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Abstract
Selenium is an essential trace element for maintenance of overall health, whose deficiency and dyshomeostasis have been linked
to a variety of diseases and disorders. The majority of previous researches focused on characterization of genes encoding
selenoproteins or proteins involved in selenium metabolism as well as their functions. Many studies in humans also investigated
the relationship between selenium and complex diseases, but their results have been inconsistent. In recent years, systems biology
and “-omics” approaches have been widely used to study complex and global variations of selenium metabolism and function in
physiological and different pathological conditions. The present paper reviews recent progress in large-scale and systematic
analyses of the relationship between selenium status or selenoproteins and several complex diseases, mainly including
population-based cohort studies and meta-analyses, genetic association studies, and some other omics-based studies.
Advances in ionomics and its application in studying the interaction between selenium and other trace elements in human health
and diseases are also discussed.
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Introduction

Selenium (Se) is an important trace element for optimal health
and development of humans and other mammals. This micro-
nutrient is best known for its unique biological functions in
redox balance and may become a promising chemopreventive
agent against several cancers [1, 2]. It also has a role in
antiinflammatory and antiviral activities, in preventing heart
disease, and in delaying the progression of neurodegenerative
diseases and AIDS [3–5].

In mammals, Se is mostly present in the form of
selenocysteine (Sec), a non-standard amino acid which is
found in a minor fraction of proteins, named selenoproteins
[6, 7]. These selenoproteins participate in a wide range of
cellular physiological processes, such as redox signaling and
antioxidant defense, thyroid hormone metabolism, immune

responses, as well as cardiovascular and brain function main-
tenance [8–11]. As an essential nutrient for humans, Se has a
narrow range between deficiency and toxicity. Se deficiency is
directly related to several endemic diseases, such as Keshan
disease (KD), which typically occur in populations living in
the Se-poor regions [10, 12, 13]. On the other hand, excessive
Se can be toxic and may result in a condition called selenosis
[10, 14, 15].

Complex diseases are thought to be caused by genetic var-
iations, environmental factors, and their interactions, such as
diabetes, cancer, and a variety of cardiovascular, neurodegen-
erative, and psychological diseases [16–19]. Relationships be-
tween Se and complex diseases had been discovered a long
time before, which then raised great interests in both explora-
tion of biochemical function of Se and utilization of Se sup-
plements for prevention and therapy of these diseases [10,
20–22]. Previously, numerous studies have been performed
to evaluate Se status and to characterize selenoproteins, Se
metabolic components and their functions in physiological
and different pathological conditions; however, some of the
findings are controversial. For example, inconsistent results
were indicated among studies aimed at assessing the associa-
tions between Se supplementation and incident diabetes [20].
It is still unclear how disruptions of Se homeostasis and
selenoprotein functions are involved in the development and
progression of complex diseases. Therefore, a more complete
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understanding of metabolism, regulation, and function of this
micronutrient is urgently needed.

In the recent decade, with the rapid growth in the amount of
biological data available (such as genome, transcriptome, pro-
teome), systematic and “-omics” approaches have become
more and more important in investigating the relationship be-
tween trace elements (such as Se) and health or complex dis-
eases. Systems biology of Se represents systematic and inte-
grated studies of Se status as well as its metabolism and func-
tion taking into account the variations and interactions of dif-
ferent components such as genes, proteins, compounds, and
other elements (Fig. 1). For example, a series of meta-analyses
and genome/proteome-wide studies have been carried out in
either patients or related animal models, which may help to
improve our understanding of the utilization and function of
Se and their variations or dyshomeostasis in various diseases
or disorders [23–29]. In addition, the concept of ionome (all
minerals and trace elements in a cell, tissue, or organism) was
also introduced [30, 31]. Ionomic studies have revealed new
interactions between Se and other elements in several complex
diseases [31–33]. These contributions may not only provide
mechanistic insights into the metabolism of Se but also facil-
itate development of new Se-related drugs and therapeutic
strategies against complex diseases.

In this review, we focus on the metabolism and homeosta-
sis of Se in humans as well as the relationship between Se
imbalance or selenoprotein gene variants and several complex
diseases (such as diabetes, cancer, and neurodegenerative dis-
eases) based on recent systems biology researches, including
population-based cohort studies and meta-analysis, genetic
association studies, and some other omics-based analyses.
Such information may achieve a more integrated and
system-level picture of the critical roles Se plays in physiolog-
ical and pathological conditions. We also discuss recent de-
velopments in Se-related ionomic studies for certain diseases.

