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Abstract
With the progress of nanotechnology, the adverse effects of nanoscale materials are receiving much attention. Inhibition of toll-
like receptor 4 (TLR-4)/nuclear factor kappa B (NF-κB) signaling is a hallmark for downregulating the expression of many
inflammatory genes implicated in oxidative stress. Therefore, the present study aimed to demonstrate the influence of grape seed
proanthocyanidin extract (GSE) on the hepatic TLR-4/ NF-κB signaling pathway in TiO2-NP-induced liver damage in rats. Forty
male Albino rats were divided into 4 groups (n = 10): G1 was used as a control, G2 received TiO2-NPs (500 mg/kg/day orally)
from the 17th to 30th day (acute toxicity), G3 received GSE (75 mg/kg/day orally) for 30 days, and G4 pre- and co-treated with
GSE (for 30 days) and TiO2-NPs (from the 17th to 30th day), with the aforementioned doses. TiO2-NPs induced severe hepatic
injury that was indicated by biochemical alterations in serum liver markers (acetylcholinesterase, ALT, ALP, total proteins,
albumin, and direct bilirubin), oxidative stress indicators (MDA, GSH, and catalase), and histopathological alterations as well.
Moreover, TiO2-NPs triggered an inflammatory response via the upregulation of TLR-4, NF-κB, NIK, and TNF-α mRNA
expressions. Pre- and co-treatments with GSE alleviated the detrimental effects of TiO2-NPs which were enforced by the
histopathological improvements. These results indicated that GSE effectively protected against TiO2-NP-induced hepatotoxicity
via the inhibition of TLR-4/NF-κB signaling and hence suppressed the production of pro inflammatory cytokines such as TNF-α
and improved the antioxidant status of the rats.
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Introduction

Nanomaterials have been widely applied to various fields includ-
ing food, drug and textile industries, agriculture [1, 2], eco-
friendly fabrication of biogenic nanoparticles [3–6], and cancer
nanotherapy [7]. Recently, titanium dioxide nanoparticles (TiO2-
NPs) are used widely in industry and medicine because of their
high stability and anticorrosive and photocatalytic properties [8].
Commercially, TiO2-NPs are used in paints, coatings, plastics,
papers, inks, pharmaceuticals, food products, cosmetics, tooth-
paste, tableted drugs, and sunscreens [9]. It can even be used as a

pigment for whitening skim milk and brightening foods [10].
Therefore, TiO2-NPs come into close contact with humans.
According to the Federal Regulations of the US Government,
the permissible limit of TiO2-NPs in food products does not
exceed 1% by weight [11]. Earlier studies have revealed that
TiO2-NPs aremore toxic than fine particles [12].Because of their
smaller sizes and larger surface area, nanoparticles are easily
taken up by cells and can induce pathological changes. Oral
exposure mainly occurs through food products containing
TiO2-NP additives. TiO2-NPs can be absorbed through the gas-
trointestinal tract into the systemic circulation and then accumu-
lated in the liver, kidneys, spleen, and brain. The accumulation of
TiO2-NPs in the tissue could induce inflammatory injuries [13].
Acute exposure to TiO2-NPs causes neurotoxicity [14], hepato-
toxicity, nephrotoxicity, myocardial damage, spleen lesions, and
inflammation in the lung and liver in mice and rats [11, 15, 16].
Signs of toxicity, including loss of appetite, passive behavior, and
tremors exist after intraperitoneal injection of mice by TiO2-NPs,
[17]. Chronic exposure to TiO2-NPs resulted in growth arrest, a
decrease in the liver weight, and histopathological changes in the
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gills in zebrafish [18]. TiO2-NPs may cause toxicity by several
mechanisms including genotoxicity [15, 19] and oxidative stress
and/or inflammatory responses [13, 20, 21] that induce inflam-
mation and cell apoptosis [22].

Toll-like receptor 4 (TLR-4), a member of the toll-
like receptor family, is a transmembrane protein encoded
by the TLR4 gene. It is one of the key effectors in
innate immunity. TLRs are produced by macrophage
activation [23]. Its stimulation leads to activation of an
intracellular nuclear factor kappa-light-chain enhancer of
activated B cells (NF-κB) signaling pathway which fa-
cilitates the expression of inflammatory cytokines [24].
As previously indicated, TiO2-NP induces the activation
of NF-κB signaling in lung [25] and mouse liver [26]
and kidney [27]. Known inducers of NF-κB activity are
highly variable and include reactive oxygen species
(ROS), tumor necrosis factor-alpha (TNF-α), interleukin
1-beta (IL-1β), bacterial lipopolysaccharides (LPS), iso-
proterenol, cocaine, and ionizing radiation [28] .
However, another literature indicated that NF-κB is not
involved in TiO2-NP-induced inflammation [29].

