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Abstract
The aim of this study was to investigate the long-term effects of low-dose lead exposure on bone microstructure in mice. Ten SPF
12-week-old male C57BL/6J mice were randomly divided into two groups: control (deionized water) and lead exposure (150 ppm
of lead acetate in drinking water). After 24 weeks treatment, mice were weighed and the left femurs were collected and stored at −
80 °C. The right femurs of the mice were scanned by Micro-CT for three-dimensional reconstruction, and bone mineral density,
bone volume fraction, trabeculae thickness, trabeculae number, and trabeculae separation were measured. The right tibia was
collected to investigate histopathological changes in H&E-stained sections. The gene expression of osteoprotegerin (OPG),
RANKL, and runt-related transcription factor 2 (Runx2) was determined using real-time PCR. The bone density of femoral
cancellous bone and the number of cancellous bone trabeculae in the lead exposure group were both significantly decreased
compared with the control group. Bone marrow stromal cell numbers were decreased following lead administration, and lipid
droplet vacuoles were observed in the lead group. Levels of OPG were significantly decreased in the lead group, and lead also
inhibited the expression of Runx2 compared with the control group. Long-term exposure to low doses of lead can cause bone
damage without inducing other obvious symptoms through decreasing bone density and the number of cancellous bone trabeculae,
further suppressing bone formation. It suggests that lead may exacerbate bone loss and osteoporosis, especially in the elderly.
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Introduction

Lead (Pb) has been recognized as a toxic metal that is found
naturally in soil for many years. Its extensive use and presence
in the environment is a recognized public health problem
worldwide [1]. Despite the many policies and procedures
made to decrease the amount of lead in the environment, it
remains a pervasive toxicant affecting numerous biological
systems [2–4]. A study by the World Health Organization
(WHO) found that lead poisoning was linked to 853,000
deaths worldwide in 2013 [5].

Bone is the hard component of the endoskeleton of verte-
brates, with complex internal and external structures [6].
Environmental lead enters the body primarily through the

respiratory and digestive tracts. Initially, lead is distributed in
the body in the form of lead salts bound to plasma proteins.
After a few weeks, more than 94% of lead is deposited in bone
as insoluble lead phosphate [7, 8]. Bone lead is a biomarker of
past exposure with a half-life of approximately 20 years, which
increases with age [9, 10]. Bone formation and growth is con-
trolled by a series of complex feedback processes that depend
on biological and environmental factors. Large amounts of lead
accumulating in bone can affect bone mineral deposition, de-
velopment and maturation. Studies have shown that occupa-
tional lead exposure at high levels can lead to decreased bone
density, osteoporosis and osteoarthritis, even deformity of bone
development, fractures, affecting the quality of life [11, 12]. In
addition, recent clinical and basic science research has sug-
gested that even low levels of lead exposure may adversely
affect both the developing and adult skeleton. In a study of rats
exposed to low levels of lead in their drinking water over a
lifetime, Beier et al. found adverse effects on bone. Lead expo-
sure caused a reduction in BMD sufficient to reduce biome-
chanical strength and increase fracture risk [13]. They also
reported that Pb targeted progenitor MSCs and altered their
ability to differentiate into appropriate cell lineages. Pb also
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increased the in vitro formation of adipogenic cells and de-
creased the formation of osteoblasts [14]. However, a cohort
study found that adolescent childrenwith high blood lead levels
(BLL) (23.6 μg/dl) had higher BMDmeasurements of the ver-
tebras and femoral heads compared with those with low blood
lead cohort (6.5 μg/dl BLL) [15]. Likewise, an animal experi-
ment found elevated lifetime lead exposure produces an in-
crease in bone mass in adolescent mice [16]. The exact effects
of lead exposure on bone depend on dosing, duration of expo-
sure, and animal species. The topic remains ill-defined at pres-
ent. Most people have a detectable amount of Pb in their skel-
eton in industrial world currently [17]. It’s essential to under-
stand the impact of Pb on bone structure.

The purpose of this study was to investigate the effects of
long-term low-dose Pb exposure on bone of adult male mice
and explore the underlying mechanism. Bone microstructure
was detected by microcomputed tomography (Micro-CT).
Biomarkers for bone formation and resorption were measured
by quantitative real-time (qRT)-PCR in bone tissue. This
study may provide more clues about the effects of long-term
low-dose Pb exposure on bone metabolism and suggest bone
health should be monitored in populations chronically ex-
posed to Pb.