Selenocysteine Biosynthesis, Selenoproteins,
and Selenoproteomes

The biosynthesis of Sec and its specific insertion into
selenoproteins require a complex machinery that translates
UGA stop codon as Sec. In mammals, this process needs a
stem-loop structure in the 3′-untranslated region of
selenoprotein mRNAs, named Sec insertion sequence
(SECIS) element, a unique tRNA[Ser]Sec, and some other pro-
teins and enzymes dedicated to Sec incorporation [6, 34–36].
In general, tRNA[Ser]Sec is first charged with serine by seryl-
tRNA synthetase and phosphorylated by a specific O-
phosphoseryl-tRNA[Ser]Sec kinase. After that, the phosphate
moiety of O-phosphoserine of the tRNA[Ser]Sec is replaced
by Se (derived from selenophosphate) to form Sec-
tRNA[Ser]Sec by Sec synthase. Selenophosphate is synthesized
by selenophosphate synthetase 2 (SEPHS2). The eukaryotic
Sec-specific elongation factor eEFSec binds Sec-tRNA[Ser]Sec

and is critical for Sec insertion into proteins. Additional fac-
tors have been identified to be involved in selenoprotein bio-
synthesis, such as SECIS binding protein 2 (SBP2), ribosomal
protein L30, and Secp43.

Sec is usually present in the active site of selenoproteins,
being essential for their catalytic activity. A list of mammalian
and other eukaryotic selenoproteins is shown in Table 1. To
date, 25 and 24 selenoprotein genes have been discovered in
human and mouse, respectively [7, 37]. The major
selenoprotein families include glutathione peroxidases
(GPXs) that have oxidoreductase functions and regulate im-
mune response, thioredoxin reductases (TXNRDs) that pro-
vide an important defense against oxidative damage,
iodothyronine deiodinases (DIOs) that participate in normal
thyroid hormone metabolism, selenoprotein F (SELENOF),
selenoprotein K (SELENOK), selenoprotein N (SELENON),
selenoprotein P (SELENOP), selenoprotein S (SELENOS),
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Fig. 1 A diagram illustrating the main research contents of systems biology of Se
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selenoprotein W (SELENOW), SEPHS2, and methionine
sulfoxide reductase B1. However, the precise functions of
many eukaryotic selenoproteins are still unknown.

Several comparative genomic analyses of mammalian and
other eukaryotic selenoproteomes have reported significant
differences in the composition of selenoproteomes among dif-
ferent organisms [38–41]. The number of selenoproteins var-
ied from zero (plants, fungi, and some protists) to 56
(Aureococcus anophagefferens) [42]. SELENOK and
SELENOWappeared to be the most widespread selenoprotein
families which are present in most eukaryotes that utilize Sec.
The origin of many mammalian selenoproteins can be traced
back to the ancestral, unicellular eukaryotes [39]. These an-
cient selenoproteins were preserved during evolution and re-
main in mammals, whereas many other species, including
land plants, fungi, nematodes, insects, and protists, manifested
numerous, independent selenoprotein loss events [38]. Very
recently, it was reported that Sec could also be used by early-
branching fungal phyla, which provides new evidence for the
function and evolution of Se in fungi [43].

Recent Advances in Selenium and Complex
Diseases: a Systems Biology Perspective

As an essential micronutrient, Se is involved in a lot of meta-
bolic activities such as modulating redox balance and mim-
icking insulin function. Low Se intake has been linked to a
variety of developmental defects and disease states and high

Se results in cellular toxicity. Several Se supplementation tri-
als, such as the Selenium and Vitamin E Cancer Prevention
Trial, have revealed that moderately higher Se intake may
influence redox status through selenoprotein synthesis and
cause an increased risk of type 2 diabetes (T2D) [44, 45].
Therefore, Se homeostasis and intrinsic physiological roles
need to be well maintained for human health and preventing
various diseases. Moreover, identification of associations be-
tween genetic variations (such as single nucleotide polymor-
phisms, SNPs) in either selenoprotein genes or Se-related
genes and diseases has also shed light on how these diseases
or disorders may be caused. In the following sections, we will
focus on several complex diseases and discuss recent ad-
vances in systematic analyses of the relationship between Se
and these diseases.