Previous studies suggested the involvement of oxida-
tive stress as one of the main mechanisms of TiO2-NP -
induced toxicity [30]; therefore, the oxidative stress
must be neutralized by antioxidants. Antioxidants serve
as potent scavengers for free radicals and prevent the
occurrence of disease [31]. Recently, the use of medic-
inal plants for the treatment of toxicity has been widely
reported due to their protective effects [32, 33].

Grape seed extract (GSE) (Vitis vinifera) is one of the most
powerful antioxidants, which contains high levels of flavo-
noids, vitamin C, and vitamin E [34]. GSE protects cells by
regulating cell oxidative damage, reducing organ injury, im-
proving the balance between oxidants and antioxidants, and
reducing the release of inflammatory mediators [35]. In addi-
tion, GSE has been reported to exert anti-carcinogenic effects
[36].About 60% to 70% of grape polyphenols are found in the
seeds. These polyphenols are commonly known as
proanthocyanidins. Other important polyphenols in grape
seed include gallic acid, catechin, epicatechin, gallocatechin,
and epigallocatechin [37].

Inhibition of TLR-4/ NF-κB signaling is a hallmark
for downregulating the expression of many inflammato-
ry genes implicated in oxidative stress. Despite the an-
tioxidant activities of grape seed being well document-
ed, the studies concerning its impact on TLR-4/ NF-κB
signaling in TiO2-NPs toxicity are limited. In this inves-
tigation, the pre- and co-treatments with the antioxidant
GSE may cut down the liability to TiO2-NPs toxicity.
Therefore, we aimed to explore the hepatoprotective role
of grape seed proanthocyanidins extract focusing on the
hepatic TLR-4/NF-κB signaling pathway following
TiO2-NP-induced hepatotoxicity.

Materials and Methods

Chemicals

TiO2 particles were purchased from Sigma-Aldrich, Egypt.
Reduced glutathione (GSH), catalase, and malondialdehyde
(MDA) commercial kits were purchased from Biodiagnostic
Company for research kits, Egypt. Acetylcholinesterase, ala-
nine aminotransferase (ALT), alkaline phosphatase (ALP), to-
tal proteins, albumin, and bilirubin kits were supplied from
Greiner Diagnostic GmbH-Bahlingen, Germany. Other non-
mentioned chemicals used in the present experiment were
obtained from Sigma, USA.

TiO2-NP Preparation and Characterization

TiO2-NPs were prepared by high-energy ball mill (HEBM)
technique according to the method that was described by
Gusev and Kurlov [38]. The characterization of TiO2-NPs
was performed by a high-resolution TEM electronmicroscope
(model JEM-2100, JEOL Ltd., Tokyo, Japan) to measure the
shape and size of TiO2-NPs. Size distribution and zeta poten-
tial of TiO2-NPs in solution were measured by a Zetasizer Ver.
7.11 (serial numberMAL1121994) (Malvern Instruments Ltd,
Malvern, Worcestershire, UK).

Form and Preparation of Grape Seed Extract

Grape seed extract was provided in capsule form (Noxy life®)
produced by The Arab Company for Gelatin and Pharmaceutical
Products, under license of Nulife International USA. The grape
seed extract formula provides a blend of standardized
proanthocyanidins (95%) found in grape seed. Grape seed
proanthocyanidins are a mixture of several polyphenols and fla-
vones, as previously reported [39]. GSE powder was milled
using a high-energy planetary ball mill (WBB-6 Gruendler
PulverizingCo., St. Louis,MO) and sieved using a 250-μmsieve
to get ultra-fine powder (micronized form). It was administered
as 75 mg/kg bw [40] after suspending in distilled water.

