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Abstract
Lead (Pb)-induced reproductive toxicity is a well-characterized adverse effect associated with this heavy metal. It has been found
that Pb exposure is associated with altered spermatogenesis, increased testicular degeneration, and pathological sperm alterations.
On the other hand, it has been reported that Pb-induced reproductive toxicity is associated with increased reactive oxygen species
(ROS) formation and diminished antioxidant capacity in the reproductive system. Hence, administration of antioxidants as
protective agents might be of value against Pb-induced reproductive toxicity. This study was designed to investigate whether
carnosine (CAR) and histidine (HIS) supplementation would mitigate the Pb-induced reproductive toxicity in male rats. Animals
received Pb (20 mg/kg/day, oral, 14 consecutive days) alone or in combination with CAR (250 and 500 mg/kg/day, oral, 14
consecutive days) or HIS (250 and 500 mg/kg/day, oral, 14 consecutive days). Pb toxicity was evident in the reproductive system
by a significant increase in tissue markers of oxidative stress along with severe histopathological changes, seminal tubule
damage, tubular desquamation, low spermatogenesis index, poor sperm parameters, and impaired sperm mitochondrial function.
It was found that CAR and HIS supplementation blunted the Pb-induced oxidative stress and mitochondrial dysfunction in the rat
reproductive system. Thereby, antioxidative and mitochondria-protective properties serve as primary mechanisms for CAR and
HIS against Pb-induced reproductive toxicity.
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Introduction

There has been serious concern about the deterioration of human
and animalmale reproductive health in associationwith exposure
to environmental, industrial, and occupational chemicals, as well
as several pharmaceuticals [1–3]. Among an array of toxic

chemicals, heavy metals are environmental toxicants which pose
male reproductive toxicity and infertility inwildlife, experimental
animals, and humans [1, 2]. Lead (Pb) is a toxic pollutant exten-
sively distributed in the environmental and biological systems.
As a result of industrial development, the environmental levels of
Pb have raised more than 1000 times, over the past 30 years [4].
It has been reported that Pb exposure, even at very low doses, is
implicated in the impairment of a wide range of body function in
laboratory animals and humans [5, 6]. Several systems including
the heart, kidneys, liver, central and peripheral nervous systems,
endocrine system, reproductive system, and hematological attri-
butes are affected by Pb exposure [7–14].

Previous investigations have shown that Pb exposure in-
duces deleterious effects on sperm motility, caused premature
acrosome reaction, reduced zona-intact oocyte penetrating ca-
pability, decreased plasma testosterone, and impaired sper-
matogenesis [15–19]. The role of oxidative stress and its asso-
ciated complications have been well described in Pb-induced
reproductive toxicity [15–19]. A defect in testicular enzymatic
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antioxidants, such as superoxide dismutase, as well as an in-
crease in sperm reactive oxygen species (ROS) generation, has
been documented in Pb-exposed animals [15–19]. Several re-
productive dysfunctions including histological evidence of tes-
ticular damage inhibited spermatogenesis, and a reduction in
sperm quality and quantity have also been shown in animals
exposed to Pb [15–19]. Hence, antioxidants may have the po-
tential as protective agents against Pb-induced reproductive
toxicity. Protective effects of several chemicals such as vitamin
C, vitamin E, β-carotene, zinc, selenium, and polyphenol com-
pounds have been investigated against Pb-induced reproduc-
tive toxicity [6, 17–20]. Sperm mitochondria also seem to be a
potential target of Pb toxicity [21–23]. As proper mitochondrial
function and enough level of energy guarantee proper sperm
motility and function, mitochondrial injury leads to reduced
sperm parameters and reproductive failure [24, 25]. Hence, in
the current study, the involvement of sperm mitochondrial
function in Pb-exposed rats was also evaluated as potential
mechanisms of protection provided by carnosine and histidine.

