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Abstract
Interactions between trace metals, serum biochemical parameters, and oxidative status markers were observed. Freshwater fish
Cyprinus carpio blood samples (n = 38) were collected at the beginning of May (n = 19) and at the end of July (n = 19) of 2015.
The concentrations of metals (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, Sr, and Zn) were analyzed in blood serum samples of fishes by
inductively coupled plasma optical emission spectrometry (ICP-OES), and Hg was determined by cold-vapor atomic absorption
spectroscopy (CV-AAS). The general scheme of descending concentrations of metals in blood serum samples was as follows: Zn
> Fe > Cu > Sr > Cr > Ni > Mn > Pb > Se > As > Cd > Hg. Zn was the most accumulated element (4.42–119.64 mg/L) in both
seasons. Overall, the trace element content was higher in spring season, except Hg, Ni, Se, and Sr. The seasonal effect was
confirmed forMn, Zn,Mg, Glu, AST, and Chol levels and for most oxidative status markers. The gender effect was confirmed for
Sr, GPx, PC, Chol, and CK concentrations. Trace metals (especially Cd, Cr, Cu, Fe, Hg, Mn, Ni, Sr, Zn, As) significantly affected
some blood serum chemistry parameters. The correlation analysis between oxidative status markers (ROS, TAC, MDA, SOD,
GSH, UA, BHB, and Alb) and trace metal (Cd, Cu, Ni, Sr, Hg, Pb, Fe, Mn) content confirmed statistically significant interactions
in both seasons. Obtained results indicate specific actions of trace metals.
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Introduction

Biomarkers such as serum chemistry and parameters of oxi-
dative balance are good indicators of an overall biological
status providing information on the effects of contaminants
on the organism [1]. One of the most important environmental
pollutants affecting health are trace metals [2–10], pesticides
[11–14], pharmaceuticals [15–17], and endocrine disruptors
[18, 19]. Monitoring of the presence and/or levels of

contaminants in the organism under natural conditions and
testing their associations to the physiological status is impor-
tant for understanding their possible toxic effects and health
risk on animals and humans. Particularly, trace metal investi-
gation is still one of the main focuses of toxicological studies
over the past years. Environmental contamination by trace
metals is a consequence of anthropogenic activities con-
nected to the industry, agriculture, and waste management
[12, 20–23].
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Measurement of blood serum chemistry parameters is
necessary for the diagnosis of the health status in aquatic
animals living in potentially polluted areas. Toxic effects
of trace metals are generally connected to changes in the
levels of biochemical parameters monitored in many
studies [4, 21, 24–27].

A variety of chemicals may cause oxidative stress as a
consequence of increased levels of reactive oxygen species
(ROS) affecting the mitochondrial function followed by alter-
ations to the enzymatic and/or endogenous antioxidants in
blood [10] and tissues [8, 28–30]. Oxidative stress is a sensi-
tive endpoint for metal toxicity due to alterations of target
tissues or inhibition of enzymes containing thiol groups. As
such, a combined exposure to trace metals can affect the anti-
oxidant ability of blood [1]. Trace metals accumulated in
aquatic animals are potentially redox active, which may sug-
gest an imbalance between ROS production and antioxidant
mechanisms of the fish [23, 31]. The main antioxidant en-
zymes are superoxide dismutase, glutathione peroxidase, and
catalase [10, 23, 32]. Glutathione as endogenous antioxidant
is also an integral part of the defenses against oxidative stress
[33, 34] and primarily prevents the oxidation of water soluble
proteins [35]. Furthermore, non-enzymatic antioxidants in-
clude uric acid and albumin. Biomarkers of oxidative stress
(malondialdehyde as an index of lipid peroxidation and

protein carbonyls as product of protein oxidation) are used
as indicators of oxidative damage [14, 22, 36, 37].

The aim of the present study was to investigate seasonal
and sex interactions between trace element/metal content in
the blood serum and serum biochemical parameters as well as
oxidative status markers in freshwater fish common carp.

