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Abstract Nutritional immunity describes mechanisms for
withholding essential transition metals as well as directing
the toxicity of these metals against infectious agents. Zinc is
one of these transition elements that are essential for both
humans and microbial pathogens. At the same time, Zn can
be toxic both for man and microbes if its concentration is
higher than the tolerance limit. Therefore a Bdelicate^ balance
of Znmust be maintained to keep the immune cells surveilling
while making the level of Zn either to starve or to intoxicate
the pathogens. On the other hand, the invading pathogens will
exploit the host Zn pool for its survival and replication.
Apparently, different sets of protein in human and bacteria
are involved to maintain their Zn need. Metallothionein
(MT)—a group of low molecular weight proteins, is well
known for its Zn-binding ability and is expected to play an
important role in that Zn balance at the time of active infec-
tion. However, the differences in structural, functional, and
molecular control of biosynthesis between human and bacte-
rial MT might play an important role to determine the proper
use of Zn and the winning side. The current review explains
the possible involvement of human and bacterial MT at the
time of infection to control and exploit Zn for their need.

Keywords Inflammation . Glucocorticoid hormone .

Metallothionein .Metalloproteases . Nutritional immunity .

Zinc toxicity

Introduction

To prevent pathogenesis of infectious microorganisms,
humans restrict access to essential metals in a process known
as nutritional immunity. Broadly, nutritional immunity de-
scribes mechanisms for withholding essential transition
metals as well as directing the toxicity of these metals against
infectious agents. Scope of nutritional immunity has broaden
from its original concept of referring to iron (Fe) to include
other transition metals such as zinc (Zn), copper (Cu), and
manganese (Mn) [1]. While Fe and Cu are known to have
redox potential and are involved in large number of oxidore-
ductases or other electron transfer proteins, Zn plays critical
role in structural as well as catalytic proteins both in eukary-
otes and prokaryotes [2]. Zn is frequently incorporated into
metalloenzymes, storage proteins, and transcription factors
and become the second most abundant transition metal in
most living systems after Fe. For example, ∼80% enzymes
in archaea and bacteria are Zn-containing proteins while those
in eukaryotes are ∼50%. However, Zn-binding proteins, in-
cluding Zn-dependent transcription factors, make up a larger
proportion of the total proteome in eukaryotes as compared to
bacteria and archaea [3]. Thus, Zn is essential for both humans
and microbial pathogens to survive. At the same time, Zn can
be toxic if its concentration is higher than the tolerance limit
both for man and microbes.

Cells of the human body use a number of sophisticated
mechanisms to maintain intracellular and extracellular Zn ho-
meostasis. Role of Zn in life processes has been thoroughly
reviewed [4–6]. Dietary Zn deficiency results in loss of im-
mune function and resistance to infection suppressing thymic
function, T lymphocyte development, lymphocyte prolifera-
tion, and T cell-dependent B cell functions [7]. At the same
time, to acquire the required amount of Zn in Zn-deficient
conditions and to prevent lethal effects of Zn in Zn excess
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conditions, pathogenic bacteria also use a number of mecha-
nisms to maintain key cellular processes including growth and
replication [8–10].

Therefore, it is expected that a Bdelicate^ balance must be
maintained at the time of infection that in one hand limit Zn
availability to the pathogens; at the same time, the Zn level
should be good enough to cause toxicity to the pathogens as
well activation to the immune cells (Fig. 1). The site of infec-
tion might govern the strategy to be adopted by the invading
pathogens since Zn availability may vary in different tissues.
For example, group A Streptococcus is suggested to face Zn
toxicity during colonization of the nasopharynx, but Zn dep-
rivation on the skin [9]. Apparently, different sets of proteins
in human and bacteria are involved in maintaining the bal-
ance. A family of low molecular weight proteins, namely,
metallothionein (MT), a bonafide Zn-binding protein that is
ubiquitously present in both prokaryotic and eukaryotic or-
ganisms, is also expected to play an important role in that
balance, i.e., in nutritional immunity.