Carnosine (CAR), a dipeptide composed of L-histidine
(HIS) and β-alanine, is a potential endogenous antioxidant
found mainly in skeletal and cardiac muscle, brain, and other
organs in humans [26–28]. Numerous vital functions are re-
ported for CAR [29–32]. Due to antioxidant and membrane-
stabilizing activity of CAR under physiological conditions, it
has been established that CAR prevents lipid peroxidation and
oxidative damage to proteins [33]. This dipeptide also inacti-
vates highly reactive aldehydes produced from degenerated
biomembrane lipids [34]. Furthermore, the beneficial effect
of CAR in the reproductive system has been widely investigat-
ed [35, 36]. Hence, in the current study, we aimed to assess the
potential protective effect of CAR in Pb-induced reproductive
toxicity and its potential mechanism(s) of protective properties.

It has been shown that some amino acids protect several
types of animal cells against hypothermia and have ameliora-
tive effects on sperm parameters in cryopreservative extenders
[37]. There is a good body of literature explaining the protec-
tive function of amino acids in cryoprotection [38–43].
Among them, it has been reported that HIS cause a decrease
in polyunsaturated fatty acid dilapidation of spermatozoa un-
der peroxidation stress in humans [44]. The protective effects
of this amino acid in other experimental models have also
been evaluated [45–47]. Hence, another aim of the current
study was to determine the protective effect of HIS against
Pb-induced reproductive toxicity.

Materials and Methods

Chemicals

2′,7′ Dichlorofluorescein diacetate (DCFH-DA), 3-(N-
mo r pho l i n o ) p r o p a n e s u l f o n i c a c i d (MOPS ) ,

3-[4,5dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
(MTT), 4,2-Hydroxyethyl,1-piperazineethanesulfonic acid
(HEPES), bovine serum albumin (BSA), lead (Pb) acetate, di-
methyl sulfoxide (DMSO), thiobarbituric acid (TBA), dithiobis-
2nit robenzoic acid (DTNB), glutathione (GSH),
malondialdehyde (MDA), eosine, Coomassie brilliant blue,
negrosine, ethylene glycol-bis (2-aminoethylether)-N,N,N′,N′-
tetraacetic acid (EGTA), sucrose, KCl, NaCl, dithiothreitol
(DTT), Na2HPO4, MgCl2, Rhodamine 123 (Rh 123), and ethyl-
enediaminetetraacetic acid (EDTA) were purchased from Sigma
Chemical Co. (St. Louis,MO,USA). Trichloroacetic acid (TCA)
and hydroxymethyl aminomethane hydrochloride (Tris–HCl)
were purchased from Merck (Darmstadt, Germany). The salts
for preparing buffer solutions were of the analytical grade and
obtained from Merck (Darmstadt, Germany).

Animals and Treatments

Mature male Sprague-Dawley (SD) rats (n = 48; 300–320 g)
were purchased from Experimental and Comparative
Medicine Research Center of Shiraz University of Medicine,
Shiraz, Iran. Animals were maintained under controlled con-
ditions (12:12 h, photoschedule; 18–22 °C; appropriate venti-
lation, ≈ 40% humidity). Animals had free access to tap water
and commercial rodent pellets (Behparvar®, Tehran, Iran). All
animal procedures were performed in compliance with the
regulations and guidelines of the local ethics committee at
Shiraz University of Medical Sciences, Shiraz, Iran (95-01-
36-11290). Animals were allotted to six groups (n = 8 in each
group). The treatments were as follows: (a) control (vehicle-
treated), (b) Pb-acetate (20 mg/kg/day, gavage), (c) Pb-acetate
+ carnosine (250 mg/kg/day, gavage), (d) Pb-acetate +
carnosine (500 mg/kg/day, gavage), (e) Pb-acetate + histidine
(250 mg/kg/day, gavage), (f) Pb-acetate + histidine (500 mg/
kg/day, gavage). Pb-acetate, carnosine, and histidine were ad-
ministered daily for 14 consecutive days. On day 15, the an-
imals were anesthetized, and samples collected. HIS and CAR
were administered at least 6 h after Pb-acetate.

Sample Collection

Animals were anesthetized (Thiopental 70mg/kg, i.p.) and the
epididymides and testes were excised and weighed. The left
testes were kept in 10% formalin for histopathological evalu-
ations. Total antioxidant capacity, lipid peroxidation, reactive
oxygen species (ROS) production, protein carbonylation, and
glutathione contents were determined in the right testes.
Sperm was collected from the left cauda epididymis.