Experimental Animals

A total of 40 adult male Albino rats (Rattus norvegicus)
weighing 150–180 g were obtained from Helwan farm of
laboratory animals, Cairo, Egypt. Rats were kept under obser-
vation for 1 week before the onset of the experiment to be
acclimatized and then housed individually in metal cages at
room temperature (25 ± 2 °C), humidity (70%) under 12-h
light–dark cycle. Water and diet were allowed to rats in a free
manner. All experimental procedures were in accordance with
the guidelines of local Animal Care and Use Committee
established at the Beni-Suef University (BSU-IACUC). The
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study was performed after obtaining an approval number
(018-8) to conduct the animal experiments.

Experimental Design

The rats were randomly divided into four equal groups (10 rats
each) and treated as follows:

Control group The rats were given distilled water for 30 days
orally by gastric tube.

TiO2-NPs group The rats received (500 mg/kg bw, 1/10 LD50)

of TiO2-NPs [21] once daily for 14 days (17th–30th day) by
gastric tube (acute toxicity). The nanopowder was suspended
in distilled water at a concentration of 50 mg/ml/100 g rat,
then dispersed by ultrasonic vibration for 15 min (LD50 is
5000 mg/kg bw in rats and mice after oral administration
[41]).

GSE group Rats were given GSE (75 mg/kg bw) [40] for 30
days orally by gastric tube after suspending in distilled water.

GSE + TiO2-NPs groupRats were pre- and co-treated with GSE
(75 mg/kg bw) for 30 days interrupted by TiO2-NPs adminis-
tration (500 mg/kg bw) at the 17th–30th day orally by gastric
tube.

The clinical signs and physical activity were observed dur-
ing the period of the experiment.

Sampling and Tissue Preparation

Twenty-four hours after the last doses, blood samples were
withdrawn via orbital sinus and allowed to clot for 30 min at
room temperature, then centrifuged at 2000×g for 10 min at 4
°C. Serum was separated and stored at – 20 °C to be used for
biochemical analysis. Rats were sacrificed and 1 g of liver
tissue was used for the preparation of liver tissue homogenates
using homogenizer (Teflon Homogenizer, India), for measure-
ment of antioxidant and oxidative stress indices such as
malondialdehyde (MDA), reduced glutathione (GSH), and
catalase activity. Also specimens from the liver were fixed in
10% buffered formalin for histopathological examination.
Another portion of liver was placed immediately in RNase
inhibitor at − 80 °C for molecular biological investigations.

Biochemical Assays

Measurement of Liver Function Markers

Serum samples were used for kinetic determinations of the
enzymatic activities of acetylcholinesterase, ALT, and ALP
according to the methods described by Kovarik et al. [42],
Zilva and Pannall [43], and Tietz et al. [44], respectively.

Serum direct bilirubin was spectrophotometrically estimated
by the direct diazo reaction [45], serum total proteins were
estimated by following the Biuret method [46], and serum
albumin was measured by following the bromocresol green
method [47].

Measurement of Liver Oxidative/Antioxidant Indices

The liver tissue homogenates were used for the measuring of
MDA, GSH concentrations, and catalase activity. MDA was
determined as thiobarbituric acid reactive substances using the
method described by Buege and Aust [48]. GSH was estimat-
ed according to the method of Beutler [49] based on the re-
duction of 5,5-dithiobis-2-nitrobenzoic acid (DTNB) by glu-
tathione. Catalase activity was measured according to the UV
assay method described by Aebi [50]. Hitachi spectrophotom-
etry, model U – 2000 (Hitachi Ltd. Tokyo, Japan), was used
for measuring all chemical reactions.

Preparation of Histological Sections

Liver samples were fixed in 10% buffered formalin so-
lution for 48 h. Then they were processed (washed by
water, dehydrated in graduated ethyl alcohol, cleared in
xylene, and embedded in paraffin wax at 70 °C) accord-
ing to the method described by Bancroft and Gamble
[51]. Five-micron tissue thickness was mounted on
clean glass slides and stained by hematoxylin and eosin.
Each section was examined by a light microscope (B1
series, Motic, Xiamen, China).