MTs in human are primarily involved in homeostasis of
essential metals such as Zn and Cu, and detoxifying of toxic
metals, such as Cd and mercury (Hg) [11–14]. In the last few
decades, MT expression in humans was linked with a number
of inducers (or initiators) such as heavy metals, endotoxins,
cytokines, glucocorticoids (GCs), reactive oxygen species
(ROS), and toxic organic compounds [15–20]. Expression of
MT in human tissues is also induced during different patho-
logical condition [15, 21]. In bacteria, MTs are mainly in-
volved in metal resistance, for example, Cd resistance by
Escherichia coli [22] and Salmonella enterica [23], lead resis-
tance by Providencia vermicola [24], and Cu resistance by
Mycobacterium tuberculosis [25].

However, the role of MT in the cross talk between human
MTand bacterial MT in nutritional immunity more particular-
ly at the time of active infection is largely unknown. The role
of bacterial MT in Zn speciation and homeostasis is also large-
ly unknown [10]. The current review will attempt to propose
possible involvement of human and bacterial MT at the time

of infection to control and exploit Zn with special reference to
nutritional immunity. The focus of the current review will be
on the synthesis or degradation of MT in response to infec-
tious diseases, the human-MT mediated Zn homeostasis in
response to infectious insult, role of MT in directing Zn to
activate immune response against the infection, mechanism
of exploitation of as well as resistance against host Zn pool
by the infectious agents, any possible competition between
host (human) MT and bacterial MT for host Zn pool, and
host-MT-mediated changes at the site of infection (Fig. 2).

Zn Distribution and Homeostasis in Human

Zinc is widely distributed in various tissues in human with a
total amount of 1.4–2.3 g in adults, 85% ofwhich are localized
in the muscles and bones, 11% in the skin and liver, and the
remaining 4% in other tissues [26]. Highest concentration of
Zn is present in the retina and choroid of the eye, followed by
the prostate, bones, liver, and kidneys [27–29]. Virtually, all
Zn is intracellular: 30–40% in the nucleus; 50% in the cytosol,
organelles, and specialized vesicles; and the remainder is as-
sociated with cell membranes [30]. In human, plasma Zn
maintains a homeostatic level of approximately 10–18 mol/L
that represents only 0.1% of total body Zn [31]. In human, the
global Zn storage is mediated by hormones such as glucagon
and epinephrine that in turn can increase MT expression and
Zn storage in liver [32].

The number of in vivo Zn-binding proteins in humans was
estimated to be 2800, corresponding to 10% of the human
proteome. Among these, the most abundant class of Zn-
binding proteins is that of Zn fingers, with Cys4 and Cys2-
His2 binding coordination [3, 33].

The intracellular homeostasis and distribution of Zn is con-
trolled by specialized sets of proteins: Zn2+ importer family
(14 ZIPs, solute-linked transporter (SLC) 39A) and Zn2+

transporter family (10 ZnTs, SLC 30A) transporters [34].
ZnTs generally transport Zn2+ out of the cytosol, whereas
ZIPs import them from cellular compartments or the extracel-
lular space into the cytosol [35]. Most ZnTs are present in
intracellular compartments, such as endosomes, Golgi, or en-
doplasmic reticulum, while only ZnT1 appears to be located at
the plasma membrane as it is the primary regulator of cellular
Zn efflux [36]. Most ZIPs are observed at the plasma mem-
brane; however, Zip7 is located at the Golgi apparatus [37].
The localization of some ZIPs changes according to Zn avail-
ability or physiologic conditions. Zip5 has a basolateral plas-
ma membrane orientation in polarized cells during dietary
zinc sufficiency [38, 39]. Similarly, ZIP14 is mobilized to
the sinusoidal membrane of the mouse hepatocyte during
acute inflammation and, therefore, increases zinc uptake as a
component of the acute phase response [35, 40].

Fig. 1 Using zinc at the time of infection. Immune cells of the host
require enough Zn supply to maintain immune response against the
pathogenic insult. While the Zn availability must be limited to abate
survival and proliferation of the pathogens, and at the same time, free
Zn must incur toxic insult to the pathogens to kill them
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Zn in Host Immunity Against Infectious Diseases

Zinc regulates an array of developmental and functional aspects
of cell-mediated immunity involving neutrophils, NK cells, and
macrophages; cytokine production by immune cells; and the
growth and function of TandB cells. Zn alsomediates protection
from the adverse effect of ROS that are produced not only during
metabolism but also during inflammatory processes. Free

intracellular Zn2+ is essential in extravasation to the site of the
infection and uptake and killing of microorganisms by neutro-
phils [41]. Role of Zn in immunity has been thoroughly reviewed
[1, 42–44]. A number of important roles of Zn in immunity that
are relevant to the focus of the current review are highlighted
below.