Testis Weight Index

Testicular weight index (WI) was determined as WI = [wet
weight of organ (g) / body weight (g)] × 100.
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Sperm Quality Evaluation

Epididymal sperm count and sperm progressive motility were
determined as previously reported [48]. Briefly, epididymal
sperm was extracted by mincing the caudal epididymis in
warm phosphate-buffered saline (PBS; 35 °C; pH = 7.4).
Sperm progressive motility was recorded by putting a drop
of sperm suspension on a glass slide covered with a coverslip
and observing the sperm under a Zeiss (Jena, Germany) com-
pound light microscope (400 × magnification) equipped with
hot-stage (35 °C). The hypo-osmotic swelling (HOS) test was
performed by mixing 10 μL of sperm suspension with 50 μL
of hypo-osmotic solution (50-mOsm NaCl) for 10 min at
37 °C by evaluating the sperm percentage with a swollen
Bbubble^ around the curled flagellum by counting 200 cells
on each slide, using light microscopy (× 1000 magnification)
[49, 50]. Sperm concentration was determined by placing
10 μL of diluted epididymal fluid on a Neubauer hemocytom-
eter using a light microscope (× 200 magnification). Sperm
abnormality and viability were monitored in duplicate (200
sperm per sample) after eosin-nigrosin staining [51].
Spermatozoa with protoplasmic droplets, ab-axial tail, mal-
formed heads, double tails, coiled tails, bent tails, without tail
and head, were recorded as abnormal under a phase-contrast
microscope (Olympus BX41; Olympus Optical Co. Ltd.,
Japan) [52, 53].

Sperm Mitochondrial Dehydrogenase Activity (MTT
Assay)

The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide (MTT) assay was used for colorimetric measurement
of mitochondrial dehydrogenase activity in sperm [52, 53].
For this purpose, sperm samples (1 mg protein/mL) were in-
cubated with 40 μL MTT solution (5 mg/mL) at 37 °C for
30min. The reaction products (purple formazan crystals) were
dissolved in dimethyl sulfoxide (DMSO; 1 mL), and the op-
tical density (OD) of the dissolved formazan was determined
at λ = 570 nm using an EPOCH plate reader (BioTek
Instruments, Highland Park, USA) [54, 55].

Sperm Mitochondrial Membrane Potential

Mitochondrial uptake of the cationic fluorescent dye, rhoda-
mine-123, was applied for the determination of sperm mito-
chondrial membrane potential [55, 56]. Briefly, sperm sam-
ples (1 mg protein/mL) were incubated with 10 μM of
rhodamine-123 for 30 min at 35 °C under dark conditions.
After centrifugation (10,000×g, 4 °C), the fluorescence inten-
sity of supernatant was measured (λ excitation = 485 nm and λ

emission = 525 nm) using a FLUOstar Omega®multifunctional
microplate reader (BMG LABTECH, Germany) [55, 56].

Testicular and Sperm Reactive Oxygen Species

Testicular and sperm ROS levels were measured using the
fluorescent probe dichlorofluorescein diacetate (DCFH-DA)
[56, 57]. Briefly, DCFH-DAwas added (10 μM final concen-
tration) to sperm and homogenized testicular samples (1 mg
protein/ml). Samples were incubated for 30min at 35 °C in the
dark. Afterward, the DCF fluorescence intensity was recorded
using a FLUOstar Omega®multifunctional microplate reader
(BMG LABTECH, Germany) (λ excitation = 485 nm and λ emis-

sion = 525 nm) [52, 58].

Testicular and Sperm Lipid Peroxidation

Thiobarbituric acid reactive substances (TBARS), as an index
of lipid peroxidation, were measured in the testis. For this pur-
pose, 500 mg of testis tissue homogenate (10% w/v in KCl,
1.15%w/v) or samples of 106 sperm/ml was added to a reaction
mixture consisting of 1 mL thiobarbituric acid (0.375%, w/v)
and 3 mL phosphoric acid (1% w/v, pH = 2) [53, 59]. The
mixture was incubated at 100 °C for 45 min. Afterward,
2 mL of n-butanol was added and vigorously mixed. Finally,
specimens were centrifuged (10,000×g for 5 min) and absor-
bance of the developed color in n-butanol phase was measured
at λ = 532 nm using an Ultrospec 2000®UV spectrophotome-
ter (Scinteck Instruments, USA) [60].