Diabetes

Diabetes mellitus is a complex metabolic disease character-
ized by hyperglycemia and impaired glucose homeostasis,
which may lead to long-term damage, dysfunction, and failure
of various organs [46]. It comprises several forms, such as
type 1 diabetes (T1D), T2D, and gestational diabetes (GD).
Among them, T2D makes up over 90% of the cases, which is
caused by the disruption of the insulin signaling pathway (also
known as insulin resistance). The connection between Se and
the onset or progression of diabetes is uncertain and contro-
versial. As both hyperglycemia and insulin abnormality have
been associated with excess levels of reactive oxygen species,

Table 1 Selenoprotein families
detected in mammals and other
eukaryotes

Mammalian selenoproteins Selenoproteins detected in other
eukaryotes

Iodothyronine deiodinase (DIO) family: DIO1, DIO2 and DIO3

Glutathione peroxidase (GPX) family: GPX1, GPX2, GPX3, GPX4
and GPX6

Thioredoxin reductase (TXNRD) family: TXNRD1, TXNRD2 and
TXNRD3

Selenoprotein F

Selenoprotein H

Selenoprotein I

Selenoprotein K

Selenoprotein M

Selenoprotein N

Selenoprotein O

Selenoprotein P

Selenoprotein S

Selenoprotein T

Selenoprotein V

Selenoprotein W

Methionine sulfoxide reductase B1

Selenophosphate synthetase 2

Methionine sulfoxide reductase A

Protein disulfide isomerase

Selenoprotein J

Selenoprotein U

Selenoprotein L

Selenoprotein E

SAM-dependent methyltransferase

AhpC-like protein

Peroxiredoxin-like protein

Thioredoxin-fold protein

Membrane selenoprotein

Other hypothetical proteins
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Se had been considered to be helpful in the prevention and
therapy of T2D [47, 48]. However, in recent years, an increas-
ing number of studies have shown that Se might be a risk
factor for diabetes, which is opposite to the previous expecta-
tion. Such conflicting results are probably due to individual Se
status and genetic factors.

Several large-scale, population-based epidemiological
studies have been carried out to investigate Se levels in
the blood of T2D patients [13, 49–54]. For example, an
early study examined the relationship between serum Se
levels and the prevalence of diabetes based on a cross-
sectional analysis of 8876 US adults [49]. After multivar-
iable adjustment, high Se concentrations were found to be
positively associated with incidence of diabetes, implying
that Se intake should not be recommended for the preven-
tion of diabetes in individuals and populations with ade-
quate Se status. Similar results were observed in some oth-
er studies using different populations of subjects, which
raised additional concerns about the association of high
Se dietary intake with T2D [28, 50–54]. Recently, several
comprehensive reviews and meta-analyses based on a large
number of previously published articles have been per-
formed to investigate the complex relationship between
Se and T2D, most of which suggest that Se may increase
the risk of T2D across a wide range of exposure levels [20,
55–58]. However, results from a very recent randomized,
clinical trial do not support a significant adverse effect of
daily Se supplementation (200 μg/day of selenized yeast,
six months of intervention) on pancreatic β cell function or
insulin sensitivity as an explanation for associations

between Se and T2D [59]. This may suggest that different
doses and/or forms of Se may have different effects on the
development of diabetes. On the other hand, the results of
previous studies about the association between blood Se
level and GD are also inconsistent [33]. Two recent meta-
analyses systematically evaluated the relationship between
serum Se level and GD [60, 61]. Se level was found to be
significantly lower in women with GD than those with
normal glucose tolerance, implying that Se deficiency is
related to an increased risk of GD.

In addition to the epidemiological results about Se dietary
intake, imbalance of Se can also result from impaired function
of either selenoproteins or proteins involved in Se metabo-
lism. In recent years, several SNPs in a small number of
selenoprotein genes have been reported to be associated with
different types of diabetes (Table 2). For example, previous
studies have shown that some SELENOS gene polymor-
phisms are closely associated with the risk for diabetes [62].
Moreover, certain SNPs in SELENOS gene might also play a
role in the development of cardiovascular disease (CVD) risk
in European Americans enriched for T2D [63]. SELENOP is
often regarded as a biochemical marker of Se status. Previous
studies revealed that some of the SNPs in SELENOP gene
might be associated with fasting insulin and the acute insulin
response, suggesting a potential role of SELENOP in glucose
homeostasis [79]. Very recently, it was reported that one poly-
morphism (rs13154178) in SELENOP gene may lead to GD
in the Turkish society [64]. These human genetic studies high-
light the relationship between Se and glucose homeostasis and
diabetes. Future research is necessary to clearly understand the

Table 2 Genetic association between selenoprotein genes and several complex diseases

Disease Selenoprotein gene Reference

Diabetes

Type 2 diabetes SELENOS [62, 63]

Gestational diabetes SELENOP [64]

Cancer

Prostate cancer GPX1, GPX3, SELENOF, SELENOK, SELENOP, TXNRD1, TXNRD2 [65–69]

Colorectal cancer GPX2, GPX3, GPX4, SELENOF, SELENOP, SELENOS, TXNRD1, TXNRD2 [24, 65, 70]

Breast cancer GPX1, SELENOF, SELENOP [65, 71]

Cardiovascular disease (CVD)

Ischemic stroke and atherosclerotic CVD SELENOS [63, 72, 73]

Peripheral arterial disease GPX4, SELENOP, SELENOS [74, 75]

Abdominal aortic aneurysm SELENOP [75]

Dilated cardiomyopathy TXNRD2 [27]

Some other diseases

Kashin-Beck disease GPX1, SELENOF, SELENOS [76, 77]

Hashimoto’s thyroiditis SELENOS [78]

Congenital rigid spine muscular dystrophy SELENON [27]

Familial glucocorticoid deficiency TXNRD2 [27]
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biologic effects of Se while considering the basal Se levels,
polymorphisms in selenoprotein genes, and the major clinical
outcomes.