Zinc modulates the nuclear factor kappa-light-chain en-
hancer of activated B cells (NF-κB) signaling pathway.

Fig. 2 Potential roles of MT in nutritional immunity in controlling Zn
availability for invading pathogens. Most bacterial pathogens use
metalloproteinases to invade host tissue. The invaded tissues are
degraded due to apoptosis or necrosis and release Zn. Increased Zn at
the site of infection results in upregulated expression of ZIP by the
circulating leukocytes or infiltrated inflammatory cells, resulting in
upregulated expression of MT through the activation of metal-
responsive elements (MREs). These intracellular MTs protect leukocytes
from the increased influx of Zn at the site of infections. Inflammatory
cytokines released at the site of infection may eventually induce adrenal
cortex to release glucocorticoid (GC) hormones. Once GC reached the
circulation, MT synthesis in leukocytes can be induced through GRE.
Kidney also responds to the inflammatory cytokines and secretes more

MT in the circulation. Pathogenic invasion also redistributes Zn from
serum to liver. With the increased amount of Zn in the liver, MT biosyn-
thesis in hepatocytes is upregulated. Both hepatic and renal MT may
induce bone marrow hematopoietic stem cells to produce more circulato-
ry leukocytes. At the site of infection, macrophages also face increased Zn
and reactive oxygen species (ROS) during phagocytosis. Both the Zn and
ROS can induceMT biosynthesis. The resulting upregulatedMT protects
the phagocytes from Zn toxicity as well as minimize the Zn level for the
invading pathogens. Depending on the Zn starvation (downward arrow)
or Zn excess (upward arrow) condition, invading bacteria may upregulate
either Zn-influx or Zn-efflux mechanism, respectively (inset). Some of eh
cytoplasmic Zn induce bacterial MT biosynthesis that in turn help the
bacteria to maintain required Zn content
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NF-κB influences the expression of pro-inflammatory cyto-
kines (e.g., interleukin (IL)-1b, IL-6, IL-8, tumor necrosis fac-
tor alpha (TNF-α), and MCP-1), chemokines, acute phase
proteins (CRP and fibrinogen), matrix metalloproteinases
(MMPs), adhesion molecules, growth factors, and other fac-
tors involved in inflammatory response, such as COX-2 and
iNOS [45, 46]. Zinc importer ZIP8 (SLC39A8) is the most
significantly upregulated transporter in response to cytokines,
bacteria, and sepsis. ZIP8 increases cytosolic Zn content by
promoting extracellular uptake or release from subcellular or-
ganelles. The thiol-reactive cytosolic Zn induces NF-κB inhi-
bition downstream from MAPKs; hence, ZIP8-mediated Zn
influx works as a negative feedback regulator of NF-κB in
response to infection [47, 48].

In human, a number of proteins that exert their antimicrobial
effects are Zn dependent. Such as, the cathelicidin LL-37, secre-
tion of which by intestinal epithelial cells is Zn dependent [49],
shows antimicrobial activity against Pseudomonas aeruginosa,
Staphylococcal species and E. coli, and Candida albicans [50].
Zinc-dependent secretory proteins, namely, human peptidogly-
can recognition proteins (PGLYRPs), inhibit many Gram-
positive and Gram-negative bacteria [51]. Biological functions
of thymulin, a serum Zn-dependent thymus-specific hormone,
binds receptors on T cells, induces T cell markers, and promotes
allogenic cytotoxicity, suppressor T cell functions, and IL-2 pro-
duction [52]. Furthermore, Zinc is also crucial for the balance
between the different T cell subsets [31, 43, 44]. Paradoxically,
the activity of NADPH oxidase, involved in the destruction of
pathogens after phagocytosis, may be inhibited by both Zn-
deficient and Zn excess conditions.