Testicular and Sperm Glutathione Content

Testicular and sperm glutathione (GSH) levels were determined
spectrophotometrically using 5, 50-dithiobis-2-nitrobenzoic ac-
id (DTNB) as the indicator [53, 61]. Briefly, testis tissue
(200 mg) or sperm (106 cells/ml) samples were homogenized
(Heidolph, Germany) in 8 mL of ice-cooled EDTA solution
(20 mM). Then, 5 mL of the homogenate was mixed with
4 mL distilled water and 1 mL trichloroacetic acid (50% w/v).
The mixture was gently shaken and centrifuged (10,000×g,
10 min, 4 °C). Then, 2 mL of the supernatant was mixed with
4 mL Tris buffer (pH = 8.9) and 100 μL Ellman’s reagent
(DTNB, 10 mM in methanol) [62, 63]. The intensity of the
developed yellow color was measured at λ = 412 nm using an
Ultrospec 2000®UV spectrophotometer Pharmacia Biotech®
UV spectrophotometer (Scinteck Instruments, United States).

Ferric-Reducing Antioxidant Power

The ferric-reducing antioxidant power (FRAP) of testicular
tissue and sperm samples was measured in each experimental
group. The FRAP assay evaluates changes in the absorbance
at λ = 593 nm due to the formation of a blue-colored Fe2+-
tripyridyltriazine from the colorless oxidized Fe3+ form by the
action of electron-donating antioxidants [53, 64]. Briefly, the
working FRAP mixture was freshly prepared by mixing 10
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parts of 300 mmol/L acetate buffer (pH = 3.6) with 1 part of
10 mmol/L TPTZ (2, 4, 6-tripyridyl-s-triazine) in 40 mmol/L
hydrochloric acid and with 1 part of 20 mmol/L ferric chlo-
ride. Testicular or sperm samples was homogenized in Tris–
HCl buffer (0.25M; pH = 7.4; 4 °C), containing 0.2M sucrose
and 5 mM dithiothreitol (DTT) [65]. Afterward, 1.5 mL
FRAP reagent and 150 μL deionized water were added to
50 μL testicular tissue homogenate and incubated at 37 °C
for 5 min. The intensity of the resultant blue color was mea-
sured at λ = 593 nm using an Ultrospec2000® spectropho-
tometer (Scinteck Instruments, United States) [66]. The pro-
tein content of the sample was measured, using the Bradford
method, for standardization of data [67].

Testicular Histopathology

For histopathological evaluations, testicular specimens were
fixed in buffered formalin solution (0.4% NaH2PO4, 0.64%
Na2HPO4, and 10% formaldehyde in distilled water; pH =
7.4). The samples were rinsed with running water, dehydrated
in graded alcohol, cleared in xylene, and embedded in paraf-
fin; paraffin-embedded samples were cut into 5-μm sections
with a rotary microtome and stained with hematoxylin-eosin
stain. Tissue histopathological alterations were evaluated by a
pathologist in a blind manner using a light microscope
(Olympus BX41; Olympus Optical Co. Ltd., Japan).
Testicular tubular injuries were monitored, and a four-level
grading scale was used to quantify the histopathological alter-
ation [68, 69]. Grade 1 injury shows a typical testicular struc-
ture with an orderly arrangement of germinal cells. Grade 2
injury demonstrates less orderly, no cohesive germinal cells,

and firmly packed seminiferous tubules. Grade 3 injury ex-
hibits disordered, sloughed-off germinal cells with shrunken,
pyknotic nuclei, and less distinct seminiferous tubule borders.
Grade 4 injury shows seminiferous tubules that are tightly
packed with coagulative necrosis of the germinal cells [68,
69]. For testis tubular desquamation, the seminiferous tubules
were evaluated for the existence of complete spermatogenesis
and focal or diffuse atrophy or tubular degeneration, depend-
ing on the number of affected tubules. Early intratubular des-
quamation was graded as mild (+), moderate (++), or severe
(+++) [68, 69]. The existence of multinucleated cells, within
the tubular lumen or among spermatogenic cells, was recorded
[68, 69]. The existence of degenerative alterations in intersti-
tial Leydig cells was also studied (e.g., nuclear atrophy or
cytoplasmic vacuolization) [68, 69]. The spermatogenic index
was reported based on the ratio of the number of seminiferous
tubules with spermatozoids to the empty tubules [68, 69].

