, nanoparticles (NPs) of metals or their compounds
have been incorporated into the dental restorative materials,
pulp capping agents, denture-base materials, implants, ortho-
dontic appliances, and oral hygiene aids [3]. Besides improv-
ing their physiochemical and mechanical properties, the NPs
of metals like Ag, Cu, Au, Ti, and Zn are antibacterial in
nature. Therefore, they may be helpful in inhibiting the dental
plaque biofilm. In orthodontics, the NP-coated arch wires,
adhesives, elastomeric ligatures, temporary anchorage de-
vices, orthodontic wires with shape memory and biofilm con-
trol features, and nanometal-coated brackets have been ap-
plied [4]. Among them, the NPs of Ag, Au, ZrO2, and TiO
have been added to the orthodontic adhesives to increase their
compressive, tensile, and shear bond strengths [5, 6]. The NPs
of Ag, Cu, and Zn produce an antibacterial and antibiofilm
effect when coated on orthodontic brackets [7]. They have
also been applied on the stainless steel arch wires to reduce
the frictional forces between the wires and the bracket [4, 8].

These NPs are less than 100 nm in diameter which in-
creases their ratio of surface area to volume, chemical reactiv-
ity, and biological activity [9]. Their antibacterial effect is
mainly attributed to the former and metal-ion release [10].
They even generate reactive oxygen species (ROS) that react
with the microbial membranes, damage their structure, and
inactivate the bacteria. Furthermore, their unusual crystalline
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morphologies with a high number of edges and corners, and
other potentially reactive sites increase their antibacterial ef-
fect [10].

Although metal NPs have better mechanical properties and
esthetic outcomes, little is known about their toxicological
aspects when functioning for a long time in a living organism
[11]. This is specifically true for the restorations incorporating
NPs as they may undergo dissolution in the saliva or chemical
or physical destruction, erosion from food, wear by chewing,
bacterial activity, and variations in temperature and pH [12,
13]. Subsequently, the metal ions released into the oral cavity
may enter into systemic circulation through oral fluids and
blood vessels. They may be taken up by the cells due to their
small particle size and may be localized, undergo degradation
and exocytosis [14]. Conversely, they may cause cytotoxicity,
genotoxicity, and inflammatory responses [15]. The severity
of these reactions is dependent on the size, shape, surface
chemistry, and the cell types exposed to the metal ions [15].

As the nanometals have been recently introduced in dentistry
and are widely incorporated for improving the antimicrobial and
mechanical properties of various dental materials, the present
review aims to gain an insight into the applications of nanometals
in dentistry. It also describes the plausible toxic implications of
these nano metal particles on oral and general health.

Materials and Methods

The Preferred Reporting Items for Systematic Reviews and
Meta-analyses (PRISMA) guidelines were followed to identi-
fy the research publications on applications of nanometals and
their oxides in dentistry. Further, articles related to their ad-
verse effects on oral health were also searched. The databases
searched were Medline (PubMed), Scopus, and Web of
Science. A combination of keywords like “Nanometals” OR
“Nano” OR “Silver” OR “Titanium” OR “Gold” OR
“Platinum” OR “Palladium” OR “Zinc” OR “Copper” OR
“Zirconia” OR “Nickel” OR “Oxides” OR “Toxicity”, AND
“Dentistry” were used. They were verified in the titles, ab-
stracts, or keywords during the initial search. It resulted in a
total of 572 articles (Fig. 1). The data was screened for dupli-
cates which resulted in 507 articles wherein the titles and
abstracts were read. The eligibility criteria were free full-text
original articles in English language related to the applications
and toxicity of the above nanometals and their compounds in
dentistry. Only articles published from 2009 to 2019 were
included. Any kind of recommendations, expert statements,
reviews, technical reports, case reports, and non-original pa-
pers were excluded. Furthermore, only studies reporting in-
corporation of NPs of metals in the dental materials were
included. This resulted in 104 original research articles of
which 49 were excluded after reading the full text. Finally,
full texts of 55 original studies have been included in the

review [16–67]. The nanometals used in the dental material,
the type of dental material, their surface characterization, size,
concentration, mechanism of action and toxic effects, if any,
were recorded (Tables 1 and 2).

Results

Of the 55 studies that were included in the review, 48 reported
the applications of nano metals in dentistry. Among them 42
were in vitro studies, 2 were animal studies while 4 were
randomized controlled clinical trials [16–61]. About 5
in vitro and 1 animal study investigated the toxic implications
of nanometals used in various dental materials [62–67]. The
following sections discuss the applications and toxic implica-
tions of the nanometals used in dentistry.

Applications of Nanometals in Dentistry

In dentistry, the applications of nanometals range from diag-
nosis to preventive and therapeutic purposes (Fig. 2). As al-
ready stated, they improve the mechanical properties and con-
fer antimicrobial activity to the different materials (Fig. 3).
Their applications in dentistry as reported in various studies
are summarized as follows (Table 1):

a. Nanometals used in various dental materials

The most common nanometals used in the dental materials
were Ag, Ti, Cu, Au, Zn, and Zr [16–61]. The Ag and Auwere
used in their pure form while the nano-oxides of Ti, Zn, Cu,
and Zr were employed more often [16–61]. They were incor-
porated in the composite resins, acrylic denture base resins,
endodontic materials, dental implants, restorative cements,
and orthodontic brackets and adhesives where they showed
improved antimicrobial, mechanical, and regenerative proper-
ties which would be discussed in the later section [16–61].
The nanometal particles were incorporated into the following
dental materials:

i. Restorative materials

The restorative materials like composite resins produce ex-
cellent esthetics and load-bearing properties but often undergo
failure due to biofilm accumulation, secondary caries, and
bulk fracture [68, 69]. Likewise, inadequate instrumentation
or microleakage in the filled root canals results in treatment
failure [70]. The NPs of Ag, ZnO, and Zr were added to
composite resins, cavity varnishes, glass ionomer cement
(GIC’s), intracanal medicaments (e.g., calcium hydroxide
[Ca (OH)2]), sealers, and root end materials (e.g., Portland
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cement and mineral trioxide aggregate (MTA)) to overcome
these problems [16–37].

