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Abstract
There are concerns about the spread of heavy metals in the environment, and human activities are one of the most important
factors in their spread. These agents have the high half-life resulting in their persistence in the environment. So, prevention of
their spread is the first step. However, heavy metals are an inevitable part of modern and industrial life and they are applied in
different fields. Cadmium is one of the heavy metals which has high carcinogenesis ability. Industrial waste, vehicle emissions,
paints, and fertilizers are ways of exposing human to cadmium. This potentially toxic agent harmfully affects the various organs
and systems of body such as the liver, kidney, brain, and cardiovascular system. Oxidative stress is one of the most important
pathways of cadmium toxicity. So, improving the antioxidant defense system can be considered as a potential target. On the other
hand, the Nrf2 signaling pathway involves improving the antioxidant capacity by promoting the activity of antioxidant enzymes
such as catalase and superoxide dismutase. At the present review, we demonstrate how Nrf2 signaling pathway can be modulated
to diminish the cadmium toxicity.
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Abbreviations
ATDSR Agency for Toxic Substance and Disease Registry
MT Metallothionein
ER Endoplasmic reticulum
iNOS Inducible nitric oxide synthase
Nrf2 Nuclear factor erythroid 2-related factor 2
CNC Cap “n” Collar
keap1 Kelch-like ECH-associated protein 1
ARE Antioxidant response element
HO-1 Heme oxygenase-1
NQO1 NADPH quinone oxidoreductase 1
CAT Catalase
SOD Superoxide dismutase

ROS Reactive oxygen species
AD Alzheimer’s disease
PD Parkinson’s disease
PERK Protein kinase R-like ER kinase
miR MicroRNA
lncRNA Long non-coding RNA
TNF-α Tumor necrosis factor-α
KIM Kidney injury molecule-1
PU Puerarin
PT Piceatannol
Zn Zinc
Tr Trehalose
mTOR Mammalian target of rapamycin
CVC Carvacrol
NDs Neurological disorders
BBB Blood-brain barrier
CAR Carvedilol
MDA Malondialdehyde
NPs Nanoparticles

Introduction

Human activities are the key factors in spreading heavy metals
in the environment. Arsenic, mercury, lead, chromium, and
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cadmium are potentially toxic heavy metals that negatively af-
fect human body [35, 104, 126, 156]. It has been shown that
heavy metals have a half-life more than the longevity of a
person and when individuals are exposed to heavy metals, they
are considered as permanent carriers [97]. Besides, these poten-
tially harmful agents accumulate at the high level in the body,
resulting in damages in various organs and systems [98]. To
date, a number of rules have been set by government for con-
trolling the spread of heavy metals. However, in some of the
developing countries such as Iran, lead is added to gasoline to
enhance the number of octanes and also to increase its power in
inflaming [17]. Heavy metals are an inevitable part of modern
life and human is exposed to these harmful agents daily [2].
Cadmium, a potentially toxic heavy metal, is extensively found
in our surrounding environment due to the human activities
including mining and agriculture works [3]. According to the
evidence of Agency for Toxic Substance and Disease Registry
(ATDSR) ranking, cadmium is at the place of seventh among
the most hazardous heavy metals [49]. Industrial wastes, vehi-
cle emissions, smoking, paints, fertilizers, and contaminated
food are other ways of exposing human to cadmium. Besides,
some plants such as tobacco are able to accumulate cadmium.
Unfortunately, cadmium is colorless and tasteless leading to its
high prevalence in the environment without being detectable.
Furthermore, humans are exposed to cadmium by using vege-
tables. For instance, it has been demonstrated that some of the
plants such as lettuce and peanuts have this ability to
bioaccumulate cadmium [71]. In accordance to the data of the
European Food Standards Authority, the weekly intake of cad-
mium as much as 2.5 μg/kg is tolerable [91]. Regardless of
sources of cadmium and also its spread in the environment, this
heavy metal harmfully affects a variety of organs and systems.
The liver is one of the major organs in the body accounting for
detoxification that is primarily affected by cadmium [46]. It
appears that the affinity of heavy metals, particularly cadmium
into the liver is due to the existence of metallothionein (MT) in
liver [72]. Also, cadmium negatively affects the kidney, brain,
and heart. Chronic kidney disease, decreased gain weight,
steatohepatitis, and ischemia are a few of adverse effects of
cadmium [63, 108].