Cancer

The relationship between Se and cancer, particularly prostate,
gastrointestinal, and breast cancers, has been investigated ex-
tensively by many researchers over the last decades [2, 65, 80,
81]. Early epidemiological studies suggested an inverse rela-
tion between Se exposure and risk of various cancers [80].
However, the results of several large-scale supplementation
trials have been confusing, which show that Se supplementa-
tion could not reduce the risk of cancer and may even increase
it for several types, such as high-grade prostate cancer [65, 80,
82–84]. Therefore, it is important to use more advanced and
systematic approaches to further explore the link between Se
metabolism and function and different cancers. In recent
years, a large number of population-based prospective studies
and meta-analyses have been carried out to study the relation-
ship between Se and different cancer types. For example, a
very recent meta-analysis systematically evaluated the associ-
ation between dietary Se intake and incidence of different
cancers, which revealed a significant inverse relationship be-
tween Se intake (≥ 55μg/day) and overall cancer risk [85].
Another study applied meta-analysis, meta-regression and
dose-response approaches to investigate the associations be-
tween Se exposure and cancer risk based on 69 published
studies [86]. High serum/plasma/toenail Se levels had differ-
ent effects on specific types of cancer, which may decrease the
risk of breast, lung, esophageal, gastric, and prostate cancers.
In spite that genetic variations in several selenoprotein genes
(such as GPXs, TXNRDs, SELENOF, SELENOP, and
SELENOS) have been reported to influence risk of several
cancers including prostate, colorectal, and breast cancers
(Table 2) [65], mechanistic links between these genes and
carcinogenesis are not clear. Additionally, transcriptomic stud-
ies have identified novel selenoprotein biomarkers of Se status
and novel Se-targeted pathways involved in different cancers
[65].

Prostate cancer is the most common type of cancer among
men worldwide. Although a lot of studies have attempted to
investigate the relation between Se and prostate cancer, their
conclusions show inconsistency [87]. In recent years, evi-
dences from a series of meta-analyses of prospective epidemi-
ological data suggest a strong association between Se levels
and this type of cancer. An early study analyzed the relation
between plasma/serum Se and prostate cancer based on
13,254 participants and 5007 cases of prostate cancer from
twelve studies, which showed a decreased cancer risk with
increasing plasma/serum Se levels [88]. Such an inverse cor-
relation was also confirmed by two other meta-analyses per-
formed very recently, implying that Se has a protective role

against development of prostate cancer and its progression to
advanced stages [89, 90]. Thus, it seems that Se supplemen-
tation can be proposed for prevention of prostate cancer based
on more systematic researches. Significant correlation be-
tween SNPs in several selenoprotein genes (e.g., SELENOP,
GPX1, SELENOF, SELENOK, TXNRD1, and TXNRD2)
and risk of prostate cancer (especially high-grade or
advanced-stage prostate cancer) has been reported in different
cohorts [65–68]. Recently, the impact of selenoprotein gene
variations on plasma Se levels and prostate cancer aggressive-
ness was analyzed [69]. Polymorphisms in a small number of
selenoprotein genes may either influence plasma Se levels
(such as TXNRD2 and SELENOP) or be associated with the
risk of presenting with aggressive prostate cancer (such as
TXNRD2). These findings may contribute to explaining the
biological effects of Se in prostate cancer development and
highlight potential roles of certain selenoproteins in tumor
progression. Using microarray-based transcriptome analysis,
a clinical trial examined the effects of a short-term interven-
tion with Se (300 μg per day for five weeks) on gene expres-
sion in human prostate tissue and found that Se could affect
expression of genes implicated in epithelial-to-mesenchymal
transition and inflammation, suggesting a preventive effect of
Se on prostate cancer progression [91].