Material and Methods

Experimental Design, Animal Management,
and Blood Sampling

This study was realized during spring and summer of 2015.
Fishes were bred by semi-intensive method of farming (uni-
versity experimental pond in Kolíňany—West Slovak
Lowland—Slovak Republic; 48°21′14.6″N 18°13′03.2″E)
(Fig. 1). Fish stocking was realized at the beginning of
March 2015. Catching of the fish was realized at beginning
ofMay (spring season) and at the end of July (summer season)
2015. The freshwater fish (Cyprinus carpio) were caught by
seine net. In total, 38 fishes were collected. After catching, the
animals were transferred in polyethylene bags to the laborato-
ry in 20 min for blood collection. Fish were manipulated by a
competent person in accordance with the provisions of the

Fig. 1 The University fish pond Kolíňany (West Slovak Lowland—Slovak Republic; 48°21′14.6″N 18°13′03.2″E)
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national law, approved by the Ethics Committee of the Slovak
University of Agriculture in Nitra, protocol number 48/2013.
After standard ichthyology evaluation (standard length and
weight measurements, age determination by scales—Table
1), blood sampling was realized. For comparison with other
authors, which presented length of fish as total length (TL),
the transformation equation is given: TL = 9.28564 +
1.16322 × SL (r = 0.9876, r2 = 95.76%, p < 0.001).

Blood samples (n = 38) were taken in spring (n = 19) and
summer (n = 19) seasons from male (n = 17) and female (n =
21) individuals. Blood was collected from aorta ventralis
(Nomina Anatomica) from each fish. The samples were
allowed to coagulate at room temperature. Subsequently, the
samples were centrifuged for 20 min at 3000 rpm. Blood
serum was collected and stored at − 20 °C until analyses at
the Department of Animal Physiology.

Clinical Biochemistry Analyses

Blood serum concentrations of calcium (Ca), magnesium
(Mg), total protein (TP), glucose (Glu), urea, cholesterol
(Chol), triglycerides (TG), aspartate aminotransferase
(AST), alanine aminotransferase (ALT), alkaline phos-
phatase (ALP), creatine kinase (CK), total bilirubin
(Bili), and total protein (TP) were measured using
DiaSys (Diagnost ic Systems GmbH, Holzheim,
Germany) commercial kits and the semi-automated clin-
ical chemistry analyzer Randox RX Monza (Randox
Laboratories, Crumlin, UK) [6]. Sodium (Na), potassium
(K), and chloride (Cl) ions were analyzed using an
EasyLite analyzer (Medica, Bedford, MA, USA) provid-
ed with an ion-selective electrode [7, 38].

Assessment of the Oxidative Status

ROS production in each sample was assessed by the
chemiluminescence assay using luminol (5-amino-2,3-
dihydro-1,4-phthalazinedione; Sigma-Aldrich) as the
probe [39]. The test samples consisted of luminol
(2.5 μL, 5 mmol/L) and 100 μL of sample. Negative

controls were prepared by replacing blood with 100 μL
of PBS (Dulbecco’s Phosphate Buffer Saline without cal-
cium chloride and magnesium chloride; Sigma-Aldrich).
Positive controls included 100 μL PBS, 2.5 μL luminol,
and 50 μL hydrogen peroxide (H2O2, 30%; 8.8 M;
Sigma-Aldrich). Chemiluminescence was measured using
the Glomax Mul t i + Combined Spec t ro -F luo ro
Luminometer (Promega Corporation, Madison, WI,
USA) [36, 37]. The results are expressed as relative light
units (RLU)/s/g protein.

An improved enhanced chemiluminescence antioxidant as-
say using horseradish peroxidase conjugate and luminol was
used to study the total antioxidant capacity (TAC) of the sam-
ple [40]. Five to one hundred micromoles per liter of Trolox
(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid;
Sigma-Aldrich) was used as the standard, while a signal re-
agent consisting of 0.1 mol/L Tris-HCl (Sigma-Aldrich),
12 mol/L H2O2 (Sigma-Aldrich), 41.8 mmol/L 4-iodophenol
(Sigma-Aldrich), and 282.2 mmol/L luminol (Sigma-Aldrich)
was used to induce the chemiluminescent reaction.
Chemiluminescence was measured on 96-well plates in 10
cycles of 1 min using the Glomax Multi+ Combined
Spectro-Fluoro Luminometer (Promega Corporation). The re-
sults are expressed as micromoles of Trolox Eq. per gram of
protein.

Superoxide dismutase (SOD), glutathione peroxidase
(GPx), and D-3-hydroxybutyrate (BHB) activity was mea-
sured using the Randox commercial kits (Randox
Laboratories, Crumlin, Great Britain) and the semi-
automated analyzer Randox RX Monza (Randox
Laboratories, Crumlin, UK) [36]. The results are expressed
as units per gram of protein (SOD, GPx) and micromoles
per gram of protein (BHB).

Catalase (CAT) activity was quantified according to Beers
and Sizer [41] by monitoring the decrease of hydrogen perox-
ide (H2O2) at 240 nm [36]. The values are expressed as units
per milligram of protein.