Statistical Analysis

Data were expressed as mean ± SD. Data analysis was per-
formed by the one-way analysis of variance (ANOVA), and
mean comparison performed using the Tukey’s multiple com-
parison test as the post hoc test at P < 0.05 (SPSS software,
version 19, IBM Corporation, NY, USA).

Results

Body and testicular weight were lower in Pb-treated rats
(Fig. 1), but carnosine (CAR; 250 and 500 mg/kg) and
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testicular weights in the rat. Pb
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different from control (P < 0.001).
aSignificantly different from Pb-
treated group (P < 0.001). ns not
significant as compared with Pb-
treated group (P > 0.05)
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histidine (HIS; 500 mg/kg) supplementation mitigated the
lead-induced decrease in testis and body weights (Fig. 1).
The effect of CAR and HIS on animal body weight or testic-
ular weight index was not dose-dependent in the current study
(Fig. 1).

Assessment of sperm parameters in Pb-treated rats revealed
that exposure to Pb caused a significant decrease in sperm
motility, viability, and membrane integrity (Fig. 2). A signif-
icant increase in the amount of abnormal sperm was also ev-
ident in Pb-treated animals (Fig. 2). On the other hand,

improvements in these attributes were observed consequent
to CAR (250 and 500 mg/kg) and HIS (250 and 500 mg/kg)
administration (Fig. 2).

Evaluating sperm markers of oxidative stress revealed sig-
nificant ROS formation, lipid peroxidation, glutathione deple-
tion, and decreased antioxidant capacity in Pb-treated rats
(Fig. 3). It was found that (250 and 500 mg/kg) and HIS
(250 and 500 mg/kg) supplementation significantly mitigated
the oxidative stress markers in sperm isolated from Pb-treated
animals (Fig. 3).
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Impairment in spermmitochondrial function was revealed by
an increment in mitochondrial depolarization and a decline in

mitochondrial dehydrogenase activity in the Pb-treated group
(Fig. 3). It was found that (250 and 500 mg/kg) and HIS (250
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and 500 mg/kg) abated the collapse of sperm mitochondrial
membrane potential and preserved mitochondrial dehydroge-
nase activity in the sperm of Pb-treated rats (Fig. 3).

Testis tissue histopathological changes revealed the severe
tubular injury, tubular desquamation, and low spermatogene-
sis index in Pb-treated rats (Fig. 4 and Table 1). CAR and HIS
supplementation decreased lead-induced testicular changes
(Fig. 4 and Table 1).

A significant increase in biomarkers of oxidative stress
in the testis tissue of Pb-treated animals was evident as
elevated ROS formation and lipid peroxidation (Table 2).
On the other hand, testis tissue antioxidant capacity was
decreased, and glutathione reservoirs were depleted in Pb-
treated animals in comparison with the control group
(Table 2). It was found that CAR (250 and 500 mg/kg)

and HIS (500 mg/kg) mitigated oxidative stress and its
consequences in the testis tissue of Pb-treated rats
(Table 2). The effect of CAR and HIS on tissue bio-
markers of oxidative stress was not dose-dependent in
the current study (Table 2).

Its noteworthy to mention that administration of CAR or
HIS (500 mg/kg/day) alone did not significantly affect the
testis and sperm parameters of interest in the current investi-
gation (Data not shown). It should also mention that the pro-
tective properties of HIS and CAR against Pb-induced de-
crease in rat sperm functionality were not dose-dependent in
the current study (Figs. 2 and 3). On the other hand, no sig-
nificant differences between the protective properties of HIS
and CAR were found neither at sperm nor the mitochondria
level (Figs. 2 and 3).

Fig. 4 Photomicrographs of the testicular architecture of lead-treated rats.
a Tissue from control (vehicle-treated) animals revealed normal testis
tissue architecture (Table 1). b Histopathological changes in the lead
(Pb)-exposed rats (20 mg/kg/day for 14 consecutive days) revealed as
tubular injury, tubular desquamation, and low spermatogenic index

(Table 1). c, d Carnosine (250 and 500 mg/kg respectively) treatment
alleviated lead (Pb)-induced testis tissue histopathological changes
(Table 1). e, f Histidine (250 and 500 mg/kg respectively)-treated rats
showed mild testicular injury (Table 1).