Materials and Methods

Animals

Twelve-week-old male C57BL/6J mice were purchased from
the SLAC Laboratory for this experiment (SLAC, Shanghai,
China). Animal care followed the Guide for the Care and Use
of Laboratory Animals, and the study protocols were ap-
proved by the Soochow University Institutional Animal Care
and Use Committee (SCKK2017-0006). Animals were
housed five per cage in polycarbonate cages with corncob
bedding under standard conditions (23 ± 2 °C, 12-h light-dark
cycle, and 50% ± 10% humidity) and provided water and food
ad libitum. After acclimatization to laboratory conditions for
1 week, the mice were randomly divided into two groups (5
animals/group): control group (Control) and low-dose lead
group (Pb). Mice in the lead group were administered
150 ppm lead acetate dissolved in the drinking water.

Sample Collection

At week 24, the mice were sacrificed. Blood samples were
collected for hematological analysis. Femurs were harvested
and isolated from any soft tissues. Left femurs were cleaned in
saline solution and stored at − 80 °C for quantitative real-time
PCR, and right femurs were fixed in 10% formalin for 3 days
for Micro-CT analysis.

Hematological Analysis

Hematological parameters, such as red blood cell number
(RBC), hemoglobin concentration (HGB), hematocrit value
(HCT), mean corpuscular hemoglobin concentration
(MCHC), total white blood cell number (WBC), and platelet
count (PLT) were determined using an automatic five-
classification blood cell analyzer (CELL-DYN RUBY,
Abbott, America).

Micro-CT Analysis

Right femurs were scanned and analyzed for cortical and tra-
becular bone by Micro-CT (SkyScan 1174, Bruker, Kontich,
Belgium). The acquisition settings were X-ray voltage =
50 kV, X-ray current = 800 μA, filter = 0.5 mm aluminum,
rotation step = 0.7°, and image pixel size = 10.3 μm. After
scanning, images were reconstructed using NRecon software
(Bruker, Kontich, Belgium). Parameters for cortical and tra-
becular bone were performed using CTAn software (Bruker,
Kontich, Belgium), and 3D image reconstruction was per-
formed using CTvox software (Bruker, Kontich, Belgium).
For trabecular and cortical bone parameters, the volume of
interest (VOI = 100 slices) was selected with reference to the
distal growth plate. The trabecular and cortical bone regions
started ~ 0.7 mm and ~ 5 mm, respectively, from the growth
plate and extended towards the proximal end of the femur. The
cortical bone parameters included cortical BMD and cortical
thickness (Ct.Th). The cancellous bone parameters of the fem-
oral metaphysis included trabecular BMD, bone volume to
total tissue volume ratio (BV/TV), trabecular number
(Tb.N), trabecular thickness (Tb.Th), and trabecular spacing
(Tb.Sp).

Bone Histology

Right tibias of mice were fixed in 10% formalin for 3 days and
decalcified for 4 weeks in 10% EDTA. Specimens were em-
bedded in paraffin and cut in 5-μm sections through the lon-
gitudinal axis. Sections were stained with hematoxylin and
eosin (H&E), mounted onto glass slides, and examined under
a l ight microscope (DM2000, Leica; Germany) .
Microphotographs (× 40) were taken using a camera
attachment.

Quantitative Real-Time-PCR

This approach was taken to further investigate the possible
mechanisms by which Pb exposure affects bone formation
and resorption to better understand disorders such as osteopo-
rosis. The left femur was ground to powder in liquid nitrogen
using a mortar and pestle. Total RNAwas extracted from the
powder using Trizol according to the manufacturer’s
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instructions. cDNA was synthesized from 500 ng total RNA
using a reverse transcription kit (Hifair® II 1st Strand cDNA
Synthesis SuperMix, YEASEN, Shanghai, China) according
to the manufacturer’s protocol. PCRs were performed using
the Applied Biosystems 7500 Real-time PCR Systems and
Hieff™ qPCR SYBR® GREEN Master Mix kit (YEASEN,
Shanghai, China). The PCR conditions were 5 min at 95 °C
followed by 40 cycles of two-step PCR denaturation at 95 °C
for 10 s, and annealing at 60 °C for 30 s. The melting curve
phase followed the default settings of the instrument. The
GAPDH gene was used to normalize the expression of target
genes in the two groups. The primer sets for real-time quanti-
tative PCR analysis are listed as follows:

