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Abstract
Studies have shown the participation of minerals in mechanisms involved in the pathogenesis of insulin resistance. Zinc, in
particular, seems to play an important role in the secretion and action of this hormone. Therefore, the aim of this review is to
understand the role of zinc in increasing insulin sensitivity. We conducted a search of articles published in the PubMed and
ScienceDirect database selected fromMarch 2016 to February 2018, using the keywords Bzinc,^ Binsulin,^ Binsulin resistance,^
Binsulin sensitivity,^ and Bsupplementation.^ Following the eligibility criteria were selected 53 articles. The scientific evidences
presented in this review show the importance of zinc and their carrier proteins in the synthesis and secretion of insulin, as well as
in the signaling pathway of action of this hormone. Zinc deficiency is associated with glucose intolerance and insulin resistance;
however, the effectiveness of the intervention with the zinc supplementation is still inconclusive.
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Introduction

Insulin resistance is characterized by reduced sensitivity of the
peripheral tissues to the action of this hormone, particularly in
the adipose tissue, muscle, and liver. This metabolic distur-
bance is associated with several diseases such as obesity, type
2 diabetes mellitus, metabolic syndrome, non-alcoholic fatty
liver disease, cirrhosis, and polycystic ovary syndrome [1–4].

In this context, various factors are related with the devel-
opment of insulin resistance, such as excess body fat (partic-
ularly the accumulation of intra-abdominal fat), chronic in-
flammation, oxidative stress, and endocrine disorders such
as thyroid dysfunction and changes in cortisol homeostasis
[3, 5–7].

In this regard, studies have shown the role of minerals in
mechanisms involved in sensitivity to insulin. Zinc, in partic-
ular, has been a mineral of great interest for researchers, for its

performance in inducing insulin secretion and insulin sensi-
tivity. This micronutrient is required in the formation and
crystallization of insulin, stimulation of phosphorylation of
theβ subunit of this hormone receptor, activation of the kinase
3 phosphatidylinositol enzyme, and induction of the translo-
cation of glucose transporter 4 (GLUT4) [8–10].

Therefore, considering the complexity of insulin resistance
and the high prevalence of this metabolic disorder in several
diseases, as well as the likely participation of zinc in protec-
tion against resistance to this hormone, this review aims to
understand the role of zinc in increasing insulin sensitivity.

Methods

This is a narrative review based on a bibliographical survey of
articles in PubMed and ScienceDirect databases, without limit
for the year of publication, selected from March 2016 to
February 2018. The keywords used in the search were Bzinc,^
Binsulin,^ Binsulin resistance,^ Binsulin sensitivity,^ and
Bsupplementation.^ The descriptors were used alone or com-
bined using the boolean operators BAND^ and BOR.^

Studies that presented relevant aspects of the participation
of zinc and its carrier proteins in mechanisms underlying the
secretion and action of insulin were included. Only studies in
English were included. Articles were selected for originality
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and relevance, considering the accuracy of the experimental
design and adequacy of the sample size. Classic works and
recent articles were preferentially used. Dissertations, theses,
and articles in which only a summary was available, and those
duplicated in different databases were excluded.

Then, we proceeded to the analysis of the included articles,
starting with reading the titles, followed by summaries, and
later the full text. The application of the exclusion criteria was
performed at all stages, always by consensus of the reviewers.
The literature included the following types of studies: exper-
imental studies, clinical trials, cross-sectional studies, case
control studies, and review articles. At the end, we selected
53 articles.

Zinc: Participation in the Secretion of Insulin

Several studies have shown the participation of zinc in protec-
tion against insulin resistance. Zinc deficiency appears to be
associated with glucose intolerance caused by impairments in
insulin secretion and action, whereas supplementation with
zinc increases the concentration of this hormone in the β pan-
creatic cells and stimulates insulin secretion, as well as pro-
motes improvement in insulin sensitivity [11–17].

Regarding the role of zinc in insulin secretion from pancre-
atic β cells, this trace element acts in the crucial steps of
formation and crystallization of this hormone. It is worth men-
tioning that within the secretory granules present in pancreatic
β cells, insulin undergoes a process of maturation and it is
coupled with two zinc ions to form the hexameric complex

zinco2-insulin6, necessary for secretion of this hormone [18,
19].

Cooper-Capetini et al. [15] investigated the effect of zinc
supplementation on glucose homeostasis and pancreaticβ cell
function in an animal model of insulin resistance. These re-
searchers verified that glucose tolerance, HOMA-IR index
(homeostasis model assessment-insulin resistance), and
glucose-stimulated insulin secretion were significantly im-
proved by ZnCl2 supplementation in high fat-fed mice by a
mechanism that enhances β cell function.