Table 1 Histopathological
changes of the testis tissue in the
lead (Pb)-treated rats

Tubular injury Tubular desquamation Spermatogenic index

Control (vehicle-treated) – – 1

Pb (20 mg/kg/day) ++++ ++++ 0.7

Pb + carnosine (250 mg/kg) ++ +++ 0.8

Pb + carnosine (500 mg/kg) – ++ 0.9

Pb + histidine (250 mg/kg) +++ +++ 0.75

Pb + histidine (500 mg/kg) ++ ++ 0.8

Pb lead, + mild, ++ moderate, +++ severe histopathological changes
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Discussion

Pb exposure is well established to have detrimental effects on
several organs including the reproductive system. It has been
shown that Pb interrupts reproductive hormonal balance and
prompts oxidative stress in the rat testes [70]. Hence, antiox-
idants might serve as potential protective agents against lead-
induced reproductive toxicity. Results of the current investi-
gation supported the protective effects of carnosine and histi-
dine against Pb reproductive toxicity.

We found an increase in the testicular and sperm mitochon-
drial ROS biosynthesis and sperm MDA levels, in addition to
severe testis morphological alterations in Pb-treated rats.
Moreover, poor sperm parameters including sperm motility,
viability, abnormality, and membrane integrity and impair-
ment in reproductive mitochondrial indices such as mitochon-
drial depolarization and decrease in mitochondrial dehydroge-
nase activity were also found in the current study. On the other

hand, biomarkers of oxidative stress were increased where
total antioxidant capacity was decreased in Pb-treated rats.

The effect of Pb on body weight and relative testicular weight
percentage were significantly lower than in other groups. These
observations are in agreement with the report of Acharya et al.
[71] who reported a significant decrease in the body and testicu-
lar weights in animals treated with a single dosage of Pb, which
they attributed to excessive ROS generation. However, there are
reports of an increase in testicular weight due to acute Pb-
administration which were attributed to interstitial edema due
to fluid accumulation in the testis [70, 72].

The high content of polyunsaturated fatty acids in the
sperm plasma membrane makes it susceptible to lipid perox-
idation and triggering a higher TBARS synthesis by ROS
generation [73]. The defect in testis and sperm antioxidant
enzymes and ROS-induced biomembrane disruption (Fig. 3)
might be a reason for alteration in sperm membrane integrity
in Pb-treated animals [74]. Our results indicated that CAR and

Table 2 Biomarkers of oxidative stress in the testis of lead (Pb)-treated rats

ROS formation
(DCF fluorescence intensity)

FRAP
(% of control)

TBARS
(nmol/mg protein)

Glutathione
(% of control)

Control (vehicle-treated) 124,008 ± 11,358 103 ± 5 0.82 ± 0.1 106 ± 7

Pb (20 mg/kg/day) 222,312 ± 24072* 37 ± 9* 5.6 ± 1.7* 43 ± 6*

Pb + CAR (250 mg/kg) 122,414±6567** 56 ± 4** 1.5 ± 0.1** 77 ± 10**

Pb + CAR (500 mg/kg) 135,373 ± 14,037** 71 ± 5**, *** 0.99 ± 0.1**, *** 81 ± 5**

Pb +HIS (250 mg/kg) 142,547 ± 7760** 44 ± 11 3.2 ± 0.5 62 ± 4**

Pb +HIS (500 mg/kg) 151,657 ± 14,241** 69 ± 2**, # 2.2 ± 0.4** 69 ± 5**

Data are given as mean ± SD (n = 8)

Pb lead, CAR carnosine, HIS histidine, ROS reactive oxygen species, DCF dichlorofluorescein, FRAP ferric-reducing antioxidant power, TBARS
thiobarbituric acid reactive substances

*Significantly different from control (P < 0.001)

**Significantly different from Pb group (P < 0.001)

***Significantly different as compared with Pb + CAR 250 mg/kg (P < 0.05)
# Significantly different as compared with Pb +HIS 250 mg/kg (P < 0.05)
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HIS supplementation could inhibit Pb-induced oxidative
stress and reproductive toxicity (Fig. 5).