Reduced glutathione (GSH) was evaluated by the Ellman
method [42]. GSH concentration is expressed as milligrams
per gram of protein.

Table 1 Characteristics of
analyzed fish Date of catching n Age (year) SL (mm) BW (g)

Mean ± SD Range Mean ± SD Range

Spring season 19 7–9 388.2 ± 27.0 335–440 1926.8 ± 327.1 1260–2610

Summer season 19 6–9 407.9 ± 30.8 350–485 2218.5 ± 369.9 1710–2902

Male 17 6–9 387.7 ± 21.4 345–420 1910.7 ± 313.1 1260–2362

Female 21 6–9 406.4 ± 34.2 335–485 2203.9 ± 411.6 1580–2902

Total 38 398.0 ± 30.3 335–485 2072.68 ± 394.7 1260–2902

SL standard length, BW body weight, SD standard deviation, n number of individuals
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Albumin (Alb) concentration was measured using the ALB
BioLa Test (PLIVA-Lachema, Brno, Czech Republic) com-
mercial kit. Albumin binds with Bromo Cresol Green (BCG)
at pH 4.2 causing a shift in absorbance of the yellow BCG
dye. The blue-green color formed is proportional to the con-
centration of albumin, when measured photometrically at
578 nm with the help of the Genesys 10 spectrophotometer
(Thermo Fisher Scientific Inc.). Albumin concentration is
expressed as grams per gram of protein.

Uric acid quantification was characterized by the oxidation
of the substance leading to H2O2 and allantoin formation. The
resulting H2O2 was detected by reacting with N-ethyl-N-(2-
hydroxy-3-sulphopropyl)-m-toluidine and 4-aminoantipyrine.
The absorbance is subsequently measured at 550 nm. BioLa
Uric Acid commercial kit (PLIVA-Lachema, Brno,
Czech Republic) and the Genesys 10 spectrophotometer
(Thermo Fisher Scientific Inc.) were used for the assay. Uric
acid concentration is expressed as micromoles per gram of
protein.

Carbonyl group quantification was performed through the
traditional 2,4-dinitrophenylhydrazine (DNPH) method [43].
Protein carbonyls are expressed as nanomoles per gram of
protein [44].

L ip id perox ida t ion (LPO) expressed through
malondialdehyde (MDA) production was measured with the
help of the TBARS assay, modified for a 96-well plate and
ELISA reader [36, 37]. MDA concentration is expressed as
micromoles per gram of protein.

Protein concentration was quantified using the DiaSys
Total Protein (Diagnostic Systems GmbH, Holzheim,
Germany) commercial kit and the semi-automated clinical
chemistry photometric analyzer Randox RX Monza (Randox
Laboratories, Crumlin, UK) [6]. The measurement is based on
the Biuret method, according to which copper sulfate reacts
with proteins to form a violet blue color complex in alkaline
solution, and the intensity of the color is directly proportional
to the protein concentration when measured at 540 nm.

Detection of Trace Metals

The concentrations of trace metals (arsenic [As], cadmium
[Cd], chromium [Cr], copper [Cu], iron [Fe], manganese
[Mn], nickel [Ni], lead [Pb], selenium [Se], strontium [Sr],
and zinc [Zn]) were analyzed in blood serum samples of fishes
by inductively coupled plasma optical emission spectrometry
(ICP-OES) and mercury (Hg) was determined by cold-vapor
atomic absorption spectroscopy (CV-AAS).

Pre-analytical Procedure for ICP-OES Analysis

High-purity chemicals were used for all operations. For ele-
mental analysis, the fish serum samples were kept at − 20 °C
until analysis. The defrosted samples (1 mL) were mineralized

(wet mineralization) in the high-performance microwave di-
gestion system Ethos UP (Milestone Srl, Sorisole, BG, Italy)
in a solution of 5 mL HNO3 (TraceSELECT®, Honeywell
Fluka, Morris Plains, USA) and 1 mL of H2O2 (30%, for trace
analysis, Merck Suprapur®). Samples, and blank sample,
were digested according to preloaded method Banimal tissue^
developed by manufacturer for assuring the best result. The
method consists of 15-min heating to 200 °C, keeping this
temperature for 15 min and 15 min of active cooling. The
digests cooled to 50 °C were filtered through the Sartorius
filter discs (grade 390) (Sartorius AG, Goettingen, Germany)
into the volumetric flask and filled up with ultrapure water to a
volume of 50 mL.