ii. Prosthodontic materials and dental implants

The full mouth rehabilitation for the lost teeth is usu-
ally done with the help of acrylic partial/complete dentures
or dental implants. The dentures are made of poly methyl
metha acrylate (PMMA) resin which has a rough inner
surface that favors biofilm accumulation [71]. It promotes
colonization by Candida that causes denture stomatitis,
specifically in elderly [72]. The dental implants, although
a predictable method for oral rehabilitation may undergo
failure due to mechanical (e.g., static and dynamic occlu-
sal load) and biological (e.g., biofilm accumulation and
invasion) factors [73, 74]. In order to overcome these
problems, NPs of Ag, ZrO2, and TiO2 were added to
the PMMA or coated on the surfaces of dental implants
[38–57]. They improved their antimicrobial and mechani-
cal properties as well as favored osseointegration and soft-
tissue healing around the dental implants [51–57].

iii. Orthodontic appliances

The orthodontic treatment is often complicated due to the
development of white-spot lesions and dentinal caries. The
orthodontic brackets act as plaque retentive factors that pro-
mote biofilm formation, proliferation of the facultative bacte-
ria, reduced pH, and enamel demineralization [75]. The addi-
tion of NPs of Cu and Zn oxides to orthodontic brackets
inhibited plaque biofilm and produced an anti-caries effect.
Besides increased biofilm formation and caries, frequent de-
bonding of the orthodontic brackets often prolongs the treat-
ment time [6]. This was attributed to reduced bond strength of
the orthodontic adhesives used to bond the brackets to the

tooth surface. The nanofillers of Zr and Ti oxides were added
to improve the bond strength [7, 58].

iv. Other applications

Some other uses of nanometal particles include oral diag-
nosis whereby the NPs of Au, Ag, Pt, and Pd were incorpo-
rated into the nanobiosensor transduction/bioreception sys-
tems. These NPs rapidly reacted with most biological mole-
cules. The NPs of Au specifically enhanced the electronic
signals when the analyte was at very low concentrations
[76]. They were applied on toothbrushes along with the
AgNPs where they enhanced the effects of mechanical plaque
control owing to their antibacterial action. This helped in bet-
ter reduction of periodontal diseases [76]. The AgNPs have
also been added to the anticaries components of dentifrices
like calcium glycerophosphate [59, 60].

b. Surface characterization of nano metal particles in various
dental materials

The surface characterization enables determination of size,
shape, concentration, and dispersion of the nanometals in var-
ious materials. In the research reviewed here, the physical
characteristics of metals were analyzed through transmission
electron microscopy (TEM), X-ray photon spectroscopy,
scanning electron microscopy (SEM), dynamic light scatter-
ing, inductively coupled plasma-optical emission spectrome-
try, UV–Vis spectroscopy, X-ray diffraction, atomic force mi-
croscopy, X-ray photon spectroscopy, and field-emission
scanning electron microscopy [7, 18, 19, 21, 23, 27, 30, 31,
38, 44–49, 51–53, 55–57, 59–61]. Among them, the TEM
was most commonly applied [7, 18, 21, 30, 31, 42, 51, 55,
56, 60]. They revealed the following characteristics of the
nano metal particles:

Fig. 1 Evidence search on
applications of nanometals in
dentistry and their toxic
implications
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i. Size

The size, shape, and structure of NPs affects the reactivity,
toughness, and other qualities including the optical properties
of dental materials. This is significant for materials related to
dental aesthetics like composite resins and denture bases. The
size of NPs affects the color of these materials due to absorp-
tion of light in the visible region.

The size of nanometals ranged from 5 to 260 nm [30, 46].
The average size of AgNPs was between 5 and 100 nm [30, 38,
42]. The nano TiO2 particle size ranged from 10 to 93 nm [51,
53]. Likewise, the size of nano ZnO particles ranged from 20 to
225 nm [55, 61]. The particle size of nano CuO was 37 nm
while that of Au was about 18 nm [7, 31]. The particle size of
nano Zr and its oxide ranged from 40 to 830 nm [43, 46].

ii. Shape and dispersion

The nanometals were mostly spherical in shape [21, 23, 25,
30, 31, 44, 59–61], although one study reported triangular
configuration [19]. They were evenly dispersed in all the den-
tal materials [19, 21, 23, 25, 30, 31, 49, 59–61].

iii. Concentration

The concentration of the NPs varied according to the prop-
erty of the material which was enhanced, i.e., antimicrobial or
mechanical properties. For instance, the AgNPs were com-
monly used in concentration of 0.1 to 1 w/w% in the composite
resins where they produced antibacterial effect and improved
their flexural strength, elastic modulus, and shear bond
strength [16, 24]. They produced antibacterial effect in bond-
ing agents at 0.05 to 0.1w/w% concentration [16, 17] while the
antifungal effect was seen when they were incorporated in the
denture base resins at concentrations 2.5, 3 and 5w/w%
[38–40]. In dental implants antifungal effect was produced at
a concentration of 320 ppm [54]. They augmented the antibac-
terial effect of GICs, intracanal medicaments and dentifrices at
concentrations 0.5w/w% [30], 100 ppm concentration [26] and
200 ppm [59], respectively. They increased the surface hard-
ness of a cavity varnish at a concentration of 376.5 μg/ml [28].

The CuO NPs were incorporated in the concentrations
0.01, 0.5, and 1w/w% in the orthodontic adhesive. They en-
hanced its antibacterial property and shear bond strength [58].
Likewise, 3 to 5w/w% of TiO2 NPs improved the flexural and
compressive strengths of GICs [23, 27]. In denture base
resins, at 0.4, 0.5 and 1w/w% concentration, these NPs pro-
duced antibacterial and antifungal effects [41, 44].