The relationship between Se and most subtypes of gastro-
intestinal cancer (especially colorectal, gastric, and esophage-
al cancers) has been evaluated by a number of prospective
trials, which highlight a protective effect of this micronutrient
against these cancers [84–86, 92]. In recent years, several
meta-analyses of published epidemiologic studies have been
carried out [84, 86, 93–96]. One study examined the associa-
tion between Se level in blood and risk of colorectal cancer
and found a significant inverse correlation between Se level
and risk of colorectal adenoma [93]. Another meta-analysis
found that high Se exposure may have different effects on
specific subtypes of gastrointestinal cancer [86]. To study
the potential effects of Se level on the risk of gastric cancer
and its mortality, a systematic review was performed based on
eight studies including 17,834 subjects, which implies that Se
is inversely associated with the risk and mortality of gastric
cancer [94]. Interestingly, a recent meta-analysis of the rela-
tionship between Se and risk of esophageal adenocarcinoma
reported that higher Se level is not significantly associated
with the risk of this cancer [95]. Several genetic variants in
selenoproteins abundantly expressed in the colon (such as
GPX4, SELENOS, SELENOP, SELENOF, TXNRD1, and
TXNRD2) have been found to be related to colorectal cancer
in different populations, indicating that metabolic functions of
these selenoproteins may affect colorectal cancer risk [24, 65,
70]. One study integrated transcriptomic and proteomic ap-
proaches to describe the impact of differences in Se status
on colorectal expression patterns [97]. A number of genes
(including SELENOWand SELENOK) and related pathways
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(such as inflammatory signaling, cytoskeleton, and cancer
pathways) correlated significantly with suboptimal Se status,
which may further influence colorectal cancer risk.

Breast cancer is the most invasive cancer in women. Some
clinical studies revealed a correlation between Se deficiency
and the incidence of breast cancer; however, findings of some
other reports are inconsistent. Based on a meta-analytic meth-
od, one study combined previous results and found significant
correlation between serum Se concentration and breast cancer
[98]. Similar trends were observed in more recent meta-
analyses [84, 86]. The relationship between SNPs in
selenoprotein genes and breast cancer risk has also been ex-
amined in population-based studies. Several polymorphisms
in GPX1, SELENOF, and SELENOP were found to be asso-
ciated with a significant increase in breast cancer risk in dif-
ferent populations, suggesting a potential tumor suppressor
role of these selenoproteins in breast cancer etiology [65,
71]. In order to identify novel markers for diagnosis and prog-
nosis of breast cancer, a recent study performed a global anal-
ysis of the selenotranscriptome expression in human breast
cancer cell lines [99]. Differentially expressed selenoprotein
genes (such as GPX1–4 and DIO2) were found, and putative
key nodes (including TP53, estrogen receptor 1, and
catenin-β1) that may control the selenoprotein gene networks
in breast cancer cells were also identified.

Associations of Se intake, homeostasis and function with
some other types of cancer, such as lung, thyroid and skin
cancers, have also been examined. However, there is no suf-
ficient evidence to support a significant correlation between
Se levels and those cancers and that increasing Se intake pre-
vents cancer in humans. More effort is needed to assess
whether Se may alter the risk of cancer in individuals with a
specific genetic background or nutritional status and to inves-
tigate the mechanisms underlying such effects.

Neurodegenerative Diseases

Se has been found to play a role in several neurodegenerative
diseases, including Alzheimer’s disease (AD), Parkinson’s
disease (PD), and other neurodegenerative disorders
[100–102]. Although the exact function of this micronutrient
in disease process remains unclear, deficiencies in the activity
of antioxidant selenoproteins (such as SELENOW, GPXs, and
TXNRDs) might possibly be a critical upstream event in the
pathogenesis of these diseases [100].

AD is a socially significant neurodegenerative disease
characterized by progressive impairment of memory and cog-
nitive abilities. The neuropathological hallmarks of AD in-
clude the deposition of extracellular amyloid plaques, intra-
cellular neurofibrillary tangles and the loss of neurons and
synapses in the hippocampus and the cerebral cortex [103,
104]. Previously, several longitudinal and cross-sectional
studies have demonstrated a negative correlation between Se