ICP-OES Analysis

Analysis of the elements (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se,
Sr, and Zn) was carried out using inductively coupled plasma
optical emission spectrophotometer (ICP-OES 720, Agilent
Technologies Australia (M) Pty Ltd.). Detections limits (μg/
L) of measured elements were follows: As 1.50, Cd 0.05, Cr
0.15, Cu 0.30, Fe 0.10, Mn 0.03, Ni 0.30, Pb 0.80, Se 2.00, Sr
0.01, Zn 0.20. Details of the instrumental operating conditions
are listed in Table 2. In the experiment, Multielement standard
solution V for ICP (Sigma-Aldrich Production GmbH,
Switzerland) was used. The validity of the whole procedure
was checked by processing of duplicate samples against the
certified reference material (CRM–ERM CE278K, Sigma-
Aldrich Production GmbH, Switzerland).

CV-AAS Analysis

Total mercury content (Hg) was determined directly in the
defrosted blood serum samples by a selective mercury analyz-
er AMA-254 (Altec, Praque, Czech Republic) based on CV-
AAS.

The detection limit for mercury was 1.5 ng/L [6].

Statistical Analyses

Obtained data were checked for normality using a
Kolmogorov-Smirnov test before statistical analyses. Mann-
Whitney non-parametric test was used to assess the differ-
ences in the investigated parameters and metal concentrations
between seasons and genders. The Spearman R correlation
coefficient was used to measure the association between the
trace elements concentrations and all investigated parameters
in the blood serum. The minimum significance level was P <
0.05. Sta t is t ica l analyses were performed using
STATGRAPHICS Centurion (© StatPoint Technologies,
Inc., USA) and GraphPad Prism 3.02 (GraphPad Software
Incorporated, San Diego, California, USA).
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Results

In the present study, we assessed the relationship between
trace metal content and biochemical/oxidative status markers
in freshwater fish blood. Mean and median seasonal/gender
concentrations of obtained trace metals in the blood serum are
summarized in Fig. 2 (mean, median, 25–75%, min-max) and
P values of Mann-Whitney test are shown in Table 3. The
general scheme of descending concentrations of trace metals
in blood serum samples was follows: Zn > Fe > Cu > Sr > Cr >
Ni > Mn > Pb > Se > As > Cd > Hg. Zn was the most
accumulated element (4.42–119.64 mg/L). Significant differ-
ences among season and sex were not detected for concentra-
tions of As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, and Se. Mn (P < 0.05)
and Zn (P < 0.01) were significantly higher in spring season.
Mean concentration of Sr was significantly higher in female
fish (P < 0.01). Overall, the trace element content was higher
in spring season, except Hg, Ni, Se, and Sr, but non-
significantly.

Mean and median seasonal/gender concentrations of oxi-
dative status markers are presented in Fig. 3. Compared to
fishes collected during different seasons, we observed that
the activities of ROS, SOD, CAT, GPx, PC, MDA, and bili-
rubin were significantly increased in spring season and the
activities of TAC, GSH, UA, and albumin were significantly
higher in summer season. GPx and PC activities were signif-
icantly higher in male fish (Table 3).

Median concentrations of serum chemistry parameters are
presented in Fig. 4. Glucose, AST, and cholesterol contents
were significantly higher in summer season (P < 0.05).
Cholesterol level was significantly higher in female fish (P
< 0.05). Finally, higher significant value of CK was found in
male fish (P < 0.05).

The Spearman R correlation coefficients were used to as-
sess the relationships between the serum chemistry/oxidative
stress parameters and the trace metal concentrations in the

blood serum. Statistically significant correlations during sea-
sons are shown in Table 4.

In the spring season, positive statistically significant corre-
lations between the Co, Sr, and Zn concentrations and Ca and
Mg were found. Moreover, a statistically significant positive
correlation was detected between K and Fe resp. Mn; Cd, Fe,
and Mn were negatively correlated with Na and Cl. Positive
(statistically significant) correlations were found between Ni
and ALP, Hg and Chol, As negatively correlated with biliru-
bin. Concentration of ROS negatively correlated with Cd, Cu,
Ni, and Sr in spring season. Ni was also positively correlated
with TAC and UA and was negatively correlated with SOD
and MDA. Hg was negatively correlated (statistically signifi-
cant) with TAC and was positively correlated with MDA and
BHB. The analysis also revealed significant negative associa-
tions between Cu and MDA resp. SOD and positive associa-
tion between Cu and GSH. Negative and significant relation-
ships occurred between Cd and SOD, and Pb and BHB.
Significant, negative correlation was seen between Fe and
albumin in spring season.