Determination of TLR-4, NF-κB, NIK, and TNF-α mRNA
Expressions by Real-Time Polymerase Chain Reaction

Total RNAwas isolated from the liver tissue homogenates using
RNeasy Purification Reagent (Qiagen, Valencia, CA) according
to the manufacturer’s instruction. The concentration of RNAwas
measured using a UV spectrophotometer. The extracted RNA
was reverse transcribed into cDNA using high-capacity cDNA
reverse transcription kit (#K1621, Fermentas, USA). Real-time
qPCR amplification and analysis were performed using an
Applied Biosystem with software version 3.1 (StepOne™,
USA). The primers used in the amplification are shown in
Table 1 and were designed by Gene Runner Software (Hasting
Software, Inc., Hasting, NY) fromRNA sequences from the gene
bank based on published rat sequences. The reaction contained
SYBRGreenMaster Mix (Applied Biosystems). Data from real-
time assays were calculated using Applied Biosystem software.
The results were expressed as a fold change of the relative ex-
pression levels of target genes from the control group using the
2-ΔΔCt method [52].
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Statistical Analysis

Data were expressed as mean ± standard error of the mean
(SEM). Statistical analysis was carried out by one-way analysis
of variance (ANOVA) followed by the Tukey multiple compar-
ison post-test. Graph Pad Instat software (version 3, ISS-Rome,
Italy) was used. Significance was considered at P ≤ 0.05.

Results

Characterization of TiO2-NPs

TEM revealed spherical shaped particles with a homogeneous
nanometric size distribution (range 63–142 nm) (Fig. 1a). Zeta
potential of TiO2NPs in a neutral solution was − 19.1 mV; Z-
average diameter revealed a particle size of 338.7 nm (Fig. 1b)
and poly dispersion index of 0.246. The obtained information
indicates TiO2

-NPs suspension has a good dispersion stability.

Effect of TiO2-NPs and GSE on Clinical Signs of Toxicity
in Rats

No deaths were detected in the TiO2-NP treated group. Loss of
appetite and decreased physical activities were observed in the
TiO2-NP treated group. These symptoms were not clearly ob-
served in the GSE + TiO2-NP treated group.

Effect of TiO2-NPs and GSE on Liver Function

Liver function biomarkers were presented in Tables 2 and 3
that showed a significant increase (P ≤ 0.05) in the serum
activity of ALT and ALP enzymes and direct bilirubin levels
accompanied with a significant decrease in the serum acetyl-
cholinesterase activity, total proteins, and albumin levels in the
TiO2-NP group in comparison with the control one.
Additionally, pre- and co-treatments of TiO2-NP-treated rats
with GSE could markedly improve the liver function as indi-
cated by a restoration of these biomarkers toward the normal.

Effect of TiO2-NPs and GSE on the Antioxidant Status

Data presented in Table 4 showed a significant increase (P ≤
0.05) in MDA concentration and a significant decrease in

GSH concentration and catalase activity in the TiO2-NP group
compared with those in the control group, indicating an en-
hanced lipid peroxidation in liver tissue following TiO2-NP
exposure. Pre- and co-treatments of TiO2-NP-exposed rats
with GSE could ameliorate these changes.

Effect of TiO2-NPs and GSE on Histopathological
Structure of Liver

Figure 2(B1–B3) showed the histopathological findings of the
liver tissue slices from the TiO2-NP-treated rats. It revealed a
congested and dilated central vein, vacuolated and
degenerated hepatocytes with a huge amount of Kupffer cells
(Fig. 2B1). Another section in the same group showed severe-
ly congested blood vessels with perivascular leucocytes infil-
tration as well as endothelial hyperplasia (Fig. 2B2) and
leucocytic scattered aggregates (Fig. 2B3). The liver section
of the rats’ liver pre- and co-treated with GSE and TiO2-NPs
showed an improvement of the liver structure indicated by
normal blood sinusoids, normal central vein and few
degenerated hepatocytes (Fig. 2D). GSE-treated rats showed
normal structure of the liver (Fig. 2C) which indicates the
harmless effect of GSE on hepatic tissue.

Effect of TiO2-NPs and GSE on Hepatic Gene
Expressions

Table 5 showed a significant (P ≤ 0.05) upregulation of he-
patic TLR-4, NF-κB, NIK, and TNF-α gene relative expres-
sion levels in the TiO2-NP group in comparison with the con-
trol one. Meanwhile, the pre- and co-treatments with GSE
succeeded to induce a marked improvement in these
parameters.