concentrations in blood/hair and cognitive decline in both
mild cognitive impairment (MCI) and AD patients
[105–108]. However, some other studies did not show signif-
icant difference in blood Se level between AD patients and
controls in certain cohorts [109, 110]. To give a systematic
evaluation of the relationship between Se status and AD, sev-
eral meta-analyses have been conducted very recently
[111–113]. One study analyzed Se levels in circulation (plas-
ma/serum, blood), erythrocytes, and cerebrospinal fluid (CSF)
of AD patients and controls based on twelve case–control
studies [111]. Circulatory Se concentration was found to be
significantly lower in AD patients, and such a decrease is
correlated with GPX levels in AD. Another meta-analysis
used 116 selected publications to analyze the blood and
brain/CSF levels of multiple trace elements and minerals in
AD patients versus controls, which also suggests lower circu-
latory levels of Se in AD patients [113]. These results imply
that patients with AD have specific Se requirements.
Selenoproteins are often hypothesized to have some involve-
ment in the pathology of MCI and AD; however, the relation-
ship between polymorphisms in some selenoprotein genes
(such as GPX1 and SELENOP) and AD risk has not been
identified [114]. It was only reported that certain SNPs in
GPX1 gene may differentially affect the Se status and GPX
activity in MCI and AD patients [115]. Although current
knowledge could not provide strong evidence for a role of
Se in the development and treatment of AD, it allows specu-
lation on a potential preventive relevance. Recent animal
model studies have shown that supplementation with Se-
containing compounds could improve cognitive and motor
performance of AD transgenic mice while preventing neuro-
degeneration [114, 116]. Further omics studies (such as pro-
teome and transcriptome) provide new insights into the mech-
anism of the action of these compounds on AD therapy and
intervention, which suggest a complex, multicomponent net-
work including many other genes/proteins involved in a wide
range of biological pathways [117, 118].

PD is a chronic neurodegenerative movement disorder and
is characterized by a progressive loss of dopaminergic neurons
together with the presence of Lewy bodies in substantia nigra
pars compacta [102]. It has been proposed that cellular oxida-
tive damage is one of the leading causes of this disease [119].
As Se is involved in antioxidant defense system, it is likely to
play a special role in the pathogenesis of PD. To date, only few
population-based studies have investigated the relationship
between Se and PD, which lead to contradictory and ambigu-
ous results. An early study investigated the association be-
tween plasma Se levels and the presence of neurological signs
related to PD in 1012 Italian participants [120]. Although no
association could be identified between plasma Se and PD, a
positive correlation was observed between plasma Se and per-
formance in neurological tasks assessing coordination and
motor speed. In some other smaller PD cohorts (less than
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100 patients), no difference in circulating Se levels compared
to controls has been identified [121]. However, a large cohort
study (238 PD, 302 controls) from eastern China reported that
plasma Se (and iron) concentrations were significantly in-
creased in patients with PD, implying that lower plasma Se
levels may reduce the risk for PD [32]. Very recently, the CSF
samples from a group of PD patients and controls were ana-
lyzed for the quantification of multiple elements [122]. The
level of Se was significantly higher in the PD group than the
control group. Moreover, Se was identified as one of the ele-
ments (with the highest impact) for sample discrimination,
which could be used as independent biomarker for the diag-
nosis of PD. It is possible that both very high and very low
body levels of Se may result in increased levels of oxidative
stress and contribute to the pathogenesis of PD [102]. Some
selenoproteins, such as SELENOP and GPX4, have been re-
ported to be involved in the physiopathology of PD [100,
102]. However, the underlying reasons for these observations
have not been systematically analyzed using omics-based ap-
proaches. Further analyses of genetic variations in
selenoprotein genes and genes involved in Se metabolism
and their associations with PD may provide another avenue
to understand specific Se functionality in the progression of
PD.

Population-based or omics studies on the relationship
between Se status or selenoproteins and other neurodegen-
erative diseases, such as multiple sclerosis (MS) and amyo-
trophic lateral sclerosis (ALS), are limited and with some-
what conflicting results. Both Se concentration and GPX
activity tend to be decreased in MS patients, as observed in
the cohorts from Iran and Poland [123, 124]. However, a
recent cross-sectional study showed that there was no sig-
nificant difference between MS patients and healthy con-
trols in Se levels [125]. Although the cause of ALS is
unknown, previous epidemiological studies suggest a link
between prevalence of ALS and excessive exposure to Se
[100]. One study examined levels of different Se species in
CSF samples of Italian ALS patients, which revealed that
excess selenite and human serum albumin-bound Se and
low concentrations of SELENOP-bound Se in the central
nervous system might be associated with increased ALS
risk [126]. Analysis of Se species in the CSF of ALS pa-
tients carrying different ALS-associated gene mutations
suggests that there is an interaction between different types
of Se species and genetic mutations in triggering the onset
of this disease [127]. However, another case–control study
of 163 ALS patients and 229 controls from USA showed
that blood Se (and zinc) levels were inversely associated
with ALS, particularly among those with worse function,
indicating that deficiencies of Se and zinc may have a role
in ALS etiology [128]. Large-scale prospective cohort
studies are encouraged to reveal the mechanisms underly-
ing the varied roles of Se in neurodegenerative diseases.