The correlation analysis in summer season showed the sig-
nificant positive relationship between Mg and Cr; Cu, Fe, and
Hg; Ca and Zn; Na and Cu; K and As; Cl and Ni; and Mn and
Urea resp. ALP, Cu, and cholesterol. Concentrations of CK
were positively correlated with Cr and Hg; TG was also pos-
itively correlated with Cu and Hg. Negative significant corre-
lations between Ni and Na, TP, Chol, and TG were found in
summer season. Glucose level showed a negative correlation
with Cr and Hg. During summer season, the concentration of
Cu positively correlated with ROS,MDA, and BHB activities;
Sr concentrations positively correlated with both TAC and
GSH activities; Hg concentration positively correlated with
ROS activity; Mn concentration positively correlated with
GSH activity. The negative correlations during summer season
in oxidative status markers were obtained between the concen-
tration of Fe and bilirubin, Sr and MDA, and Cu and UA.

Table 2 Operating parameters for the determination of elements by ICP-OES

Method parameters

RF power (kW) 1.30

Plasma flow (L/min) 15.0

Auxiliary flow (L/min) 1.50

Nebulizer flow (L/min) 0.85

Replicated read time (s) 5.00

Instrument stabilization (s) 15

Sample uptake delay (s) 25

Pump rate (rpm) 15

Rinse time (s) 10

Element (λ/nm) As 188.980, Cd 226.502, Cr 267.716, Cu 324.754, Fe 234.350, Mn 257.610, Ni 231.604, Pb 220.353, Se
196.026, Sr 407.771, Zn 206.200
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Discussion

Findings obtained in the present study describe the interac-
tions between environmental pollutants and physiological sta-
tus of freshwater fish during spring and summer season.
Various trace elements in polluted environments may have
different effects on living organisms; therefore, it is necessary
to monitor and test such associations between them. Most of

the studies demonstrate bioaccumulation of metals in different
tissues [9, 22, 45–52] of aquatic animals. Still, there are very
few blood studies of aquatic animals [24, 26]. Reports have
demonstrated ecotoxicology interactions between trace metals
and serum chemistry parameters [21, 53], or oxidative stress
markers [5, 8, 29, 54] in aquatic animals.

Seasonal effect was confirmed for Mn and Zn and sex
effects were observed only in case of Sr. Seasonal variations
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Fig. 2 Trace elements concentrations (mg/L resp. μg/L) measured in blood serum of C. carpio. Data are presented using box-whisker plot (mean,
median, 25–75%, min.-max.)

Trace Metals in the Freshwater Fish Cyprinus carpio: Effect to Serum Biochemistry and Oxidative Status... 499



of trace metals bioaccumulation in aquatic animals were con-
firmed in many studies [3, 5, 55, 56]. Other studies showed
sex differences in metal tissue bioaccumulation, such as Zn in
the liver and skin of Lethrinus lentjan [57] or Hg in the muscle
of Silurus glanis [58]. Secondly, we observed seasonal and
gender differences for serum chemistry and oxidative stress
markers. The serum biochemical values were consistent with
values found in other fresh water fish [12, 13, 59]. Giarratano
et al. [5] emphasized on a significant seasonal effect on oxi-
dative stress markers (lipid radical content, MDA, α-
tocopherol, total thiol groups, and metallothioneins) and trace
metals content (Cd, Pb, Cu, Zn, Ni, Cr, Al) in the tissue of
Neohelice granulata.

Health Status Observation

Serum chemistry parameters were within the reference range
[60], except for decreased values of Cl− and increased con-
tents of K+, TP, Glu, Chol, and ALP. Changes in the levels of
serum glucose and total protein can be observed in case of
liver failure [27] and nephrotoxicity [1]. Decreased chlorides
are associated with stress, extreme temperatures, and infection
as well as trace metal toxicity [60]. Gopal et al. [26] described
the effects of Cu, Hg, Ni, and Pb on the blood protein bio-
chemistry ofC. carpio. Their results revealed a same tendency
for all metals: an initial increased mobilization followed by a
steady depletion. However, it should be noted that lethal and
sub-lethal concentrations of respective trace metals were used.
Increased blood glucose content (hyperglycemic conditions;
enhanced glycogenolysis) influenced by trace metals (Cu, Ni,
Fe, Mn, Zn) was observed in fish (Mastacembelus armatus)
living in water contaminated by wastewater from a thermal
power plant [61]. On the other hand, Fırat and Kargın [4]
tested individual and combined effects of Cd and Zn on the
serum chemistry parameters of freshwater fish (Oreochromis
niloticus), but their results had an opposite tendency for