Discussion

Several studies have demonstrated that TiO2-NPs have an ad-
verse effect on the liver because the liver is the major accumula-
tion site for most nanoparticles including TiO2 [15, 53]. Because
of the high catalytic properties, TiO2-NP exposure can generate
ROS [54, 55] and oxidative stress which could in turn initiate
lipid peroxidation andDNAdamage [30]. The overproduction of
ROS is thought to play a significant role in many of the observed

Table 1 The primer sequence of
the studied genes Gene Forward primer (5′————3′) Reverse primer (′5————3′)

TLR-4 5′-GTTCTTCTCCTGCCTGACAC-3′ 5′-TCCAGCCACTGAAGTTCTGA-3′

NF-κB 5′-CATTGAGGTGTATTTCACGG-3 5′-GGCAAGTGGCCATTGTGTTC-3

NIK 5′-TCACCAAAGACCCACCTCACCG-3 5′-GGACCGCATTCAAGTCATAGTCCC-3

TNF-α 5′-GCG ACG TGG AAC TGG CAG AAG-3′ 5′-GGTACA ACC CAT CGG CTG GCA-3′

B-actin 5′- GGTCGGTGTGAACGGATTTGG-3 5′-ATGTAGGCCATGAGGTCCACC-3
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biological responses to TiO2-NPs [56]. The accumulation of
these nanoparticles in liver causing oxidative damages and liver
toxicity was demonstrated by disturbance of the liver function
indices. In this study, TiO2-NPs induced liver damage, as con-
firmed by the increased serumALTand ALP activities (Table 2),
and direct bilirubin levels (Table 3). In accordance with Wang
et al. [11] and Rizk et al. [57], TiO2-NPs increased the activity of
ALT. Furthermore, Liu et al. [58] and Morgan et al. [59] found
that TiO2-NPs could increase the activities of ALP and ALT.
ALT is a cytosolic enzyme mainly located in the hepatocytes.
The level of ALT in serum increases as a result of releasing this
cellular enzyme into plasma by insult-induced hepatic damage.

ALP is present in many tissues, including bone, intestine, kidney,
liver, placenta, and white blood cells [60]. Damage to these tis-
sues causes the release of ALP into the bloodstream. Bilirubin, a
major breakdown product of hemoglobin, rises when there is
liver damage [61]. Bilirubin synthesis is regulated by the heme
oxygenase-1 which is rapidly induced by oxidative stress and
inflammatory cytokines [62]. On the other hand, the active ex-
cretion of direct bilirubin occurs at the canalicular membrane, by
means of cytoplasmic binding transporter proteins [63]. So, the
damaged hepatocyte observed in the current study might be less
able to produce the transporter proteins required for transporting
of direct bilirubin to the gall bladder and therefore, it was returned

Fig. 1 a TEM images of TiO2-
NPs showing the shape and size
of TiO2-NPs, which appear
spherical particles with a size
range of 63–142 nm. b Zeta
potential and size distribution of
TiO2-NPs revealing an apparent
zeta potential of − 19.1 mVand a
Z-average diameter of 338.7 nm
in a neutral solution

Table 2 Changes in serum acetyl
cholinesterase, ALT, and ALP
activities (U/L) in different groups

Acetyl cholinesterase (U/L) ALT (U/L) ALP (U/L)

Control 4580 ± 105.2a 42.19 ± 1.816a 40.92 ± 2.25 a

TiO2 –NPs 3647 ± 113.5b 68.04 ± 4.496b 59.45 ± 4.49 b

GSE 4563 ± 131.5a 43.29 ± 2.009a 41.88 ± 3.45a

GSE+ TiO2 –NPs 4174 ± 310.9ab 46.74 ± 0.965a 44.31 ± 2.18a

Values are expressed as mean ± SEM (n = 10). Means with different letters (a, b) in a column are significantly
different at level P < 0.05. TiO2-NPs, titanium dioxide nanoparticles; GSE, grape seed proanthocyanidin extract;
ALT, alanine aminotransferase; ALP, alkaline phosphatase
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back to blood elevating its level in serum. Accordingly, the pres-
ent study showed that the serum direct bilirubin level was elevat-
ed in TiO2-NP-treated rats. Meanwhile, the elevated levels of
direct or conjugated bilirubin might be due to the decreased
secretion from the liver or obstruction of the bile ducts evidenced
by the increased ALP activity. Our findings indicated that hepa-
tocyte damage altered their transport function and membrane
permeability as well as leakage of ALT and ALP enzymes from
the injured cells. Tests of the biosynthetic function of the liver
include serum total proteins, albumin, and acetylcholinesterase
which are synthesized in the liver and transported into the circu-
lation [64, 65]. Acetylcholinesterase is present in serum and liver,
which hydrolyzes blood-circulating acetylcholine [66] and regu-
lates cell growth and cell adhesion [67]. Serum acetylcholines-
terase activity is reduced in liver dysfunction due to reduced
synthesis [68]. The impaired activity of the enzyme following
TiO2-NPs exposure indicates organ dysfunction [69]. In accor-
dance with the results of Liu et al. [58], the serum acetylcholin-
esterase activity, total proteins, and albumin concentrations sig-
nificantly decreased after exposure to TiO2-NPs (Tables 2 and 3).
These findings may be explained as a reduction in the synthetic
function of the damaged liver induced by TiO2-NP exposure.