Cardiovascular Diseases

In the recent decade, an increasing amount of evidence sug-
gests that Se is important for proper functioning of the cardio-
vascular system [11, 129]. Se deficiency is considered as a
potential risk factor for several types of CVDs [48].
Although numerous studies have investigated the relationship
between Se and CVD, the exact role of this micronutrient in
the development of these diseases remains only partly under-
stood. Many observational studies and randomized controlled
trials have shown inconsistent associations between Se intake
and CVD risk. To give a systematic review of the effective-
ness of Se supplementation for the primary prevention of
CVD, several meta-analyses have been recently conducted
[4, 130–132]. One study collected data from twelve trials
and found that there was no statistically significant effect of
Se supplementation on CVDmortality, non-fatal CVD events,
or all CVD events, which does not support the use of Se
supplements in the primary prevention of CVD [4]. Another
systematic review focusing on the relation between Se and
metabolic risk factors also suggests that Se supplementation
should not be recommended for primary or secondary cardio-
metabolic risk prevention in those populations with adequate
Se amount [130]. Based on sixteen eligible trials (43,998 par-
ticipants), one recent study revealed that Se supplementation
was not statistically associated with coronary heart disease
mortality although it increased serum GPX level [131]. On
the other hand, the association between circulating Se and
the incidence of CVD is also somewhat controversial. A
meta-analysis systematically assessed blood Se levels in
CVD, which showed a significant inverse correlation between
Se concentrations and CVD risk within a narrow Se range
[132]. These findings demonstrate the importance of consid-
ering Se status when studying its involvement in the onset and
progression of CVD.

KD is an endemic heart disease occurring in China [133].
Although the exact etiology of KD has not been clarified, it is
considered that Se deficiency or low activity of certain
selenoproteins (such as GPX1) is a major contributing factor
of KD [14, 133, 134]. Previously, a lot of studies have shown
that low Se concentrations are associated with the occurrence
of KD [133–135]. Additionally, several population-based in-
tervention trials showed that oral administration of
selenocompounds (such as sodium selenite tablets) could sig-
nificantly reduce the incidence of KD [135]. Very recently, a
systematic review was carried out to evaluate the association
between KD and Se deficiency based on a large amount of
related studies from 1935 to 2017 [136]. Se supplements were
found to significantly reduce the occurrence of KD in its en-
demic areas, suggesting that Se deficiency is a cause of KD
and Se could be included in the KD surveillance program.
However, the relationship between hair Se content and KD
in children appeared to be different based on a large-scale
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prospective cohort study, which showed a U-shaped associa-
tion between Se status and this disease [137]. A recent serum
proteomic analysis identified 19 Se-associated proteins that
have quite different expression levels between KD patients
and healthy controls [138]. Network analysis suggests that
some of these proteins may play significant roles in the path-
ogenesis of KD.

Besides Se concentrations, genetic variations of several
selenoprotein genes have also been reported to be associated
with certain types of CVD (Table 2), such as SELENOS gene
polymorphisms for ischemic stroke and atherosclerotic CVD
[72, 73] and SELENOP variants in pathogenesis of peripheral
arterial disease (PAD) [74]. Very recently, one study system-
atically examined the associations of SNPs of several
selenoprotein genes and selenoprotein levels with the devel-
opment of abdominal aortic aneurysm (AAA), PAD, and heart
failure [75]. It appears that selenoprotein gene polymorphisms
may constitute a risk factor for heart failure and peripheral
atherosclerosis but prevent the development of AAA and that
increased SELENOP concentrations might be a promising
marker for heart failure. Thus, it seems that the functional role
of Se and selenoproteins in the cardiovascular system and the
relationships among Se intake/status, selenoproteins, and var-
ious CVDs are complicated. These issues need to be analyzed
in depth in future research.

Other Diseases

Some other diseases have also been reported to be associated
with severe Se deficiency and mutations in selenoprotein
genes or Se-related genes, such as Kashin–Beck disease
(KBD), thyroid diseases, and certain myopathies (Table 2).
KBD is a chronic, endemic osteochondropathy accompanied
by joint necrosis, which affects individuals in Se-deficient
areas of China, southeast Siberia, and North Korea [139].
Systematic meta-analyses have been performed to analyze
the association between Se status or Se supplementation and
the incidence or treatment of KBD [140–142]. Low levels of
Se in blood, hair, and urine were all found to be significant risk
factors for KBD, and Se supplementation may be helpful for
the treatment of patients with KBD. Several SNPs in certain
selenoprotein genes, such as GPX1, SELENOF, and
SELENOS, were reported to be associated with an increased
risk of KBD [76, 77]. Moreover, microarray-based tran-
scriptome analyses of the articular cartilages from KBD pa-
tients have revealed that a number of Se-related genes in-
volved in a variety of biological processes and pathways
may play important roles in the pathogenesis of KBD [143,
144].