In endodontic sealers and dental implants, the ZnO NPs
were used either alone or in combination with Ag and TiO2

NPs to enhance their antimicrobial and mechanical properties
[18, 55, 56]. They had a similar effect on composite resins, at 1
and 3w/w% concentrations [20, 25]. The nano Zr and its oxideT
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were widely used in denture base resins, ceramics and restor-
ative cements [6, 36, 37, 42, 43, 45–48, 50]. Their concentra-
tion varied from 1 to 20 w/w% in denture base resins, 30
w/w% in Portland and calcium silicate cements and 0.5 to
1w/w% in orthodontic adhesives [6, 36, 37, 42, 45, 47, 48].
The Zr NPs mainly enhanced the mechanical properties of
these materials.

c. Synthesis and methods of incorporation of nano metals in
the dental materials

The nanometal particles may be synthesized by a top down
or a bottom up approach (Fig. 3). The former includes litho-
graphic techniques and etching while the latter consists of
sputtering, chemical vapor deposition, sol–gel processes,
spray pyrolysis, laser pyrolysis, and atomic/molecular con-
densation [77]. Lately, a “green synthesis” approach utilizing
biological microorganisms like bacteria, fungi, algae, yeast,
and plant extracts has been developed to obtain the NPs of
metals like Au, Ag, Zn, and ZnO [77].

However, the studies included in this review utilized com-
mercially available and chemically formulated nanometal par-
ticles [6, 20, 26, 39, 40, 58]. The AgNPs were prepared by the
reduction of silver nitrate (AgNO3) with sodium borohydride,
sodium citrate, or ethylene glycol [19, 38, 59, 60]. Besides,
photoreduction was also applied on a mixture of AgNO3,
tartaric acid, and PAA to obtain them [30]. A mixture of
AgNO3 and zinc nitrate (ZnNO3) in gelatin was calcined at
different temperatures to obtain ZnO: Ag composite NP pow-
der, which was used as an endodontic sealer [18].

The AgNPs were incorporated with the help of a monomer,
2-(tert-butylamino) ethyl methacrylate (TBAEMA) in the
polymeric dental material. This agent improved the solubility
of Ag ions in the resin solution and its reactive methacrylate
groups integrated with the polymer network upon
photopolymerization [16, 17, 19, 24].

The AuNPs were synthesized by the reaction between the
chloroauric acid trihydrate and sodium citrate. This resulted in
a colloidal solution of AuNPs which was mixed with the cal-
cium phosphate cement [31]. Likewise, a nano thickness film
of TiO2 synthesized through the reaction between tetrakis
(dimethylamido) titanium (TDMAT) and ozone was deposited
on titanium implants using atomic layer deposition (ALD)
technique [49]. Additionally, the TiO2 NPs were prepared
through a modified sol-gel procedure utilizing titanium
tetrabutoxide Ti (OBu) 4 and dimedone as a chelating agent.
Some studies included commercially available TiO2

nanopowder in anatase phase [23, 27, 41, 44].
Both commercially available ZnO NPs as well as those

synthesized by a modified sol-gel method from gelatin and
ZnNO3 at high temperatures (500–700 °C) were used [21,
22, 25]. They were also synthesized from ZnSO4 and ZnCl2
[7, 61]. The CuO NPs were prepared by a reaction between
copper acetate, glacial acetic acid, and sodium hydroxide [7].
It resulted in a black precipitate of CuO from which NPs were
obtained.

The commercially available ZrO2 NPs (99.9% pure) were
incorporated into the PMMA resin, orthodontic adhesives,
ceramic restorations, and Portland and calcium silicate ce-
ments [6, 36, 37, 42, 43, 45–48, 50]. They were subjected to

Fig. 2 Applications of nanometals in dentistry and mechanism of their plausible toxicity
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salinization process (addition of a silane coupling agent,
3-(trimethoxysilyl) propyl methacrylate (TMSPM) to ZrO2)
which rendered their surface reactive and enabled adequate
adhesion between the NPs and the resin matrix.

In the dental implants, the AgNP suspensions were either
directly deposited on their inner cavity or applied on the sur-
faces of the titania nanotubes, by soaking the titanium disks in
AgNO3 solutions followed by UV light irradiation from a
high-pressure Hg lamp [51, 54]. Furthermore, the chemically
synthesized AuNPs were deposited on the silanized Ti surface
with the help of Au-S bonding. The TiO2 NPs were deposited
with the help of a sol gel or anodic treatment and the ZnO NPs
(prepared by flame pyrolysis) were deposited with the help of
electro hydrodynamic spraying on the dental implants
[52–56].

d. The biological and mechanical effects of nanometals used
in dental materials

The nanometals and their compounds are very similar
to atoms due to their nanoscale size. This enables inter-
actions at molecular levels in the biological tissues that
surpasses those of micro- or macro-sized particles [76,
78, 79]. They are highly reactive as free surface atoms
can form new and strong bonds and also allow the
manipulation of NPs in a number of packing configura-
tions [76, 79]. They have a low melting temperature
due to high thermal vibrations of surface atoms in com-
parison with the core atoms [76, 80]. This is specifically
useful in constructing porcelain fused to metal crowns,
cast post and cores, or denture frameworks [76].

The following properties of nano metal particles were ob-
served in the reviewed literature that make them ideal for use
in dental materials:

i. Antimicrobial property

In the present review, the Ag NPs were the most commonly
applied antimicrobial nanometals followed by TiO2, Zn, ZnO,
and CuO [7, 16–20, 22–24, 26, 27, 29, 30, 32, 34, 35, 38, 40,
41, 44, 49, 51–56, 58–60]. The bactericidal activity of
nanometals is dependent on their size and shape [73] (Fig.
3). A study reported that smallest nano metal particles with
spherical configuration were more bactericidal than the trian-
gular and larger spherical shaped particles [73]. As already
stated, in most of the studies the shape of the nano metal
particles was spherical and their size ranged from 5 to
260 nm [19, 21, 23, 25, 30, 31, 44, 59–61].