Studies have shown the expression of zinc carrier proteins
in β pancreatic cells (Fig. 1), and that these transporters of
zinc affect the secretion of insulin [20–22]. Cai et al. [22]
examined all members (ZNT1-10) of the ZNT family in pan-
creatic islets and in β cell lines of humans and mice and there
were no substantial differences in the expression of nine ZNT
proteins in the human and mouse islets and β cells with ex-
ception of ZNT3, which was only detected in human β cells,
but not in mouse β cells. Moreover, these researchers found
that ZNT2was localized on the cell surface of both human and
mouse β cells, suggesting a role of ZNT2 in direct export of
zinc out of the β cell.

Wijesakara et al. [23] evaluated the effect of zinc transport-
er protein ZNT-8 in pancreatic β cells and found that ZnT-8
gene knockout mice showed glucose intolerance, reduced
concentration of intracellular zinc, atypical insulin granules,
few secretory granules, increased levels of pro-insulin, and
reduction in the first phase of insulin secretion. This indicates
the importance of this protein in processing, crystallization,
storage, and secretion of insulin and in glucose metabolism.

Fig. 1 Localization of zinc carrier
proteins in pancreatic β cell.
Legend: Zn2+—zinc
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ZNT-8 protein transports zinc from the cytoplasm of β pan-
creatic cells to insulin secretory granules, favoring the forma-
tion of zinc-insulin hexamer, which is essential for the secretion
of this hormone. Studies show that single nucleotide polymor-
phisms in the SLC30A8 gene are associated with an increased
risk of diabetes mellitus type 2. In conditions of zinc deficiency,
whereby there is a reduction in the expression of the gene
encoding ZnT-8 in human pancreatic islets and in glucose-
stimulated insulin secretion, and an increase in expression of
this protein restores the secretion of this hormone [24–26].

ZNT-6 protein transports cytoplasmic zinc to the Golgi
apparatus and other vesicular compartments and appears to
be involved in pro-insulin metabolism and insulin secretion;
however, the underlying mechanism is still unclear [18, 21].
Fukunaka et al. [27] demonstrated, in experiment with cell
cultures, that ZNT-6 forms a heterodimer with ZNT-5 and
transports zinc to secretory granules. Thus, ZNT-6 and ZNT-
5 appears to be important in secretory processes, like for ex-
ample, the secretion of insulin.

Another protein important is ZNT-7, responsible for the
transport of the mineral from the cytoplasm to the Golgi com-
plex of β pancreatic cells, influencing the insulin formation
process. Huang et al. [28] demonstrated that overexpression of
ZnT-7 in the islet of Langerhans in the mouse pancreas pro-
motes an increase in insulin mRNA expression by modulating
the activity of the metal responsive transcription factor-1
(MTF-1), and overexpression of ZnT-7 stimulates the synthe-
sis and secretion of this hormone.

Zinc transporter ZNT-3 is also expressed in β pancreatic
cells, and under conditions of hyperglycemia and deficiency
of this mineral, an increase in its expression occurs. Deletion
of the ZnT-3 gene (ZnT-3−/−) reduces expression of the gene
coding for insulin, affects the secretion of this hormone and
increases fasting glucose in mice during streptozotocin-
induced β cell stress. However, the mechanisms involved in
the action of ZNT-3 carrier remain unknown [29].

Concerning the role of ZIP proteins in the metabolism of
insulin, it is worth mentioning that the protein ZIP-10 carrier is
expressed in the plasma membrane of α and β pancreatic cells.
In a zinc deficiency situation, ZIP-10 is translocated to the mem-
brane of intracellular vesicles, and ZIP-10 promotes an efflux of
zinc of these vesicles into the cytoplasm of these cells [30–32].

Carrier proteins ZIP-6, 7, and 8 are expressed in various
organelles, and ZIP-6 and 8 are located in the plasma mem-
brane and ZIP-7 in the endoplasmic reticulum and Golgi com-
plex [33]. Bellomo et al. [34] have shown that an increase in
blood glucose in mice changes zinc homeostasis, inducing the
expression of genes Zip-6, 7, and 8 and favoring increased
mineral content in pancreatic β cells. Thus, the ZIP-6 and 8
carriers may operate by recycling zinc released during the
insulin secretory process.