A variety of studies have evaluated the harmful effects of
cadmium on the various organs and systems of the body. One
of the most common ways used by cadmium to exert neuro-
toxicity is stimulation of apoptotic cell death. Mitochondria
are the powerhouse of cells. However, these important intra-
cellular organelles are involved in intrinsic pathway of apo-
ptosis [78]. It seems that cadmium induces apoptosis in the
brain by disrupting mitochondrial membrane, releasing cyto-
chrome C into cytosol, and stimulating of apoptosis cascade
[85]. Endoplasmic reticulum (ER) is another intracellular or-
ganelle that triggers both autophagy and apoptosis to reduce
stress. A high level of stress is associated with ER-mediated
apoptosis [18]. Exposure to cadmium significantly enhances

the level of oxidative stress resulting in ER-mediated apopto-
sis in brain [85]. Besides, cadmium induces neurotoxicity by
reducing the activity of antioxidant enzymes leading to the
sensitization of brain cells to oxidative damage [88].
Reproductive system is also one of the targets of cadmium.
It appears that cadmium induces damages in testis via two
main strategies: (A) enhancing the level of oxidative stress
by upregulation of genes such as inducible nitric oxide syn-
thase (iNOS) and (B) elevating the intensity of inflammation
[33]. It is held that exposing to the cadmium not only affects
the reproductive system of adults but also is associated with a
number of adverse effects in their offspring such as neurotox-
icity [152]. The same story occurs in the kidney and liver
exposed to the cadmium. It seems that enhanced level of ox-
idative stress is responsible for stimulation of harmful effects
of cadmium on both kidney and liver [28, 55, 56]. However,
carcinogenesis activity has attracted much attention during
past decades. Although novel anti-tumor drugs and updated
technologies are extensively applied in treatment of cancer,
this life-threatening condition is still one of the leading causes
of death worldwide in spite of significant decrease in its inci-
dence rate [19, 24, 82, 123]. Notably, exposure to the cadmi-
um not only enhances the risk of cancer development, but also
increases the proliferation and malignancy of tumor cells [50].
It has been reported that cadmium is capable of targeting a
number of signaling pathways such as ERK to trigger prolif-
eration and invasion of tumor cells [148].

The high spread of cadmium and its potential toxic impacts
on the various organs and systems of body have led to the
attention of scientists into this field. A number of studies have
been directed to reduce the toxicity of cadmium after accumu-
lation in the body. It is worth mentioning that reducing the
level of oxidative stress using antioxidant agents is the most
common strategy [1, 70]. According to the minimal toxicity
and valuable pharmacological effects of plant-derived natural
products [5, 15, 16, 20, 21, 117, 147], these compounds have
been extensively applied in the amelioration of the harmful
effects of cadmiumwith satisfactory results [7, 81, 111]. In the
present study, we demonstrate that naturally occurring com-
pounds applied for alleviation of cadmium toxicity target Nrf2
signaling pathway.

Nrf2 Signaling Pathway Regulation

The nuclear factor erythroid 2-related factor 2 (Nrf2) is a key
member of Cap “n” Collar (CNC) subfamily of basic leucine
zipper-type transcription factors which plays a remarkable role
in preserving homeostasis [43]. In fact, Nrf2 signaling path-
way is a defense system against oxidative stress damage, ap-
optosis, and inflammation and so on [109]. Nrf2 signaling
pathway is mainly regulated by kelch-like ECH-associated
protein 1 (keap1). During physiological conditions, there is
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no need for over-activation of antioxidant enzymes and Nrf2
signaling pathway is at the dormant form. Keap1 as a negative
regulator of Nrf2 pathway, binds to the Nrf2, resulting in its
proteosomal degradation. However, upon stress conditions,
kead1 dissects from Nrf2, leading to the high accumulation
of Nrf2 in the cytoplasm. Then, accumulated Nrf2 translocates
to the nucleus and induces the activation of a number of genes
containing antioxidant response element (ARE) region [124].
Heme-oxygenase 1 (HO-1), NADPH quinone oxidoreductase
1 (NQO1), catalase (CAT), and superoxide dismutase (SOD)
are downstream mediators of Nrf2 signaling pathway that im-
prove and reinforce antioxidant defense system [4].