glucose, for TP, and partly for cholesterol (decreasing content
against higher levels of Cd and Zn in spring season). Fırat and
Kargın [4] as well as Öner et al. [27] also confirmed associa-
tions between metals (Cd and Zn) and liver enzymes ALTand
AST (increasing after exposure) which is comparable with our
levels of ALT, but not for AST. We observed positive corre-
lation between Ni levels as well as an increased ALP content
in spring season and between Mn and ALP in summer season.
Increased blood levels of liver enzymes are the main indicator
to inform us about the liver and cellular damage caused by
metal poisoning [62, 63]. ALT and AST activities were com-
parable to other studies on common carp [64]; however, the
ALP activity was several-fold higher in our study, which
could be explained by pathological processes such as liver
impairment, kidney dysfunction, and bone disease [63]. The
enzymes ALT and AST are used as biomarkers to detect
hepatotoxicity, while ALP indicates bile duct epithelial
damage [65].

Interactions between blood serum minerals (Ca, Mg, Na,
K, Cl) and trace metals were confirmed in spring (Sr, Zn, Cd,
Fe, Mn) and summer (Zn, Cr, Cu, Fe, Hg, Ni, As) seasons.
Relation between Pb and Ca is probably the best known. Lead
as a potential neurotoxicant is able to mimicry calcium. Lead
competes with calcium for binding sites on calcium-regulated
proteins [66, 67]; and it can also start the disruption of calcium
transport [68]. The physiological investigation of Cd poison-
ing in fish showed a slight decrease of blood potassium and an
increase of blood plasma magnesium [69], while copper ex-
posure reflected a decrease in the plasma sodium, potassium,
calcium, and chloride concentrations [70], though these rela-
tionships were not confirmed in our study, except Cu and Na
relationship in summer season.

The correlation analysis also showed some other relation-
ships between the tested parameters and trace metals. Blood
urea concentration was significantly affected by manganese in
summer season. Öner et al. [27] confirmed a significant

Table 3 Results (P values) of Mann-Whitney test for the concentrations of trace metals, oxidative status markers, and serum chemistry parameters
among season and gender

Metal As Cd Cr Cu Fe Hg Mn Ni Pb Se Sr Zn

Factor

Season 0.4817 0.2155 0.1274 0.0763 0.1827 0.1604 0.0289 0.3414 0.1958 0.3174 0.5000 0.0055

Gender 0.0695 0.2934 0.1892 0.4186 0.3845 0.1323 0.3193 0.3845 0.0879 0.2302 0.0038 0.0711

Redox marker ROS TAC SOD CAT GPx PC MDA BHB GSH UA Alb Bili

Factor P value

Season 0.0330 0.0020 0.0043 0.0028 0.0026 0.0007 0.0016 0.0855 0.0342 0.0068 0.0056 0.0365

Gender 0.1523 0.1376 0.1240 0.1024 0.0314 0.0178 0.0667 0.4422 0.1284 0.0606 0.2964 0.0886

Serum marker Ca Mg Na K Cl Urea TP Glu AST ALT ALP Chol TG CK

Factor P value

Season 0.1428 0.0123 0.4825 0.3414 0.3630 0.1056 0.4767 0.0100 0.0104 0.2581 0.2616 0.0205 0.0558 0.3699

Gender 0.4100 0.1201 0.1007 0.1932 0.0598 0.2209 0.0634 0.4817 0.4742 0.1448 0.4041 0.0246 0.2405 0.0146

Italicized values are significant at P < 0.05, resp. P < 0.01
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increase of blood urea nitrogen (BUN) in Cd, Cu, and Cr
exposed fish (Oreochromis niloticus). Increased BUN is asso-
ciated with gill and kidney disease or failure [21, 71].

Oxidative Status Markers

In response to environmental pollutants, oxidative stress can
provide valuable information regarding the internal

environment. The production of reactive oxygen species
(ROS) can cause oxidative damage at the cellular level.
Generally, trace metals generate and promote ROS (such as
hydrogen peroxide or the peroxide radical, superoxides, and

Fig. 3 Oxidative status markers measured in blood serum of C. carpio. Data are presented using box-whisker plot (mean, median, 25–75%, min.-max.)