Liu et al. [35] showed that downregulation of ZIP-6 and 7
carriers in human and mouse islets β pancreatic cells reduces

cytosolic zinc content, impairing insulin secretion stimulated
by glucose. Moreover, the authors showed that ZIP-6 protein
interacts with the peptide glucagon receptor 1, protecting pan-
creatic β cells from apoptosis.

Thus, the carriers ZIP-6 and 8 located in the plasma mem-
brane of β pancreatic cells, contribute to the uptake of plasma
zinc. Moreover, these proteins act by recycling the mineral
secreted with insulin to be reused in the synthesis of the hor-
mone in these cells. ZIP-7, in turn, functions in releasing zinc
from the endoplasmic reticulum and Golgi apparatus to the
cell cytoplasm, while maintaining the homeostasis of the min-
eral during maturation and secretion of insulin [33].

Zinc: Participation in the Action of Insulin

Regarding the role of zinc in signaling pathways involved in
insulin action, this mineral acts via different molecular mech-
anisms (Fig. 2). This mineral stimulates phosphorylation of
the β subunit of the insulin receptor and promotes the activa-
tion of phosphatidylinositol 3 kinase and protein kinase B or
Akt, thereby enhancing glucose transport into the cells [9, 10,
36, 37].

Accordingly, Bellomo et al. [38] demonstrated the presence
of binding sites for zinc in protein tyrosine phosphatase
(PTPase) 1B, an enzyme that regulates insulin action by cat-
alyzing the dephosphorylation of the β subunit of its receptor.
Thus, the nutrient deactivates this enzyme, thereby increasing
the phosphorylation of insulin receptor.

Zinc also inhibits the action of phosphatase and tensin ho-
molog (PTEN), an enzyme that promotes the dephosphoryla-
tion of phosphatidylinositol 3,4,5-triphosphate (PIP3), and it
inhibits activation of the protein Akt signaling pathway of
insulin. Moreover, this mineral induces directly the action of
enzymes phosphatidylinositol 3 kinase and protein Akt. Thus,
zinc promotes translocation of GLUT4 and the subsequent
glucose uptake by cells (Fig. 2) [10].

Associated with this, zinc acts on the structural components
involved in glucose transport and ensure their responsiveness
to insulin-regulated aminopeptidase (IRAP) molecule, which
is necessary to maintain the concentration of GLUT4 in appro-
priate amounts in the adipose and muscle cells (Fig. 2) [39].

Zinc stimulates the phosphorylation of glycogen synthase
kinase 3 (GSK-3) and transcription factor forkhead box protein
O1 (FoxO1), similar to the action of insulin (Fig. 2). The phos-
phorylation of GSK-3 serine residues inhibits its action, favor-
ing the dephosphorylation and activation of glycogen synthase,
involved in glycogen synthesis. Phosphorylation of FoxO1
induces translocation from the nucleus to the cytoplasm and
inhibits its action to stimulate the expression of gluconeogenic
genes. Thus, zinc induces the storage of glucose as glycogen
and inhibits the production of this monosaccharide, thereby
contributing to glucose homeostasis [10, 40].
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Accordingly, Wu et al. [41] demonstrated that zinc can
increase glucose uptake bymyocytes bymodulating the action
of insulin signaling pathway proteins. These researchers found
that the mineral favored activation of Akt enzyme and GLUT4
translocation and stimulated the phosphorylation of GSK-3β
protein, promoting glucose uptake and glycogen synthesis,
respectively.

Another important action of zinc with respect to modula-
tion of transcription of the insulin receptor gene is via zinc
finger proteins, which contain three zinc fingers needed for
binding. The binding of these proteins is required to enable the
expression of the gene coding for the insulin receptor. The
zinc finger protein 407 regulates glucose uptake by insulin
by increasing levels of messenger RNA of Glut4 and stimu-
lating its transcription, favoring increased concentration of
GLUT4 in adipocytes of mice [42].

ZNT-7 also acts in peripheral tissues, stimulating the sig-
naling pathway of insulin action. This zinc transporter is
expressed in muscle cells of mice, while deletion of the ZnT-
7 gene (ZnT-7−/−) favors reduction of the expression of
mRNA of the insulin receptor, the insulin receptor substrate
2 (IRS-2), and Akt protein. Moreover, overexpression of ZnT-
7 increases the expression of IRS-2 mRNA, phosphorylation
of this substrate, and Akt protein and stimulates glucose up-
take in muscle cells [43]. In this context, Tepaamorndech et al.