Nrf2 Pathway in Pathological Conditions

The increased generation of reactive oxygen species (ROS)
leads to the development of a condition known as oxidative
stress [102, 143]. It has been demonstrated that oxidative
stress plays a significant role in pathophysiology of disorders
such as acute kidney injury, atherosclerosis, heart failure, can-
cer, diabetes, aging, Alzheimer’s disease (AD), and
Parkinson’s disease (PD). The most important pathway which
oxidative stress uses is negatively affecting the genetic mate-
rial, lipids, and proteins, leading to the development of path-
ological conditions. Antioxidant defense system plays a piv-
otal role in neutralizing oxidative damage. However, when the
load of oxidative stress exceeds from the capacity of this de-
fense, complementary signaling pathways are stimulated to
compensate and enhance the capability of antioxidant defense
system. Nrf2 signaling pathway is one of these pathways
which increases the ability of antioxidant defense system in
combating with oxidative damage. This has resulted in mod-
ulation of Nrf2 signaling pathway in management of patho-
logical conditions. It seems that oxidative stress is one of the
key factors in the induction of AD, and reduction of ROS
concentrations and inhibition of mitochondrial membrane po-
tential loss are two important targets in AD. It has been sug-
gested that using compounds with stimulatory impact on Nrf2
signaling pathway can diminish oxidative stress-mediated in-
jury, resulting in alleviation of AD [105]. Notably, a similar
story occurs in PD [58]. One of the most important mecha-
nisms in the pathophysiology of PD is the neuron cell death
mediated by mitochondrial dysfunction and subsequently, en-
hanced concentration of oxidative stress. It has been reported
that targeting Nrf2/ARE signaling pathway can be considered
as a potential candidate in PD therapy. However, the modula-
tion of Nrf2 signaling pathway is a little different in cancer
treatment. In order to diminish the viability and migration of
tumor cells, the oxidative damage is induced in these malig-
nant cells. It has been suggested that inhibition of Nrf2 signal-
ing pathway is associated with decreased viability and inva-
sion of breast cancer cells [153].

A growing body of evidence suggests that the Nrf2 signaling
pathway plays a remarkable role in regulation of apoptotic cell
death. Nuclear translocation of Nrf2 signaling pathway and en-
hanced transcriptional activity of ARE are associated with a
decrease in the number of cells undergoing apoptosis [67].
However, it is held that protein kinase R-like ER kinase
(PERK)/Nrf2 signaling pathway induces damages in
cardiomyocytes by upregulation of ER stress and apoptosis
[122]. These conflicting studies highlight dual role of Nrf2 path-
way during apoptosis. More importantly, regulation of Nrf2 sig-
naling pathway is of importance in attenuation of inflammation.
For instance, formononetin as a naturally occurring compound
reduces the intensity of inflammation in rats exposed to metho-
trexate by enhancing the expression of Nrf2 pathway leading to
decreased concentrations of pro-inflammatory cytokines [8].
Furthermore, with respect to the potential role of Nrf2 signaling
pathway in alleviation of inflammation, inhibition of Nrf2 pre-
disposes cells into fibrosis [79].

Regulation of Nrf2 Signaling Pathway
by Natural Antioxidants

At the previous sections, we described the several phases of
the Nrf2 signaling pathway and its potential role in disease
treatment. In order to direct further studies into this field, pro-
viding a brief discussion about the modulatory impact of nat-
urally occurring antioxidants on Nrf2 signaling pathway is of
importance. The impact of these plant-derived chemicals on
the Nrf2 signaling pathway is limited to their modulatory im-
pact on the upstreammediators of Nrf2 pathway and also their
effect on the expression of Nrf2 and its nuclear translocation
[4, 25]. For instance, microRNAs (miRs) and long non-coding
RNAs (lncRNAs) function as the upstream modulators of
Nrf2 pathway [139, 154]. Naturally occurring antioxidants
are capable of affecting these upstreammediators to exert their
therapeutic activities. Besides, these compounds are able to
inhibit keap1 in stimulation of Nrf2 signaling pathway [59].
Upregulation/downregulation of nuclear translocation of Nrf2
and affecting the mRNA expression of Nrf2 are other strate-
gies applied by naturally occurring antioxidants in regulation
of Nrf2 signaling pathway [47, 66, 77].