GAPDH: forward (TCCTTCCCGCTGACCAAA); reverse
(TGTCCGTTGTCTTTCCTGTCAA)

OPG: forward (TCCTTCCCGCTGACCAAA); reverse
(TGTCCGTTGTCTTTCCTGTCAA)

RANKL: forward (TCCTTCCCGCTGACCAAA); reverse
(TGTCCGTTGTCTTTCCTGTCAA)

Runx2: forward (GACTGTGGTTACCGTCATGG
C);reverse

(ACTTGGTTTTTCATAACAGCGGA)

Statistical Analysis

Statistical analysis was conducted using SPSS 21.0 soft-
ware. Measurement data are presented as mean and
standard deviation (SD). The statistical differences be-
tween two groups were evaluated by unpaired Student’s
t test, and P < 0.05 was considered statistically
significant.

Results

Effect of Pb on Body Weight

After 24 weeks of treatment, the bodyweights of mice
in the control group increased slightly, while that in the
lead group did not change significantly. There was no
statistical difference between the two groups at the end
of the experiment (Fig. 1).

Fig. 1 Effect of Pb on body weight of mice. The data are shown
as mean ± SD

Fig. 2 Influence of Pb on the hemopoietic system in mice. Pb exposure did not cause anemia during 24 weeks. a Red blood cell. b Hemoglobin. c
Hematocrit. d Mean corpuscular hemoglobin concentrate. e White blood cell. f platelets. The data are shown as mean ± SD
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Effect of Pb on Hematologic System

Lead exposure did not affect red blood cell count or he-
moglobin concentration in mice in the lead group. There
was no significant difference in white blood cell count or
platelet concentration between the two groups (Fig. 2).

Effect of Pb on BMD and Morphology of Trabecular
Bone

Radiographs of Pb-exposed animals showed a decrease in
femoral trabecular bone as visualized by increased radiolucen-
cy in these regions. Micro-CT analysis demonstrated that,

Fig. 3 Effect of Pb on BMD and
morphology. Radiographic
images and cancellous BMD in
right femur. The data are shown as
mean ± SD, *P < 0.05

Fig. 4 Effects of Pb on trabecular
bone in femur. a Images are of
distal femur and are
representative of transverse
sections from control and Pb-
exposed mice. b Quantitative
analysis of trabecular bone by
micro-CT. BV/TV: bone volume
to total tissue volume ratio; Tb.N:
trabecular number; Tb.Th: tra-
becular thickness; Tb.Sp: trabec-
ular spacing. The data are shown
as mean ± SD, *P < 0.05
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compared with the control animals, Pb exposure significantly
decreased BMD at the distal femur (Fig. 3).

Micro-CT Analysis of the Distal Femur

Quantitative measures using Micro-CT analysis of trabec-
ular bone at the distal femur showed a significant decrease
in Tb.N in the mice exposed to lead. Similarly, BV/TV
and Tb.Th in the lead-treated group decreased compared
with the control group. There was no difference in Tb.Sp
between the two groups (Fig. 4b).

Micro-CT analysis of the femoral midshaft showed that Pb
had no effect on cortical bone, neither in cortical BMD nor in
Ct.Th (Fig. 5b).

Histological Analysis of Proximal Tibia

Bone marrow stromal cells were decreased following chronic
administration of Pb intervention. Also, lipid droplet vacuoles
were observed in the Pb group but not in the controls (Fig. 6).

Quantitative Real-Time-PCR Analysis of Bone
Formation and Bone Resorption

The gene expressions of OPG/RANKL and Runx2 were
quantitated. Levels of OPG were significantly decreased
in mice in the Pb-treated group, and there was no effect
of treatment in the expression level of RANKL between
the two groups (Fig. 7a,b). In addition, Pb inhibited the
expression of Runx2 compared with the control group
(Fig. 7c).