[44] demonstrated that ZNT-7 deficiency contributes to the
manifestation of insulin resistance, as it reduces the insulin-
stimulated phosphorylation of Akt protein in the subcutaneous
adipose tissues of mice, affecting the glucose uptake in this
tissue. Zinc transporter ZIP-7 is also involved in glycemic
control in the muscle cells of mice, because the inhibition of
its expression compromises the phosphorylation of Akt pro-
tein and glycogen synthesis in these cells [45].

ZIP-14 protein is located in the plasma membrane of adi-
pocytes, hepatocytes, and pancreatic β cells, and it transports
plasma zinc into the cytoplasm of these cells. The expression
of this protein is increased during inflammation, thus favoring
the Bsequestration^ of zinc in the liver and adipose tissue.
Furthermore, the carrier affects glucose homeostasis, as the
deletion of the Zip-14 gene (Zip-14−/−) favors an increase in
phosphorylation of the insulin receptor, phosphatidylinositol
3-kinase, and Akt as well as improves the transport of glucose,
reduces fasting glucose, activates lipogenesis, inhibits lipoly-
sis, and increases the concentration of serum insulin and he-
patic glucose [28, 46, 47].

Aydemir et al. [48] demonstrated that zinc is distributed to
multiple sites in hepatocytes of mice through translocation of
ZIP14 from plasmamembrane to endosomes, and verified that
endosomes from Zip14 knockout mice were zinc-deficient.
Thus, ZIP-14 is important to zinc cellular distribution. This

Fig. 2 Molecular mechanisms involved in the participation of zinc in
the insulin signaling pathway. Legend: Zn—zinc; PTPase—protein
tyrosine phosphatase; Grb2—growth factor receptor-bound protein 2;
SOS—son of sevenless protein; Erk—extracellular signal regulated
kinases; MAPK—mitogen-activated protein kinases; IRS—insulin
receptor substrate; PI3K—phosphoinositide 3-kinase; PIP2—

phosphatidylinositol 4,5-bisphosphate; PIP3—phosphatidylinositol
3,4,5-trisphosphate; PDK—phosphoinositide dependent kinase;
PTEN—phosphatase and tensin homolog; Akt—protein kinase B;
GSK-3—glycogen synthase kinase 3; FOXO1—forkhead box pro-
tein O1; mTOR—mechanistic target of rapamycin; GLUT—glucose
transporter; IRAP—insulin-regulated aminopeptidase
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study also verified that ZIP14-mediated zinc transport contrib-
utes to regulation of endosomal insulin receptor activity and
glucose homeostasis in hepatocytes.

A systematic review and meta-analysis of the effects of
zinc supplementation in patients with diabetes demon-
strated that zinc supplementation has beneficial effects
on glycaemic control and promotes healthy lipid parame-
ters [17]. Other meta-analysis of randomized placebo-
controlled supplementation trials in humans verified re-
duction in glucose concentrations and tendency for a de-
crease in glycated hemoglobin (HbA1c) following zinc
supplementation, suggesting that zinc may contribute to
the management of hyperglycemia in individuals with
chronic metabolic disease [36].

Considering the important functions performed by zinc in
the secretion and action of insulin, several studies have been
conducted with an aim to investigate the effect of supplemen-
tation with this mineral in people with resistance to insulin.
Ranasinghe et al. [49] and Islam et al. [50], for example,
evaluated the effect of zinc supplementation in elderly and
adult diabetic individuals. Ranasinghe et al. [49] verified that
the intervention with 20 mg of elemental zinc for 12 months
reduced fasting plasma glucose concentrations, oral glucose
tolerance test and HOMA-IR index, with significant improve-
ment in β cell function. Islam et al. [50] verified that supple-
mentation with 30 mg of zinc sulfate for 24 weeks improves
fasting plasma glucose concentrations, function of β cells and
insulin sensitivity.

Some studies also have evaluated the effect of zinc supple-
mentation in obese individuals [8, 51–53]. Payahoo et al. [51]
supplemented 60 adult obese individuals with 30 mg of zinc
gluconate or placebo for 4 weeks, and zinc supplementation
reduced concentrations of serum insulin, and HOMA-IR in-
dex. However, some researchers did not verify benefic effect
of zinc supplementation on glycemic control parameters [53].

Conclusions

The scientific evidences presented in this review show that
zinc and its carrier proteins are involved in insulin synthesis
and secretion as well as in the molecular signaling pathways
underlying the action of this hormone. This nutrient acts to
modulate transcription of the gene coding for the insulin re-
ceptor via zinc finger proteins. Thus, zinc deficiency is asso-
ciated with glucose intolerance and insulin resistance; howev-
er, the effectiveness of the intervention with the zinc supple-
mentation is still inconclusive.
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