�Fig. 4 Serum chemistry parameters measured in blood serum of C.
carpio. Data are presented using box-whisker plot (mean, median, 25–
75%, min.-max.)
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nitric oxide) overproduction in the cell [72]. Inversely, cells
own specific defense mechanisms to protect against ROS-
mediated oxidative damage. The antioxidant systems are
classified into two major groups. Enzymatic antioxidants
(SOD, CAT, GPx) that act as the body’s first line of de-
fense by catalyzing ROS conversion to less reactive or
inert species, and non-enzymatic (endogenous) antioxi-
dants (GSH, UA, Alb), which provide a secondary de-
fense against ROS ([10, 23, 31–34]). Environmentally in-
duced oxidative stress in aquatic animals was described in
several studies, specifically in relation to the trace metal
content [3, 5, 10, 22].

Bocchetti et al. [73] tested the effect of various sampling
periods to oxidative stress in aquatic organisms (Tapes
philippinarum and Mytilus galloprovincialis) and showed a
significant seasonal impact on the activities of CAT, GST,
CAT, and GPx, which is comparable with our results (TAC,
CAT, and GPx activities exhibited significant differences
among seasons). Moreover, the ROS, SOD, GSH activity,
and concentrations of PC, MDA, UA, albumin, and bilirubin
in the blood were also significantly affected by season.

We observed many significant correlations between metals
and oxidative status markers in both seasons (Table 4). The
effect of Cu and Pb content on the CAT activity, Al, and Ni

Table 4 Statistically significant correlations between tracemetal concentrations and investigated blood serum parameters (oxidative statusmarkers and
serum chemistry parameters) in different seasons

Spring season Summer season

Investigated parameter Metal Spearman R (P value) Investigated parameter Metal Spearman R (P value)

Ca Sr 0.5833 (0.0196) Ca Zn 0.9167 (0.0002)

Ca Zn 0.6691 (0.0074) Mg Cr 0.5281 (0.0251)

Mg Sr 0.6719 (0.0044) Mg Cu 0.5491 (0.0198)

Mg Zn 0.6263 (0.0079) Mg Fe 0.5105 (0.0303)

Na Cd − 0.5214 (0.0270) Mg Hg 0.7175 (0.0023)

Na Fe − 0.7635 (0.0012) Na Cu 0.4860 (0.0390)

Na Mn − 0.7407 (0.0017) Na Ni − 0.6649 (0.0048)

K Fe 0.7389 (0.0017) K As 0.5620 (0.0171)

K Mn 0.5230 (0.0265) Cl Ni 0.5309 (0.0243)

Cl Cd − 0.5045 (0.0323) Urea Mn 0.6802 (0.0039)

Cl Fe − 0.6632 (0.0049) TP Ni − 0.6228 (0.0082)

Cl Mn − 0.6175 (0.0088) Glu Cr − 0.5754 (0.0146)

ALP Ni 0.6147 (0.0173) Glu Hg − 0.6246 (0.0081)

Chol Hg 0.5930 (0.0119) ALP Mn 0.5253 (0.0303)

Bili As − 0.5737 (0.0180) Chol Cu 0.4982 (0.0345)

TG Hg 0.4667 (0.0477) Chol Ni − 0.4632 (0.0494)

ROS Cd − 0.5628 (0.0244) Bili Fe − 0.4625 (0.0497)

ROS Cu − 0.7721 (0.0020) TG Cu 0.7105 (0.0026)

ROS Ni − 0.5760 (0.0212) TG Ni − 0.6667 (0.0047)

ROS Sr − 0.6201 (0.0131) TG Hg 0.4702 (0.0461)

TAC Ni 0.5049 (0.0434) CK Cr 0.4923 (0.0424)

TAC Hg − 0.5025 (0.0445) CK Hg 0.5046 (0.0375)

MDA Cu − 0.6150 (0.0172) ROS Cu 0.5509 (0.0194)

MDA Ni − 0.5693 (0.0275) ROS Hg 0.4667 (0.0477)

MDA Hg 0.5133 (0.0468) TAC Sr 0.5930 (0.0119)

SOD Cd − 0.4981 (0.0463) MDA Cu 0.4831 (0.0411)

SOD Cu − 0.6789 (0.0066) MDA Sr − 0.4822 (0.0408)

SOD Ni − 0.5343 (0.0326) GSH Mn 0.5075 (0.0313)

GSH Cu 0.5420 (0.0358) GSH Sr 0.4749 (0.0439)

UA Ni 0.5971 (0.0208) UA Cu − 0.4667 (0.0477)

BHB Pb − 0.5381 (0.0441) BHB Cu 0.4856 (0.0349)

BHB Hg 0.5868 (0.0281)

Alb Fe 0.5911 (0.0221)
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content on higher MDA concentrations in burrowing crab
(Neohelice granulate) were confirmed by Giarratano et al.
[5]. Shi et al. [74] also found that nickel toxicity is associated
with ROS generation with a subsequent lipid peroxidation,
and alkyl and alkoxyl radical production.