Discussion

Toxicity due to lead exposure is associated with many health
problems not only in the occupational staff but also in the
general public [18–20]. Many studies have indicated that
lifetime low-level lead exposures have a negative impact
on human health [21, 22], even at blood lead levels <
10 μg/dL, which is the current adopted threshold of concern

Fig. 5 Micro-CT analysis of
cortical bone at the femoral
midshaft. a Cross-sectional im-
ages representative of control and
treatment groups demonstrate no
difference. b Quantitative analy-
sis of cortical quality. The data are
shown as mean ± SD

Fig. 6 Histological analysis of the
proximal right tibia. Internal
morphology of bone tissue from
control and Pb-treated mice
(H&E) show Pb-induced de-
creases in bone marrow stromal
cells
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as defined by the US Centers for Disease Control and
Prevention. In our study, lead exposure did not cause anemia
during 24 weeks, which indicate that even low-level lead
exposure in adult mice can lead to skeletal changes. The
results are consistent with the results of epidemiological
studies [23], proving adverse effect of lead on bone micro-
structure by in vivo experiments.

BMD is an indicator of bone health, and decreased
BMD is an important biomarker for fracture risk. In the
present study, lead significantly decreased BMD after
24 weeks of treatment, producing an osteoporosis phe-
notype in this group. Several studies have shown the
potential impact of lead exposure on the incidence of
osteoporosis and the likely mechanisms involved of its
toxic effects [24, 25]. In recent years, Micro-CT has
been widely used to observe the internal structure of
bones and is recognized as the gold standard for
assessing bone micro-architecture [26]. In this study,
right femurs were scanned by Micro-CT. Bones are
composed of numerous trabeculae, which are irregularly
arranged within the bones. From a mechanical point of
view, the strength of bone depends not only on the
amount of internal material content but also on the ar-
rangement of the trabeculae between each other, namely
the internal structure of bone. Once trabecular bone de-
creases, becomes thin and spare, bone will become brit-
tle [27, 28]. The accumulation of lead in bone over time
has a negative effect on bone formation that results in
the decrease in the number of trabeculae [29], consistent
with the results of the present study. Data from the
present study also demonstrated a decrease in trabecular
thickness, which may be associated with lead toxic ef-
fects on bone mineralization.

The RANKL released by osteoblasts binds to the
RANK on the surface of osteoclasts and then promotes
the differentiation and activation of osteoclasts through
the NF-κB, JNK, protein kinase B, and other pathways
[30–32]. OPG can competitively inhibit the binding

between RANK and RANKL and suppress the function
of osteoclasts [33]. In our study, mice in the Pb-treated
group showed a significant decrease in mRNA levels of
OPG in bone tissue. Monir AU reported the increase in
the biomarkers for bone resorption in serum of mice
treated with Pb [34]. Both of the results indicated in-
creased activation of osteoclasts. After the bone devel-
opment is complete in the young adult, the bone still
maintains the cycle of bone formation and resorption
throughout adult life [35]. Our results showed the de-
crease in the biomarkers for bone formation (Runx2),
provides an explanation for the decrease in BMD and
trabecular number. Once bone metabolic balance is
perturbed, superabundant osteoclasts and reduced bone
formation will cause osteolysis. Furthermore, it is
known that Pb exposure facilitates adipose cell forma-
tion [36]. After lead exposure, bone mesenchymal stem
cells differentiated to adipocyte increase and fewer os-
teoblasts are generated [14]. In present study, lipid drop-
let vacuoles were observed in the tibias of the Pb-
treated group and gene expression associated with bone
formation was downregulated. These data support an
association between Pb-depressed bone formation and
increased adipogenesis.

In conclusion, our study demonstrated that in the ab-
sence of classic diseases caused by the lead, low-level
lead exposure decreased bone formation and promoted
bone resorption, which resulted in deterioration in bone
microstructure. The study supports the association be-
tween the increased blood lead levels and an increased
risk of fractures in older women and provides a mech-
anism to explain the associations [23]. Bone is the ma-
jor reservoir of body lead and bone lead value increases
with age. Elevated bone lead value has been found in
population who have either been occupationally or en-
vironmentally exposed. Our study suggests that bone
health should be monitored in Pb-exposed population,
especially in the elderly.

Fig. 7 Gene expression of bone formation and resorption. a Osteoprotegerin (OPG) mRNA expression. b RANKL mRNA expression. c Runt-related
transcription factor 2 (Runx2) mRNA expression. The data are shown as mean ± SD, *P < 0.05
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