In composite resins, PMMA or implants, the NPs of Ag, Zn,
and TiO2 enhanced both antimicrobial and mechanical proper-
ties [16, 17, 19, 20, 24, 25, 38–41, 44, 49, 51–56]. In orthodon-
tic brackets, adhesives, GIC, dentifrices, varnishes, and base
plates they were mainly applied as antimicrobial agents
[16–20, 24, 26, 28–30, 32–35, 38–40, 51, 54, 59, 60]. In some
studies dual metal NPs, like TiO2 with AgNPs and UV irradi-
ation were used to improve the antimicrobial effect [51].

The antimicrobial efficacy of AgNPs is mainly related to
their interaction with the peptidoglycan cell walls of bacteria
with resultant release of lipopolysaccharides and membrane
proteins [81]. Further, their accumulation in the cell mem-
brane increases the membrane permeability causing cell death.
This phenomena was specifically useful for killing the

Fig. 3 Synthesis and antimicrobial effect of nanometals used in dental materials
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microorganisms present in the biofilms. Further, their interac-
tions with the exposed sulfhydryl groups in bacterial proteins
prevented DNA replication. They even produced ROS that
damaged the bacterial cell membranes [82]. An added benefit
of AgNPs was reduced incidence of antimicrobial resistance
[83].

In the composite resins, the AgNPs were incorporated in
the polymer matrix. The Ag ions slowly oxidized to Ag2O in
aerobic conditions. Their release rate was augmented by the
acidic environment created by the adhered bacteria [30, 84].
Therefore, these modified composites acted as “smart surface”
materials, whereby the concentration of Ag ions was con-
trolled by the bacteria’s pathogenic action [30, 84]. They re-
duced the CFU’s of Streptococcus mutans (S. mutans) without
affecting the dentin shear bond strength [16]. When combined
with the NPs of amorphous calcium phosphate (NACP), they
reduced biofilm formation, increased the release of calcium
and phosphate ions, inhibited caries and promoted re-
mineralization of enamel [17, 19, 24]. Likewise, the NPs of
ZnO (1%) in composite resins also produced strong bacteri-
cidal effect against S. mutans and Lactobacilli [20]. In the
GICs, the Ag ions (0.5 w/w%) added to the PAA liquid
inhibited the growth of Escherichia coli (E coli) and
S. mutans [30, 56]. At 5 w/w% concentration in PMMA, the
AgNPs reduced adhesion and biofilm formation by Candida
albicans (C. albicans) [38, 40]. Likewise, alongwith Ca (OH)2
intracanal medicaments, they helped in eliminating the
Enterococcus faecalis (E. faecalis) from the infected root ca-
nals [48]. Addition of nano Ag (1% or 10%) to calcium glyc-
erophosphate or to a colloidal solution of chitosan and fluoride
in dentifrices, reduced the levels of ATCC strains of
C. albicans and acid production by S. mutans [59, 60]. A
combination of ZnO and AgNPs in endodontic sealers effec-
tively controlled the E. faecalis proliferation in root canal
space [18]. A coating of Ag, TiO2, and ZnO NPs on the dental
implant surfaces prevented biofilm formation by the initial
colonizers like C. albicans, Streptococcus sanguis
(S. sanguis) and Actinomyces naeslundii (A. naeslundii) [51,
52, 54–56]. The antimicrobial effect of AgNPs was also dem-
onstrated in randomized controlled clinical trials included in
this review [32–35].

The CuO NPs in orthodontic adhesives were bactericidal
against the S. mutans [7, 58]. Like AgNPs, their bactericidal
effect was also related to the production of ROS [85]. The
TiO2 NPs were effective against the S. mutans, S. sanguis,
A. naeslundii, Lactobacillus acidophilus (L. acidophilus),
Candida scotti (C. scotti), and C albicans [23, 27, 41, 44,
49, 52, 56]. They were deposited in situ on the denture base
resulting in a smoother hydrophilic surface with increased
surface wettability [49]. This inhibited the initial attachment
of Candida on the denture base.

The ZnO NPs incorporated in the dental implants showed
bactericidal effect against Streptococcus, Staphylococcus, and

anaerobes [55, 56]. It was suggested that the ZnO NPs selec-
tively targeted Staphylococcus aureus (S. aureus), and their
small particle size increased the penetration into the dentinal
tubules [86]. This facilitated elimination of E. faecalis when
used in combination with chlorhexidine as an intracanal me-
dicament [22]. Their coating on orthodontic brackets reduced
the levels of S. mutans to zero [7]. This was also evident when
a combination of CuO and ZnO was incorporated in ortho-
dontic adhesives and brackets [7, 58].

The antimicrobial effect of various nanometals was deter-
mined with the help of colony forming units (CFUs) and min-
imal inhibitory concentrations (MIC). The MIC of AgNPs
against E. coli, Pseudomonas aeruginosa (P. aeruginosa),
and S. aureus were 0.49, 0.975, and 1.95 ppm respectively
[19]. Their minimum bactericidal concentration (MBC) and
MIC ratio was ≤ 4 which indicated that AgNPs were strongly
bactericidal against these organisms [19]. Furthermore, the
MIC against the C. albicans and S. mutans was influenced
by the type of reducing agent used for preparing the Ag ions,
as it affected their concentration [59]. In dentifrices, a
200 ppm concentration of AgNPs was inhibitory for the
S. mutans [60].

ii. Mechanical properties

The nano metal particles like Ag, ZnO, TiO2, and ZrO2

improved the compressive, flexural and microhardness of var-
ious dental materials at a relatively low filler level [6, 16, 23,
24, 27, 28, 30, 36, 39, 42, 43, 45–50, 58]. This was related to
their nano scale size that increased their surface area.
However, incorporation of 5 wt % of AgNPs to PMMA re-
duced its tensile strength, owing to reduced number of parti-
cles per unit area of the matrix and void formation from the
entrapped air and moisture [39]. The heterogenous dispersion
and agglomeration of the particles produced stress concentra-
tion centers that prevented chemical bond formation between
the AgNPs and PMMA [39, 87]. Conversely, the AgNPs in-
creased the compressive strength of GIC by 32% when they
were homogeneously distributed in the matrix as increased
crosslinking between the polymer chains prevented crack
propagation [30]. Like AgNPs, the TiO2 NPs also improved
the flexural and compressive strengths as well as micro hard-
ness of the GIC [23, 27].