Combating with Cadmium Toxicity
Through Nrf2 Signaling Pathway

Nephrotoxicity

Notably, cadmium is considered as a potential disruptor of en-
docrine system [64]. The toxic impact of cadmium is mainly
dependent on enhancing the level of oxidative stress [89].
TargetingNrf2 signaling pathway and promoting the antioxidant
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balance are of importance in reducing the cadmium-mediated
nephrotoxicity [56]. Pyracantha fortuneana is widely found in
China and well-known due to its great antioxidant activity [120,
127, 145, 146]. Supplementation of Pyracantha fortuneana is
suggested to be beneficial in attenuation of nephrotoxicity me-
diated by cadmium exposure. This renoprotective effect is in-
duced by suppressing keap1 and subsequently, stimulation of
Nrf2 pathway and downstream mediators such as HO-1 and
NQO1 leading to the enhanced cell viability (upregulation of
Bcl-2 and downregulation of Bax) and reduced inflammation
(decreasing the concentration of tumor necrosis factor-α
(TNF-α)) [68].

Royal jelly is secreted by the hypopharyngeal and mandib-
ular glands of honey bees and contains a variety of proteins,
monosaccharides, lipids, and fatty acids [38, 90, 121]. This
compound has a number of therapeutic and biological activi-
ties such as antioxidant, anti-inflammatory, cardioprotective,
and anti-tumor [14, 149]. Overall, exposure to cadmium en-
hances apoptotic cell death (Bcl-2 downregulation), elevates
the levels of cytokines such as TNF-α and IL-1β, increases
the expression of kidney injury molecular-1 (KIM-1), and
reduces antioxidant defense system. Administration of royal
jelly considerably alleviates these nephrotoxic impacts of cad-
mium via upregulation of the Nrf2/ARE signaling pathway
and consequently, improving antioxidant defense system by
enhancing the expression of HO-1 and NQO-1 [12].

The focus on using naturally occurring compounds is
mainly due to their minimal side effects [6, 20, 26, 83].
Puerarin (PU) is an isoflavone glycoside derived from
Pueraria lobata. PU has demonstrated great potential in de-
creasing cadmium toxicity [118]. Besides, PU is capable of
targeting Nrf2 signaling pathway for inducing its therapeutic
activities [36, 53]. Interestingly, PU follows a novel strategy in
attenuation of cadmium-mediated oxidative damage.
Administration of PU not only reduces the nuclear transloca-
tion of Nrf2, but also enhances the activity of keap1 to sup-
press Nrf2 signaling pathway leading to the protection of
proximal tubular cells against cadmium toxicity [135].
Trehalose (Tr) enhances the expression of keap1 to inhibit
Nrf2 signaling pathway leading to the reduced level of oxida-
tive damage in proximal tubular cells [133].

Reproductive Toxicity

Sulforaphane is a naturally occurring compound isolated from
cabbages, olives, and broccoli [29, 95, 103]. Sulforaphane is
well-known due to its great anti-tumor activity against various
cancer cell lines [116, 144]. Notably, this compound has dem-
onstrated great antioxidant activity [42, 62] making it an appro-
priate option for reducing the adverse effects of cadmium.
Exposing to cadmium significantly diminishes the antioxidant
activity of testis, reduces the concentration of testosterone, and
is associated with an enhanced level of MDA and lipid

peroxidation. Importantly, sulforaphane treatment remarkably
decreases the adverse impacts of cadmium on the leydig cells
(in vitro) by stimulation of Nrf2/HO-1 signaling pathway [142].

Piceatannol (PT) is a hydroxylated analogue of resveratrol
that is present in various plants and fruits such as grape, apple,
and tea [128, 129]. Accumulating data demonstrates that PT is
more efficient than resveratrol [94, 110]. PT is capable of
targeting the Nrf2 signaling pathway in exerting its protective
impacts [76, 130]. Administration of PT significantly enhances
steroidogenesis and improves sperm parameters such as sperm
motility, sperm count, and sperm viability by inhibition of keap1
and subsequently, activation of Nrf2 signaling pathway [112].

Hepatotoxicity

Although zinc (Zn) pollution is considered as an environmen-
tal problem, its interaction with cadmium is of interest in the
field of toxicology [41]. It has been demonstrated that Zn
considerably diminishes the cadmium-mediated toxicity by
improving antioxidant capacity, reducing cadmium uptake,
and stimulating immune system [31, 44, 45, 48, 51, 74]. A
newly published article reveals that Zn activates the Nrf2 sig-
naling pathway and subsequent targets to suppress inflamma-
tory responses and enhance antioxidant defense system [136].