Glutathione (GSH) and its associated enzyme systems are
the most important cellular defense mechanism against xeno-
biotics; GSH is also an essential antioxidant for quenching
free radicals [75]. The deleterious effects of Pb on cellular
glutathione stores were also documented by previous investi-
gators [21, 76, 77]. Lead might inactivate glutathione by bind-
ing to the sulfhydryl groups. In the current investigation, we
found that Pb significantly depleted testicular and sperm glu-
tathione contents. In line with our observation, Dkhil et al.
reported considerable reduction in testicular superoxide dis-
mutase, catalase, glutathione reductase, and glutathione per-
oxidase activities, following administration of Pb [70]. Similar
to our findings regarding the FRAP test data as an index of
total antioxidant capacity, Dkhil et al. [70] observed that Pb
intoxication induced a falling down of the antioxidative de-
fense in the rat testes. Therefore, it seems the antioxidative
properties of CAR and HIS might play a primary role in their
protective actions against Pb reproductive toxicity [70].

It is known that Pb adversely affects mitochondrial func-
tion. The inhibition of mitochondrial oxidative phosphoryla-
tion, collapse of mitochondrial membrane potential, inhibition
of mitochondrial respiratory enzyme activities, ATP depletion,
and energy crisis are adverse effects reported in different
models of Pb-induced toxicity [21–23, 78, 79]. Our data also
support these findings; hence, mitochondrial dysfunction
might serve as an essential mechanism in Pb reproductive
toxicity. On the other hand, the regulation of mitochondrial
function is an essential feature of CAR and HIS [60, 80–84].
In this study, CAR and HIS supplementation preserved sperm
mitochondrial membrane potential and dehydrogenase activi-
ty. Therefore, these chemicals might prevent Pb-induced tox-
icity through regulating mitochondrial function (Fig. 5).

Formation of ROS and mitochondrial dysfunction are also
two mechanistically interrelated events [85, 86]. It is well
known that cellular mitochondria are the primary source of
intracellular ROS formation [86]. Excessive cellular ROS could
also deteriorate proper mitochondrial function [87, 88]. Hence,
oxidative stressmight be a cause or a consequence ofmitochon-
drial injury [87, 88]. Thereby, CAR and HIS could decrease
ROS level not only by direct scavenging of reactive species but
also by regulating sperm mitochondrial function (Fig. 5).

Acute exposure to Pb might enhance membrane suscepti-
bility to injury and trigger a malfunction in testes and sperm
by altering the major components of sperm biological mem-
branes and polyunsaturated fatty acids. In the current study,
simultaneous administration of CAR and HIS to Pb-treated
rats revealed an antioxidative role and also ameliorative ef-
fects on testicular histopathological alteration against detri-
mental effects of Pb. Hence, the antioxidative properties of
CAR and HIS might play a crucial role in scavenging the
ROS induced by Pb in the testes and sperm (Fig. 5).

Metal ion chelation is an interesting feature of the peptide
CAR as well as the amino acid HIS [89–91]. Although the
capability of these chemicals for chelation of different metal
ions could be variable, their metal ion-chelating properties
might play a role in the mechanism of protection against Pb-
induced reproductive toxicity. In the current study, a high dose
of Pb (20 mg/kg/day, oral, 14 consecutive days) was admin-
istered. On the other hand, CAR and HISwere administered at
least 6 h after Pb which might decrease the chance of interac-
tion between Pb and these chemicals in the gastrointestinal
tract. However, the lack of serum and testicular level of Pb
might serve as a limitation for the current study. Hence, eval-
uating serum and tissue level of Pb, as well as CAR and HIS,
might help to provide more explicit idea on their mechanism
of protection against Pb toxicity.

Collectively, our data indicate that the antioxidative and
mitochondria-protecting properties of CAR and HIS play a
primary role in the protective properties of these molecules
against Pb-induced reproductive toxicity. Therefore, CAR
and HIS treatment may be used in future investigations de-
signed for the study of reproductive toxicants where oxidative
stress and mitochondrial injuries are involved.
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