The increased level of ROS triggers a cascade of reactions
including lipid peroxidation, development of a series of in-
flammatory responses and apoptosis [70, 71]. In the current
study, TiO2-NPs successfully enhanced lipid peroxidation in
liver tissue which is indicated by the increased MDA and the
decreased GSH concentrations. These findings were in accor-
dance with those of Morgan et al. [59] and Abdou et al. [72].
GSH is the major tripeptide non-enzymatic antioxidant pres-
ent in the liver. Rizk et al. [57] reported that a decrease in GSH
level might have been due to increased scavenging of ROS

that were produced as a result of hepatotoxicity. Catalase is
one of the important enzymes in the supportive team of de-
fense against ROS. The inhibition of hepatic catalase activity
reported in this study may be attributed to the increased gen-
eration of free radicals. Durairaj et al. [73] reported that the
reduction in the activity of catalase may result in a number of
deleterious effects due to the accumulation of superoxide rad-
icals and hydrogen peroxide (H2O2).

In the current study, TiO2-NP-induced hepatotoxicity is
indicated by the disrupted tissue function as well as the ob-
served pathological changes. The histopathological examina-
tion of the representative sections of the liver showed that
treatment with TiO2-NPs caused liver damage including dila-
tion and congestion of central vein, which was accompanied
by vacuolated and degenerated hepatocytes, more Kupffer
cells, perivascular leucocytic infiltration, and endothelial hy-
perplasia (Fig. 2B1–B3). These pathological findings come in
agreement with the findings of Wang et al. [11].

Oxidative stress triggered the pro-inflammatory signaling cas-
cades in the liver as indicated in the current study by the signif-
icant upregulation of mRNA expression levels of TLR-4,
NF-κB, NIK, and the subsequent increased TNF-α expression
levels (Table 5) following TiO2-NPs exposure. TLRs receptors
are expected to contribute to the molecular interactions between
NPs and cells. TLRs are transmembrane proteins that include
both an extracellular domain (responsible for ligand recognition)
and a cytoplasmic domain (required for initiating signaling) [74].
TLRs recognize awide range of foreignmaterials includingNPs,
lipopolysaccharide as well as ROS, and reactive nitrogen species
[75]. TiO2 -NPs induced ROS production and simultaneous ac-
tivation of TLR-4 [76].On the other hand, the activation of TLR-
4 enhances ROS overproduction. The binding of NPs to TLR-4

Table 3 Changes in serum total
proteins, albumin, and direct
bilirubin concentrations in
different groups

Total proteins (mg/dl) Albumin (mg/dl) Direct bilirubin (mg/dl)

Control 8.33 ± 0.22a 3.60 ± 0.16a 0.77 ± 0.09a

TiO2 -NPs 6.86 ± 0.03b 2.77 ± 0.13b 2.60 ± 0.29b

GSE 8.22 ± 0.32a 3.55 ± 0.14a 0.75 ± 0.13a

GSE+ TiO2 -NPs 7.87 ± 0.21a 3.16 ± 0.11ab 1.08 ± 0.18a

Values are expressed as mean ± SEM (n = 10). Means with different letters (a, b) in a column are significantly
different at level P < 0.05. TiO2-NPs, titanium dioxide nanoparticles; GSE, grape seed proanthocyanidin extract

Table 4 Changes in MDA, GSH
concentrations, and catalase
activity in the liver of rats in
different groups

MDA (n mol/g tissue) GSH (mg/g tissue) Catalase (U/g tissue)