Trehalose (Tr) is a disaccharide exclusively found in yeast,
fungi, and bacteria. Tr is capable of induction of autophagy
throughmammalian target of rapamycin (mTOR) showing the
capability of this agent in affecting molecular signaling path-
ways [75]. Different studies have revealed the antioxidant
capability of Tr. In case of reducing the harmful impacts of
cadmium, Tr enhances the nuclear translocation of Nrf2 lead-
ing to the promoted activity of antioxidant enzymes of the
liver and reduced number of apoptosis [57].

Royal jelly has a number of macromolecules such as glu-
cose, lipid, protein, and minerals [40, 86]. It seems that these
ingredients result in the great pharmacological impacts of roy-
al jelly [119]. By enhancing the expression of Nrf2 signaling
pathway, royal jelly inhibits oxidative and inflammatory reac-
tions in liver exposed to the cadmium [9]. Noteworthy, expo-
sure to cadmium enhances the generation of ROS. Enhanced
level of ROS is associated with stimulation of apoptosis and
autophagy [22, 87, 100, 137]. Selenium inhibits cadmium-
mediated autophagy and apoptosis by upregulation of Nrf2
and consequently, reducing ROS production [150].

Neurotoxicity

Long half-life, high cytotoxicity, and capability of generation of
pathological conditions have resulted in much attention to de-
creasing the cytotoxic impacts of cadmium [65]. Enhanced
levels of oxidative stress, induction of DNA damage, stimulation
of mitochondrial dysfunction, and changingmolecular pathways
are the results of exposing to cadmium [27, 80, 93].
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Neurotoxicity is one of the common complications of cadmium
exposure [131]. Naturally occurring compounds have demon-
strated a promising profile in treatment of disorders [23].
Carvacrol (CVC) is a monoterpenoid phenol exclusively found
in the species of Labiateae family including thyme and oregano
[52]. This compound has a number of pharmacological impacts
such as antioxidant, anti-inflammatory, anti-tumor, and anti-
diabetic [61, 84, 125, 138]. Administration of CVC is associated
with improvements in PC12 cell viability and glutathione level,
and inhibition of DNA fragmentation and apoptosis by enhanc-
ing the expression of Nrf2 signaling pathway [30].

Exposure to cadmium incredibly diminishes the levels of
detoxifying antioxidant enzymes such as CAT and SOD. By
application of royal jelly, an increase occurs in the Nrf2 signal-
ing pathway resulting in protection of cortical neurons [13].

Enhanced level of oxidative stress plays a remarkable role
in generation of neurological disorders (NDs) such as AD and
PD [39, 115]. So, with respect to the effect of cadmium on
elevating the level of oxidative stress, exposure to this poten-
tially toxic heavy metal can enhance the risk of developing
NDs [37, 73]. α-Lipoic acid belongs to the organosulfur com-
pounds exclusively found in plants and animals [92]. The
efficacy ofα-lipoic acid in penetration into blood-brain barrier
(BBB) has made it suitable option for treatment of NDs [114].
Importantly, α-lipoic acid is able to reduce the neurotoxic
activity of cadmium through its antioxidant, free radical scav-
enging, and chelating impacts. Investigation of molecular sig-
naling pathways has exhibited that α-lipoic acid triggers Nrf2
signaling pathway by downregulation of keap1 resulting in
improved antioxidant defense system [106].

Carcinogenesis

Notably, cadmium is able to predispose into cancer [34].
Exposure to cadmium is associated with the generation of
cancer such as lung cancer [69]. There is controversial
information about the molecular pathways involved in the
carcinogenesis impact of cadmium. It is held that ROS is
responsible for cancer development [132]. So, reducing the
concentrations of ROS is of importance in inhibition of
carcinogenesis effect of cadmium. Sulforaphane adminis-
tration is related to the upregulation of Nrf2 signaling path-
way leading to the decreased level of ROS and suppressing
cadmium-carcinogenesis [134].