Some studies have demonstrated that incorporation of
AgNPs to nano ZnO based endodontic sealers, increased
microleakage [18, 21]. This was attributed to the larger parti-
cle size of ZnO:Ag composites which could not diffuse into
the root bone junction [18, 21]. The microleakage was mini-
mum with ZnO nano-powders calcined at 500 °C [21].
Alternatively, the ZnO NPs increased the microshear bond
strength and reduced microleakage of composite resins [25].
They reduced the dentinal fluid flow, increased the complex
modulus values at intertubular and peritubular dentin, fastened
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the active dentin remodeling and tubular occlusion which re-
duced the dentinal hypersensitivity [28, 61].

The nano Zr significantly increased the flexural strength
and surface hardness of the PMMA [42, 43, 45- 48, 50].
This was attributed to the phenomena of “dispersion strength-
ening” whereby the small, tough, and crystalline Zr NPs, ho-
mogeneously distributed in the PMMA matrix, prevented the
crack propagation [45, 88]. However, a study showed that a
5 wt% concentration of these NPs reduced the flexural
strength due to agglomeration of the untreated nanofillers
[47]. Conversely, a 7.5 wt% concentration of nano-ZrO2 when
added to the unreinforced resin, increased its flexural strength
[43]. It was suggested that the silanization process and the
joint’s surface design, played an important role in improving
the properties of PMMA [43]. The transformation of ZrO2

from the tetragonal to monoclinic phase, absorbed the energy
of crack propagation resulting in “transformation toughening”
[43]. It expanded the ZrO2 crystals which placed the crack
under compressive stress and arrested its propagation. They
even increased the transverse strength of autopolymerized res-
in. This was related to increased interfacial shear bond be-
tween the NPs and the polymeric chains [42, 89]. The maxi-
mal transverse strength was recorded with 5 wt% of nano Zr.
Conversely, another study reported reduction in transverse
strength when various ratios (5, 10, and 20%) of nano-ZrO2

were added to the heat-cured PMMA [47]. It was related to a
non-homogenous distribution of the NPs and water sorption in
the microcracks within the PMMAmatrix. Besides, combina-
tion of glass fibers (GFs) with nano ZrO2 (2.5% nano-ZrO2 +
2.5% GFs) increased the flexural strength of PMMA by 45%
and impact strength by 51% [50]. An inverse relationship was
seen between the concentration of ZrO2 NPs/GFs and the
flexural strength. However, addition of ZrO2 NPs to PMMA
hindered its translucency due to differences in the optical
properties and distribution within the resin matrix [48]. As
the ZrO2 NPs were crystalline (high opacity) and formed clus-
ters, the absorbed light was unable to pass resulting in de-
creased translucency. The difference between the refractive
indices of the fillers and matrix affected the refraction and
reflection of light at the filler/matrix interface. These effects
were inversely proportional to the concentration of ZrO2 NPs.

Besides the PMMA, the ZrO2 NPs improved the compres-
sive strength and radio-opacity of the Portland/MTA cement
[36, 37]. The MTA consists of calcium silicate and a radio
pacifying agent, the bismuth oxide (Bi2O3) in 4:1 ratio [36].
The Bi2O3 confers high radio-opacity to Portland cement but
interferes with its hydration mechanism [36, 90]. It causes
precipitation of Ca(OH)2, alters the microstructure of the ce-
ment, and increases its porosity and solubility [36]. It is mildly
cytotoxic as it interferes with human dental pulp cell growth
[36, 91]. The ZrO2 NPs (1:4 ratio) were used as an alternative
to Bi2O3 in MTA or Portland cement [36, 37]. It provided
adequate radiopacity along with the release of calcium ions

and alkaline pH without affecting the hydration reaction [36,
37]. Improved mechanical properties were also seen in yittria
reinforced Zr sintered to ceramics [46].

Besides, the size of NPs, the technique of their deposition
may influence the mechanical properties [49]. For instance,
deposition of a nano thickness film of TiO2 on the denture
base by ALD technique, improved its wear resistance and
decreased the wetting angle to 5° [49].

The TiO2 NPs added at 3 and 5 w/w% concentrations to
GIC, significantly enhanced its fracture toughness, compres-
sive and flexural strengths and hardness [23]. A dually mod-
ified GIC with chitosan in the liquid phase and TiO2 NPs in
the powder phase showed similar effects [27]. However, a
previous study reported that incorporation of 7% (w/w) of
TiO2 NPs compromised the mechanical properties and adhe-
sion of GIC [23, 92].

iii. Bone regeneration

The nanometals may stimulate osseointegration, i.e., for-
mation of a direct connection between living bone and the
dental implants [31]. For instance, a study utilizing AuNP-
calcium phosphate cement (CPC) scaffold suggested that
AuNPs induced osteogenic differentiation of human dental
pulp stem cells (hDPSCs) [31]. They improved the wetting,
protein adsorption, cell attachment, and spreading properties
of CPCs. The AuNP-CPC scaffold enhanced the cell functions
and inhibited osteoclast formation. It easily conjugatedwith Ti
and promoted the osteogenic differentiation of other cells like
human adipose derived stem cells [57].