Control 30.75 ± 1.59a 26.73 ± 0.82a 0.47 ± 0.03a

TiO2 –NPs 47.22 ± 2.78b 21.69 ± 1.34b 0.19 ± 0.02b

GSE 31.29 ± 2.84a 24.81 ± 0.09a 0.47 ± 0.04a

GSE+ TiO2 –NPs 40.38 ± 1.75b 25.00 ± 0.18a 0.36 ± 0.03a

Values are expressed as mean ± SEM (n = 10). Means with different letters (a, b) in a column are significantly
different at level P < 0.05. TiO2-NPs, titanium dioxide nanoparticles; GSE, grape seed proanthocyanidin extract;
MDA, malondialdehyde; GSH, reduced glutathione
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at the cell membrane would result in their uptake and the subse-
quent activation of NF-κB [77].NF-κB is a nuclear transcription
factor that controls the gene expression of a large number of
inflammatory cytokines that are critical for the regulation of ap-
optosis, cancer, inflammation, and various tissue injuries [78].
NF-κB also regulates many aspects of innate and adaptive im-
mune responses [79]. The various stimuli like stress, cytokines,
and ROS can activate NF-κB through two major signaling path-
ways, the canonical and non-canonical (or alternative) pathways,
both being important for regulating immune and inflammatory
responses [80]. A NF-κB-inducing kinase (NIK) is a kinase that
activates the canonical and non-canonical NF-κB pathways [81].
NIK phosphorylates and activates IκB kinase complex (IKKα)

homodimers [82]. IKKα phosphorylates IkB inhibitory proteins
called inhibitor of kappa B (IκBs), leading to their degradation in
the proteasome and the subsequent nuclear translocation of ca-
nonical [83] and non-canonical [84] NF-κB. In the nucleus,
NF-κB attaches to a specific DNA response element and thus
triggers the transcription of pro-inflammatory cytokines such as
TNF-α and IL-1β [85]. TNF-α plays a central role in the devel-
opment of acute hepatic failure after severe trauma and sepsis by
directly or indirectly inducing hepatocyte necrosis rather than
apoptosis [86]. It is well known that ROS stimulate TNF-α
which is a NF-κB-dependent gene; on the other hand, TNF-α
is also a strong inducer for NF-κB [87]. In this issue, results of
our study coincide the results of the previous studies that

Table 5 Changes in liver TLR-4,
NF-κB, NIK, and TNF-α gene
relative expression levels in dif-
ferent groups

TLR-4 NF-κB NIK TNF-α

Control 1.03 ± 0.020a 1.01 ± 0.007a 1.01 ± 0.013a 1.03 ± 0.015a

TiO2-NPs 18.4 ± 1.53b 13.9 ± 0.513b 14.9 ± 0.644b 10.9 ± 0.754b

GSE 1.07 ± 0.052a 1.03 ± 0.020a 1.12 ± 0.092a 1.08 ± 0.060a

GSE + TiO2-NPs 8.10 ± 0.361c 2.63 ± 0.237c 5.42 ± 0.296c 3.53 ± 0.240c

Values are expressed as mean ± SEM (n = 10). Means with different letters (a, b, c) in a column are significantly
different at level P < 0.05. TiO2-NPs, titanium dioxide nanoparticles; GSE, grape seed proanthocyanidin extract;
TLR-4, toll-like receptor 4; NF-κB, nuclear factor kappa-light-chain enhancer of activated B cells; NIK, NF-κB-
inducing kinase; TNF-α, tumor necrosis factor alpha
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Fig. 2 Photomicrograph of liver in adult albino rats (H&E stain). A:
Control group shows normal liver architecture with central vein (v),
normal hepatocytes, blood sinusoids, and Kupffer cell × 100. B1–B3:
TiO2NP group: B1 shows dilated and congested central vein,
vacuolated and degenerated hepatocytes. Note the huge amount of
Kupffer cells × 100. B2 shows severely congested blood vessels with

perivascular leucocytic infiltration (yellow arrow) as well as endothelial
hyperplasia (white arrow). B3 shows leucocytic scattered aggregates
(black arrow) × 100. C: GSE group shows normal hepatocytes, blood
sinusoids, and central vein (V) × 100. D: GSE + TiO2NPs group shows
improved liver architecture, normal blood sinusoids, and central vein (V).
Note the few degenerated hepatocytes and numerous Kupffer cells × 100



suggested the signaling pathway of liver inflammation and dam-
age after exposure to TiO2-NPs might occur via activation of
TLR-4, NIK, NF-κB, and TNF-α in hepatic tissues which might
directly lead to a series of inflammatory responses and hepatic
damage.