Cardiotoxicity

By stimulation of oxidative stress, cadmium predisposes
to cardiovascular disorders such as hypertension, athero-
sclerosis, stroke, and myocardial infarction [107].
Carvedilol (CAR) is an efficient blocker of β-
adrenoceptor that is clinically applied for treating cardio-
vascular disorders. Besides, CAR is able to diminish
d o x o r u b i c i n -m e d i a t e d c a r d i o t o x i c i t y [ 1 5 5 ] .
Administration of CAR is advantageous in suppressing
cadmium-induced cardiotoxicity. It seems that 4-week
treatment with CAR (1 and 10 mg/kg/day) is associated
with a decrease in malondialdehyde (MDA), TNF-α, and
caspase-3. These cardioprotective impacts are mediated
by enhancing the expression of Nrf2 and subsequent
targeting of HO-1 [101].

Fig. 1 Combating with cadmium toxicity through Nrf2 signaling
pathway and related molecular pathways. Nrf2, nuclear factor erythroid
2-related factor 2; NO, nitric oxide; KIM-1, kidney injury molecule-1;
TNF-α, tumor necrosis factor-α; IL, interleukin; ALK, activin receptor-

like kinase; PI3K, phosphatidylinositide 3-kinase; Akt, protein kinase-B;
ROS, reactive oxygen species; NF-kB, nuclear factor-kB; COX-2, cyclo-
oxygenase-2, GSP, grape seed proanthocyanidin

Ashrafizadeh et al.  57



Spleenotoxicity

Althoughmuch emphasis was put on the potential role of Nrf2
signaling pathway activation in reducing the harmful effects
of cadmium on organs and systems of the body, a study con-
ducted by Qu and colleagues provides controversial results
about the role of Nrf2 signaling pathway. This interesting
experiment showed information on the interaction of the
Nrf2 signaling pathway with apoptosis and autophagy. It
seems that administration of trehalose remarkably reduces
the nuclear translocation of Nrf2 to inhibit autophagy and
apoptosis induced by cadmium [96]. More studies are needed
to approve the findings of this study.

Conclusion: Current Challenges and Future
Prospects

Nrf2 signaling pathway is considered as an important pathway
in maintaining antioxidant balance. It has been suggested that
any impairment in this signaling pathway is associated with
pathological development. On the other hand, cadmium is one
of the hazardous heavy metals which harmfully affects differ-
ent organs and systems such as the liver, kidney, brain, and
cardiovascular system. Stimulation of oxidative stress is one
of the methods that cadmium uses to exert its adverse effects.
So, targeting Nrf2 signaling pathway and, subsequently, im-
proving antioxidant balance can be considered as a potential
candidate in combating with cadmium toxicity. At the present
review, we describe how the Nrf2 signaling pathway can be
modulated to decrease cadmium toxicity. It was found that
increased level of oxidative stress and inflammation can lead
to malignant cell transformation. Using naturally occurring
compounds such as sulforaphane can inhibit this malignant
cell transformation by inhibition of oxidative stress via Nrf2
pathway upregulation. Inhibition of cell death, DNA damage,
and ferroptosis are other results of Nrf2 pathway upregulation.
Table 1 and Fig. 1 demonstrate the potential role of Nrf2
signaling pathway in overcoming to cadmium toxicity.
However, Nrf2 signaling pathway is a novel target, and more
studies are required to elucidate the role of this pathway in
combating with cadmium toxicity. It was revealed that natu-
rally occurring compound is able to target keap1, nuclear
translocation of Nrf2, mRNA expression of Nrf2, and up-
stream modulators of Nrf2 to suppress the cytotoxic impacts
of cadmium. Taking everything into account, it seems that
regulation of Nrf2 signaling pathway is a promising strategy
in combating cadmium toxicity. However, some changes can
enhance the efficacy of naturally occurring antioxidants in
regulation of Nrf2 signaling pathway and reducing cadmium
toxicity. One of the most challenging difficulties faced in treat-
ment of disorders using plant-derived chemicals is the low
bioavailability of this valuable agent that considerably restricts

their therapeutic activities. Notably, this problem is higher in
the treatment of neurotoxicity caused by cadmium exposure
compared to the other toxicities that is due to the BBB that
prevents the entering of agents into the brain. Importantly,
nanoparticles (NPs) have demonstrated great potential in
crossing over BBB and enhancing the bioavailability of natu-
rally occurring antioxidants. There is no study related to nat-
urally occurring antioxidant-loaded NPs for reducing the tox-
icity of cadmium. These nanocarriers can be considered in
future studies.
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