Likewise, the sol-gel–derived nanoporous TiO2 coatings
enhanced the soft-tissue attachment around implants in both
animal and human models [52]. A study showed that the TiO2

deposited by a fast electrochemical anodization treatment pro-
duced nano-tubes on the Ti surfaces which enhanced the bone
growth, protein adsorption, and cell adhesion [53]. Some stud-
ies incorporated AgNPs into these nanotubes which promoted
osseointegration [51, 55, 56].

Toxicity Related to Nanometals Used in Dentistry

Although nanometals provide numerous benefits, very little is
known about their toxic effects on humans, specifically when
incorporated in the dental materials. Evidence from short-term
in vitro studies shows that the nano dental materials are non-
cytotoxic [62–64, 66, 67]. However, these results cannot be gen-
eralized. As the dental materials remain functional in the oral
cavity for a longer duration, there is a high probability that the
NPs from these materials may leach out into the saliva and pro-
duce systemic effects [15]. They undergo biodegradation in the
oral environmentwhich includes both destruction and dissolution
in saliva as well as chemical/physical destruction, wear, and ero-
sion caused by food, chewing, and bacterial activity [93].
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Therefore, the material reactivity in the oral cavity is mainly
governed by the thermo-dynamic principles and electro-
chemical reaction kinetics. Subsequently, when an alloy is placed
in the oral cavity, the alloy-saliva system is driven towards a state
of thermo-dynamic equilibrium. At this stage, the alloy may
remain stable in its elemental form or oxidize into its ionic form
(corrosion). The uncharged elements inside the alloy may lose
electrons and become positively charged ions which are released
into the saliva. They may affect the surrounding tissues or enter
the systemic circulation [93]. The same mechanism may be ap-
plied to the nano metals used in dental restorations. Therefore, it
is imperative to evaluate their long-term toxic effects. Since there
were no studies related to this aspect, the following sectionwould
describe the factors affecting and mechanism of toxicity induced
by nano metal particles. Further the studies evaluating their toxic
effects when included in dental materials would be discussed
[62–67].

Mechanism of Toxicity from Nanometal
Particles

The toxicity depends on different parameters like size, surface
area, surface characteristics, stability, and routes of exposure
resulting in cytotoxicity, genotoxicity, increased inflammation
and reticuloendothelial system (RES) toxicity (Fig. 2) [94].
Their adverse effects on different organ systems have been
listed in Table 3 [95–111]. These factors were detailed in an
earlier study [94].

a) Size and surface area of nano metal particles

The size of nanometal particles mediates the cell responses,
including uptake, cyto-toxicity, ability to penetrate the biolog-
ical barriers, and immunological responses [112]. As the size
decreases, the surface area to volume ratio increases which
subsequently increases their reactivity. For instance, the
ROS generation and degradation of AgNPs into ions is depen-
dent on their size [113]. It has been reported that a reduction in
particle size from 30 to 3 nm increases the number of surface
particles from 5 to 50% which subsequently increases their
chemical reactivity [94, 114]. These surface atoms affect the
cell organelles like mitochondria, lysosomes, nucleus, and ge-
netic material resulting in cytotoxicity and genotoxicity.

Studies have shown that NPs of metals like Ag are easily
internalized due to their small size and induce changes in the cell
shape and viability [96]. Their active surface stimulates genera-
tion of ROS and hydroxyl radicals from lysosomes, leading to
increased oxidative stress [113, 115]. The lysosomes become
swollen and their membranes rupture due to lipid peroxidation
[113, 116]. Eventually, the cathepsins are released into the cy-
toplasm which activates the lysosome-mediated apoptosis

[116]. It has been shown that the AgNPs and Ag ions have
preference for the thiol groups [113]. Therefore, the molecules
with thiols in the cytoplasm, cell membrane, and inner mem-
brane of mitochondrion, serve as their targets [113, 117]. As a
result of lipid peroxidation, the membrane permeability in-
creases and the cytoplasmic contents are leaked out, resulting
in cell necrosis. The damage to mitochondrial membrane hin-
ders electron transfer and adenosine triphosphate production
which further triggers oxidative stress, and mitochondrion-
dependent apoptosis [113, 116, 118]. The nanometer particle
size also enables the AgNPs to translocate into the nucleus with
the help of nuclear pore complexes [113]. Inside the nucleus
they interact with the DNA leading to DNA damage through
the direct or indirect mechanisms. The direct DNA damage
involves localization of the NP in the nucleus causing mutations
while the indirect genotoxicity occurs due to oxidative stress
[94, 119]. The latter is related to chronic inflammation caused
by activation/recruitment of immune cells, such as macrophages
and/or neutrophils by the NPs. The nano metal particles of Ag,
Au, and metal oxides like TiO2 and ZnO have been reported to
cause DNA damage [94, 119, 120].

Although the nano metal particles and their oxides are be-
lieved to inhibit the production of pro-inflammatory cytokines,
their interaction with the immune system cells (leukocytes, neu-
trophils, monocytes, platelets, dendritic cells and macrophages)
may result in pro-inflammatory effects [94]. The NPs like those
of Ag may enhance the release of cytokines like interleukin
(IL)-1β by inducing inflammasome formation and caspase-1
activation [116]. They were reported to be cytotoxic to human
blood monocytes. Stimulation of cell signaling pathways (e.g.,
nuclear factor kappa–B (NF-κB), mitogen activated protein
(MAP)-kinase) accentuates the release of other pro-
inflammatory cytokines (IL-1β, IL-6, IL-8 and tumor necrosis
factor (TNF)-α) [78, 94] (Fig. 2). The NPs of Au, Ti, Cu, and
Zn have also been shown to produce similar effects through
activation of these pathways [120–122]. The transition metals
in metallic NPs may further enhance these processes by induc-
ing Fenton’s and Heiber-Weiss reaction [123, 124]. This phe-
nomena has been reported with the AgNPs. Its apoptotic effects
have been attributed to activation of c-Jun N-terminal kinase
(JNK) pathway [125]. The ZnO NPs damage the mitochondria
as toxic concentrations of Zn ions destabilize the lysosomes.
Their internalization or interaction with the cell surface induces
toxicity by similar mechanisms [94, 126].