Many natural products that have antioxidant and anti-
inflammatory activities can inhibit NF-κB activation [88].
So the current study aimed to investigate the mechanistic path-
way of GSE as an antioxidant agent on TiO2-NP-induced
hepatotoxicity. Our results have demonstrated the efficacy of
GSE in maintaining the normal function of liver by restoring
the altered liver markers (serum acetyl cholinesterase, ALT,
ALP, total proteins, albumin, and direct bilirubin) (Tables 2
and 3). These findings were previously reported by Shin and
Moon [89] in dimethyl nitrosamine-induced liver fibrosis in
rats. This improvement in liver function may be attributed to
the antioxidant properties of polyphenols in GSE that can
reduce oxidative stress, maintain cell membrane integrity
and restore the hepatocytes function.

Pre- and co-treatments with GSE displayed good antioxidant
effects against TiO2-NPs -induced oxidative damage in liver as
indicated by the decreased MDA and the increased GSH con-
centrations and catalase activity (Table 4). These findings were in
agreement with the results of Sharma et al. [90] who reported
increased levels of GSH and catalase activity following GSE
treatment in UV-exposed mice and the results of Li et al. [91]
who found that GSE administration markedly suppressed lipid
peroxidation in thioacetamide-induced hepatic fibrosis in mice.
GSE showed good antioxidant effects. Phenolic compounds and
flavonoids are the major phytochemicals present in the GSE [34,
92]. The phenolic group of polyphenols accepts an electron and
forming a stable phenoxyl structure that intersects the continuous
oxidation in the cell and prevents the formation of free radicals.
So, GSE protects cells by reducing the oxidative damage and the
release of inflammatory mediators [35]. Therefore, pre- and co-
treatments with GSE restored the normal hepatic architecture
with only mild pathological alterations (Fig. 2D) and these find-
ings confirmed the protective effect of GSE against TiO2-NP-
induced hepatic damage.

TLR-4 and NF-κB are critical signaling mediators in in-
flammatory response; therefore, inhibition of TLR-4/NF-κB
signaling with antioxidants will alleviate the inflammatory
response and prevent cell death [93].

The novel results of this study are the inhibition of TLR-4/
NF-κB signaling pathway by GSE indicated by the significant
reductions in the mRNA expression levels of TLR-4, NF-κB,
NIK, and TNF-α in the hepatic tissues obtained from GSE+
TiO2-NP-treated rats (Table 5). In this respect, Sharma et al.
[90] and Mantena and Katiyar [94] reported the inhibitory effect
of GSE proanthocyanidins on UV-induced oxidative stress and
NF-κB signaling pathway in normal human epidermal
keratinocytes as well as in SKH-1 hairless mice. Chiefly, the
efficacy of flavonoid extractions is extensively studied.

Flavonoids contribute to the regulation of LPS-induced inflam-
matory response in RAW264.7 cells through TLR-4 mediated
NF-κB and JNK pathways [95]. Additionally, Yang et al. [96]
reported that inhibition of TNF-α is able to suppress the activa-
tion of TLR-4 and NF-κB signaling pathway that consequently
inhibits cytokine production and protect hepatic tissues from
being injured by excessive immune reactions.

The present results indicated that targeted inhibition of the
TLR-4/NF-κB signaling pathway might be a possible under-
lying mechanism of antioxidative and anti-inflammatory re-
sponses achieved by GSE proanthocyanidins for alleviating
TiO2-NP hepatotoxicity.

Conclusion

In conclusion, the signaling cascade in TiO2 NP-induced hep-
atotoxicity might occur via ROS production and activation of
TLR-4 after binding with TiO2-NPs → excess ROS → NIK
→ NF-κB → TNF-α → inflammation and tissue injury. The
current data suggest that GSE proanthocyanidins with their
antioxidant activities could modulate the oxidative damage
and inflammatory response via inhibiting TLR-4/NF-κB sig-
naling pathway in the liver following TiO2-NPs toxicity which
is closely related to oxidative stress. Therefore, the inhibition
of TLR-4/NF-κB signaling pathway is expected to become a
novel strategy for the prevention of hepatotoxicity. Also, GSE
proanthocyanidins may be a potential choice for the preven-
tion and alleviation of nanotoxicities.
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