In recent years, the relationship between Se supplementa-
tion or selenoprotein gene polymorphisms and several auto-
immune thyroid diseases (such as Graves’ disease and
Hashimoto’s thyroiditis) has been systematically examined

[29, 78, 145, 146]. However, the efficacy of Se intake on
thyroid function is complicated and controversial. Future
well-powered studies are needed before determining the rele-
vance of Se supplementation in these diseases.

Selenium and Disease Ionomics

The ionome is defined as the mineral nutrients and trace ele-
ments of an organism [31, 147]. Ionomics involves quantita-
tive analysis of elemental composition in living systems using
high-throughput elemental profiling techniques such as induc-
tively coupled plasmamass spectrometry (ICP-MS) and X-ray
fluorescence. In the recent decade, ionomics has been widely
applied in yeast, plants, and mammals (including human),
providing a powerful tool to identify new aspects of trace
element metabolism and homeostasis in various physiological
and pathological conditions [147–150]. For example, based
on a genome-wide high-throughput siRNA/ionomics screen
in human HeLa cells, novel mechanisms that regulate trace
elements were characterized [151]. Specifically, it was found
that Se levels could be controlled through several Sec machin-
ery and selenoprotein genes such as SBP2 and TXNRD1.
Moreover, new candidate genes that are involved in Se ho-
meostasis and metabolic network are also identified, which
opens new directions for studies of Se metabolism in humans
[151]. Another ionomic study examined the distribution pat-
terns of 18 elements in different organs of 26 mammalian
species [152]. Some of the elements showed lineage-specific
patterns, including reduced Se utilization in African mole rats,
and positive correlation between the number of Sec residues in
SELENOP and the Se levels in liver and kidney across mam-
mals. In addition, species lifespan was found to be negatively
linked with Se, providing new insights into the relationship
between Se and organ physiology, lineage specialization, and
longevity [152].

Before the concept of disease ionomics was introduced,
ICP-MS had been used to quantify the levels of trace elements
in samples of different diseases for years. With the rapid de-
velopment of systems biology and computational approaches,
advanced strategies have been developed for systematic anal-
ysis of the whole ionomic network, which improves our un-
derstanding of the complex interactions among different ele-
ments, including the relation between Se and other minerals
[31, 153].

One study quantified the concentrations of several trace
elements in plasma from a large number of patients with PD
and controls, which suggests that lower plasma Se and iron
levels may reduce the risk for this disease, whereas lower
plasma zinc level is probably a PD risk factor [32]. Ratios
between the concentrations of Se and other metals (such as
iron, zinc, and copper) could be affected by both age and PD
subtypes, implying complex interactions between them. A
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computational model was also built to predict PD patients
based on the concentrations of several elements (including
Se) as well as other features such as sex and age, which
achieved a good performance [32]. Recently, ionomic studies
were conducted to investigate the potential mechanisms un-
derlying the therapeutic effect of different selenocompounds
in AD [154, 155]. One study investigated the brain ionomic
profiles at multiple time points by using triple-transgenic AD
(3×Tg-AD) mice with/without long-term high-dose sodium
selenate supplementation [154]. Significant differences were
observed at three levels: individual elements (especially re-
duced levels of iron and zinc), elemental correlation, and
changes of such correlation, which demonstrate a highly dy-
namic and somewhat specific effect on brain ionome induced
by selenate supplementation. Another study analyzed the
brain ionome in 3×Tg-AD mice treated with Se-
methylselenocysteine (SMC) using both ICP-MS and X-ray
fluorescence approaches [155]. SMC supplementation can not
only inhibit the over-accumulation of several AD risk metals
(especially copper) but also influence element–element cross-
links in the brain. Although there are still differences between
the two kinds of selenocompounds, these results reveal that
both organic and inorganic forms of Se play some significant
roles in the regulation of metal homeostasis in the mouse brain
and may be used for AD treatment. Future efforts are needed
to investigate the interaction between Se and other elements in
many other diseases.

Conclusions

Systems biology approaches have given strong support for
studying the metabolism, homeostasis, and function of Se as
well as its relationship with a variety of diseases. This review
describes recent researches that used system-level strategies,
such as large-scale population-based studies, meta-analyses,
genetic association studies, and other omics-based analyses, to
better understand the roles of Se in complex diseases. In ad-
dition, recent advances in disease ionomics have also provided
new information about the interaction between Se and other
trace elements in different conditions. Meanwhile, it should be
admitted that the usage of systems biology approaches in the
field of Se research is quite limited. In the future, with the
rapid increase in the amount of genomic, transcriptomic, pro-
teomic, and ionomic data that relate with Se, systematic and
omics-based approaches will play a stronger role in studying
the roles of Se in human health and disease.
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