The RES clears the NPs by directing them towards the liver
and spleen [127]. They are sequestered or filtered by the kid-
ney. It has been noted that less than 5% of NPs reach the
diseased site and the rest are cleared by the liver, spleen, and
kidneys [128]. In general, the NPs of about 10 nm size are
rapidly filtered out by the kidneys while those larger than
200 nm are cleared by the spleen [129]. The nanometal parti-
cles used in the dental materials fall in this range andmay have
a role in RES toxicity, which needs further verification.
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b) Surface characteristics

The surface of NPs is one of the important factors deter-
mining their toxicity potential as it influences their cellular
uptake. The cationic NPs are more reactive when compared

with the anionic ones and can be easily taken up by the cells
[94, 130, 131]. This is mainly related to the electrostatic at-
traction between the negatively charged cell membrane gly-
coproteins and positively charged NPs [115]. They are also
more strongly bound to the negatively charged DNA and
damage it. Subsequently, the G0/G1 phase of the cell cycle
is prolonged [132]. Studies have shown that positively
charged AuNPs were easily adsorbed on the cells and were
more toxic when compared with their negatively charged
counterparts [133].

The positively charged metal NPs have enhanced
opsonization potential, i.e., they promote adsorption of pro-
teins including antibodies and complement components, from
blood and biological fluids like saliva on their surfaces [132,
134]. These adsorbed proteins form “protein coronas” which
affect the surface properties of the NPs [132]. For example,
they may alter the surface charge, aggregation characteristics,
or size of the NPs [132]. The conformational changes in the
proteins may alter or inhibit their functional activities as well.
They may either lose their enzymatic action or disturb the
biological processes resulting in diseases [132]. Certain tech-
niques have been developed for changing the surface charge
of the NPs in order to improve their therapeutic efficacy and
reduce toxicity. For example, the NP surfaces and their
charges could be modified by grafting differently charged
polymers like polyethylene glycol or folic acid to improve
their intracellular uptake [135]. The biocompatibility of TiO2

NPs was improved through incorporation of functional NH2

or SH groups [136].
As the nanometal particles used in dental materials are

cationic in nature, they may easily penetrate the cells and
induce toxicity. They may either stimulate or suppress the
immunogenic responses and toxicity in vivo [94, 137].

The shape of NPs also affects their cellular uptake. For
instance, rod-shaped AuNPs were readily taken up by the
dendritic cells than the spherical- or cubic-shaped particles.
This was related to the larger surface volume of rod shaped
particles, which may then have increased toxic effects [138].

c) Stability of NPs and presence of impurities

The chemically stable NPs are less toxic when compared to
the unstable ones. Moreover, NPs with impurities may readily
undergo aggregation. This increases their toxicity due to ex-
cessive generation of ROS and inflammatory mediators [94].
This was reported with AgNPs in animal studies [139].

d) Route of exposure

The exposure route determines the initial interaction of NPs
with cells/tissues. The most common routes of exposure in-
clude inhalation or direct contact with materials containing
NPs [94]. They may reach toxic concentrations in the body

Table 3 Toxic effects of various nanometals and their compounds on
body organs

Organ Nano
metal/
oxide

Toxic effects produced

Brain [96–99] Ag The embryonic neural stem cells (NSCs)
from human and rat fetuses showed:

• Reduced mitochondrial viability
• Increased LDH release
• Up-regulated Bax protein expression
• Increased number of TUNEL-positively

stained cells
• Increased ROS
Altered cognition in BALB/C mice
Mitochondrial damage
Acute calcium response
Changes in astrocyte morphology

TiO2 • Increased oxidative stress
• Increased inflammatory responses
• Apoptosis
• Genotoxicity
• Impaired cellular components

Au • Astrogliosis
• Increased seizure activity
• Cognition defects

Cu • Crosses the blood-brain barrier
• Neuromuscular toxicity

Lung [100] ZnO
Ag
Cu/CuO
TiO2

• Increased oxidative stress
• Cellular apoptosis
• DNA damage

Heart [95, 101] Ag • Increased cardiocyte deformity
• Increased lipid peroxidation
• Decreased levels of GSH, SOD and

CAT

Skin [95, 102,
103]

Ag • Increased oxidative stress
• Cellular apoptosis

TiO2 • Cellular apoptosis

Liver
[95, 104–106]

Ag • Increased oxidative stress
• Increased release of inflammatory

mediators

ZnO • Increased oxidative stress
• Cellular apoptosis

TiO2 • Increased oxidative stress
• Cellular apoptosis

Kidney
[95, 107–110]

Au • Increased levels of urea, ALT, creatinine

ZnO • Increased levels of urea, ALT,
creatinine,
reduced blood indices

CuO • Increased ROS, DNA fragmentation

TiO2 • DNA damage

Spleen [95] Ag • Inhibits mitochondrial ATP-ase
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which may affect the brain, liver, spleen, lymph nodes, and
other organs [94]. Increased exposure to metal oxide NPs
(ZnO, TiO2, Al2O3, or CeO2) by aerosol reduced the tidal
volume and increased the respiratory rate in mice [140]. The
NPs of ZnO and TiO2 may induce nasal irritation. The ZnO
NPs may cause significant toxic effect in the airways while
TiO2 may result in DNA-strand break.