Ruas et al. [10] have observed oxidative status biomarkers,
such as changes in the glutathione (GSH) content, activity of
superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GPx) and the levels of lipid peroxidation (LPO),
in the blood of three cichlid fish (Oreochromis niloticus,
Tilapia rendalli, and Geophagus brasiliensis) during two sea-
sons (autumn, spring) from unpolluted and polluted (Cr, Cd,
Cu, Zn, Mn, Fe pollution) sites. Their results showed a signif-
icantly increased activity of SOD, LPO, GSH, and LPO/
CAT+GPx ratio in the polluted site, which may indicate the
induction of oxidative stress. According to Javed et al. [23],
antioxidant enzymes (SOD, CAT, GST) and lipid peroxidation
in different tissues (liver and kidney) of fish (Channa
punctatus) exposed tometals (Cu, Ni, Fe,Mn, Cr, Zn) showed
a significant increase of their activity; however, the level of
non-enzymatic parameters (GSH) decreased. In another study
[28], the authors recorded a decreased activity of SOD and
CATand an increasedMDA (lipid peroxidation) content in the
liver of metal-exposed catfish. As such, we may suppose that
if the first line of defense is activated immediately, the activity
of antioxidant enzymes will increase. If the first antioxidant
protection line is not rapidly involved, oxidative stress and
subsequent lipoperoxidation can occur, resulting in an in-
creased concentration of MDA in blood, cells, and tissues.
In addition, oxidative stress can be the cause of protein oxida-
tion, which can be expressed through an increased content of
PC in the blood or tissues.

Correlation analysis of Abarikwu et al. [28] showed com-
parable results to ours, particularly the effect of nickel and
cadmium on the activity of superoxide dismutase. Lead affect-
ed the function of various antioxidant enzymes; decreased
activity of SOD, CAT, GPx, and GSH; and increased lipid
peroxidation [75], which demonstrate induced oxidative inju-
ry. GSH is a sulfhydryl-rich tripeptide that is generally in-
volved in the protection of cells against toxicants and in the
metabolism of xenobiotics [76]. [33]) showed that the expo-
sure of a fish population (Oreochromis niloticus) to polluted
water (Cd, Cu, Cr, Pb, Zn) caused oxidative stress followed by
the response of the glutathione metabolism. Glutathione mol-
ecules were depleted after metal exposure, which caused in-
creased glutathione S-transferase activity and may reflect on
the deterioration cell protection ability. Gopal et al. [26] ob-
served a decreasing tendency of albumin content in blood
serum of common carp following exposure of different con-
centrations of mercuric chloride, lead nitrate, copper sulfate,
and nickel sulfate, which refers to liver disease and stress
situations. De Oliveira et al. [22] evaluated several biomarkers
in Anodontites trapesialis after 96 h of confinement

downstream of a coal mine. Increased bioaccumulation of
metals (Al and Fe) resulted in an increased lipid peroxidation
and protein oxidation in gills, while SOD was not affected.
Low level of uric acid as an endogenous antioxidant is less of
a health concern; however, its increased levels may refer to
several disturbances of the kidney [77].

Conclusions

Taken together, obtained data on C. carpio indicate that trace
metals (especially Cd, Cr, Cu, Fe, Hg, Mn, Ni, Sr, Zn, As)
affect blood serum chemistry parameters (Ca, Mg, Na, K, Cl,
Urea, TP, Glu, ALP, Chol, TG, CK); however, there was not
serious damage to health status, except for ALP which may
indicate bile duct epithelial damage. The correlation analysis
between oxidative status markers (ROS, TAC, MDA, SOD,
GSH, UA, BHB, Alb) and trace metal (Cd, Cu, Ni, Sr, Hg, Pb,
Fe, Mn) content confirmed statistically significant interactions
in both seasons.

Nevertheless, the results indicate many other associations
between monitored contaminants and physiological parame-
ters. When aquatic ecosystems are polluted with contaminants
such as trace metals, aquatic animals, especially fish, should
be also contaminated through bioaccumulation, as these are in
continual contact with polluted environment, suggesting that
trace metals negatively influence the fish physiology.

Further studies are necessary for the bio-monitoring of en-
vironmental, ecological, and pollutant stress factors as ecolog-
ical risk assessment in association of biomarkers in living
organisms.
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