Toxicity Studies on Nanometal Particles
and Their Oxides in Dental Materials

The dental patients as well as the practitioners may be exposed
to NPs of metals and their oxides either through accidental or
incidental ingestion of the dental materials [141]. Although
the dental materials for permanent restorations are investigat-
ed for their stability and biocompatibility in oral environment,
toxic compounds may be generated through material degrada-
tion, or inappropriate application by the clinician [15]. This
was reported with the use of dental amalgams andmetal alloys
used for crown fabrication [142, 143]. However, similar infor-
mation for dental materials containing nano metal particles is
lacking. The NPs generated during treatment may cause sys-
temic toxicity or direct toxicity to the cells/tissue of the oral
mucosa. These effects have been evaluated in various in vitro
and animal studies that focused on exposure to TiO2, ZrO2,
and Ag NPs [62–67] (Table 2).

The occupational exposure may occur in dental laborato-
ries or clinics whereby NPs of metals may be released during
the manipulation of the materials [141]. This includes mixing
of materials in paste form or milling of the set materials. For
instance, peak concentrations of these NP in the aerosol were
observed when the dentist was finishing or polishing the set
composite restorations on the front teeth without water coolant
[141, 144, 145]. It was found that the aerosol mainly
contained the nano-sized particles with concentrations above
106 particles/cm3, in the breathing zone of both patient and the
dentist [141, 145]. The NPs of metals are rarely released from
the set materials in the patient’s oral cavity. However, they
may be generated through wear process and swallowed.
These NPs apparently reach the intestine from where they
may enter into the lymphatic system [141]. The wear rates
have been reported to be least for ceramic restorations follow-
ed by the composites and GICs [141, 146].

Previous research work has demonstrated that NPs of TiO2

may be absorbed across the lungs and gastrointestinal tract
[147]. The Ti NPs may be released from the dental implants
into the surrounding periodontal tissues or newly regenerated
bone [141, 148–150]. A postmortem study showed that
highest concentration of Ti NPs generated during or after the
insertion of implants was in human mandibular bone (37,700
μg/kg of bone weight at a distance of 556–1587 μm from the
implants) [141, 151]. Their concentrations were inversely

proportional to the distance from the implants. The sizes of
particles ranged between 0.5 and 40 μm in human jaw bone
marrow tissues, at distances of 60–700 μm from dental im-
plants [141, 151]. The AgNPs release rate has been found to
be 550 μg/l after 168 h [152]. There is also a risk of exposure
from environmental contamination due to improper disposal
of dental materials containing nanometal particles.

In vivo studies on rodents revealed increased accumulation
of nano metals from dental materials in the internal organs
which could result in organ pathology. For instance, single oral
gavage of TiO2 NPs (25 or 80 nm) caused pathological changes
in the liver and kidney of mice; chronic ingestion of colloidal
silver solution caused argyria in humans [153, 154]. A recent
review suggested that NPs of metals like Au, Ag, and Ti from
dental materials could cross the blood-brain barrier or translo-
cate through sensory nerves resulting in neurotoxicity [155].

As the oral epithelium is mostly non-keratinized stratified
squamous epithelium, with the exception of gingiva, hard pal-
ate and dorsal surface of the tongue, there is a plausibility for
direct contact of NPs with the cells and tissues of the oral
cavity [15]. They may induce hypersensitivity reactions or
inflammation in a vulnerable patient. The Ag, TiO2, ZnO,
and Au NPs commonly used in dental materials may slowly
dissolve into more toxic ionic forms. However, the studies
have reported that these metals were not cytotoxic to the sur-
rounding cells. For instance, a novel AgNPs endodontic
irrigant was not cytotoxic to human periodontal ligament stem
cells (hPDLSCs) and the mouse fibroblasts over a 48-hperiod
[64]. Similarly, Ag NPs incorporated in MTA did not cause
any reaction in the rat connective tissue [65]. The GICs con-
taining Zr NPs and microparticles were reported to be non-
genotoxic [67]. Although the TiO2 NPs, are considered to be
non-cytotoxic, moderate cytotoxicity on human gingival fi-
broblasts was reported when they were incorporated in an
orthodontic adhesive (1% w/w) [63, 66]. However, the cell
viability percentages were similar to the unmodified adhesive
[63]. Other NPs like those of Au in injectable calcium phos-
phate cement have been demonstrated inside the hDPSCs and
postulated to interfere with the cellular behavior [31].

Recommendations to Reduce Toxicity
from Dental Materials Containing Nanometal
Particles

As the data on possible adverse reactions derived from metal
NPs in dental materials or from manipulation of these mate-
rials is sparse, more research is required in this direction.
Following suggestions may be helpful in preventing exposure
to the metal NPs [141]:

1. The safety regulations for all dental materials should be
strictly followed by the dental professionals.
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2. The amount of dust generated may be reduced through
proper carving of the restorations.

3. Barrier techniques like use of mouth masks or face shields
may be helpful in reducing the exposure from aerosol
released during handling of set materials.

4. High vacuum suctions or evacuators and coolants should
be used when grinding and polishing the restorations
intraorally.

5. Effective ventilation in treatment areas prevents accumu-
lation of the particles in the localized environment and
hence inhalation.

6. Encapsulated powder/liquid systems should be used to
avoid exposure during manipulation of materials.

7. Stability of restorations and prostheses like Ti implants is
imperative to prevent leaching of NPs during functional
movements in oral cavity.

8. The surface charge of metal NPs may be modified with
help of charged polymers like poly (lactic-co-glycolic ac-
id) for targeted drug delivery in oral cavity with minimal
toxicity [156].

9. The pulmonary toxicity of metal oxide NPs may be re-
duced with the help of phosphonate surface passivation
[157].

Conclusion

The nanometals and their oxides have numerous applications
in dentistry owing to their favorable antimicrobial, mechanical
and regenerative properties. However, their potential benefits
are often accompanied with the risk for toxicity owing to their
nanoscale size and reactivity. Although in vitro studies sug-
gest that these materials are noncytotoxic, there is a dearth of
evidence on this aspect. As the current research lacks a unify-
ing protocol for the toxicological profiling of NPs of metals
used in dental materials, there is a need for well-designed
clinical trials which would evaluate their plausible adverse
oro-systemic effects in humans.
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