Inflammatory processes during active infectious stage are as-
sociated with remarkable changes in Zn homeostasis. During the
active infectious stage, a rapid decrease of the serum Zn level
takes place due to its redistribution from plasma into organs,
predominantly the liver. An upregulated expression of ZIP14 in
liver in response to the pro-inflammatory cytokine IL-6 has been
shown to mediate the redistribution [40], thus limit Zn availabil-
ity for the invading pathogens. Furthermore, the Zn chelation by
calprotectin is mostly released by the leukocytes and has been
shown to suppress the reproduction of bacteria and C. albicans
[53]. At the same time, an increased Zn concentration in macro-
phages can intoxicate phagocytosed microorganisms [7, 44].
Again, increased intracellular hepatocyte Zn promotes energy
metabolism, neutralizes ROS, and guarantees the synthesis of
acute phase proteins in the liver [54, 55] that are needed to fight
the pathogens (Fig. 2).

Zn reduces the incidence and severity of diarrhea and acute
lower respiratory tract infections in infants and children [56,
57] as well as the incidence of Staphylococcus aureus pneu-
monia, Streptococcus pneumonia tonsillitis, and E. coli uri-
nary tract infections in sickle cell anemia patients [58]. Zn
supplementation significantly decreases the incidence of in-
fections in elderly subjects [59]. Moreover, Zn augments

monocyte adhesion to endothelial cells in vitro and affects
production of pro-inflammatory cytokines, such as IL-1b,
IL-6, and TNF-α. Zn aids NK cells to recognize major histo-
compatibility complex (MHC) class I, and the lytic activity.
In vitro, moderate Zn supplementation increases the differen-
tiation of CD34+ cells toward NK cells and their cytotoxic
activity.

Immune suppression in Zn-deficient conditions is well docu-
mented with an increased susceptibility to various infectious
agents, including F. tularensis [60], Listeria monocytogenes,
Salmonella enteritidis,M. tuberculosis, and many viruses, proto-
zoan parasites, and eukaryotes [7, 61–63]. A delayed production
of protective antibodies in Zn-deficient condition has been
reiterated.

Zn in Pathogenesis and Virulence

Zinc is essential to the survival of a pathogen in the host. Bacteria
are predicted to incorporate Zn into 5–6% of all proteins [3]. A
number of Zn-dependent virulence factors contribute to the sur-
vival and pathogenesis of the invading bacteria (Table 1).

Zinc-dependent microbial metalloproteases are a group of
well-documented virulence factors and one of the four major
groups of extracellular proteases. The other three groups of mi-
crobial proteases include serine proteases (EC 3.4.21), cysteine
(or thiol) proteases (EC 3.4.22), and aspartate proteases (EC
3.4.23). Metalloprotease typically exhibits broad proteolytic
specificity that facilitates the pathogen to disrupt physiological
barriers to invade host, degrade key signaling intermediates, and
release metals from host metalloproteins. Cytokines or interleu-
kins that are important for the neutrophils and macrophage re-
cruitment at the site of infection can be disrupted by bacterial
metalloproteases to avoid immune clearance. A list of well-
known virulence factors that belong to the Zn-dependent bacte-
rial metalloproteases are presented in Table 1. These virulence
factors augment pathogenesis of the respective pathogens in var-
ious ways.

Zn as a Regulator of MT Biosynthesis and Induction

In human cells, MT biosynthesis is regulated by metal (MRE),
antioxidant (ARE), and glucocorticoid (GRE) response elements.
Thus, the divalent trace elements such as Zn, ROS, and stress
hormones such as GC are potent MT inducers in human cells
[88–91]. Zn has a direct impact on the MT biosynthesis and
induction. Zn binds MRE-binding transcription factors (MTFs)
and activates MRE. After Zn occupancy, MTF-1 binds specifi-
cally to the MRE sequence to initiate transcription of MT genes.
The requirement of additional Zn for the binding of the MTF-1
with its promoter in cell-free system attests the definitive role of
Zn in MT biosynthesis [90, 92–94]. Induction of MT by other
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elements such as Cd and Cu [90, 95–97] is also Zn dependent as
thesemetals displace Zn from the Zn-containing protein which in
turn allows the free Zn to induce MT expression [98, 99].

A number of steps might be involved in Cu- and Cd-
induced expressions of MT genes. Firstly, Cd and Cu may
displace Zn from the binding sites of Zn-containing
metalloproteins including MT. Subsequently, free Zn may
bind to the Zn finger of MTF-1 and regulate the expression
of MT gene [98, 99]. GRE within the promoter region of the
MT gene can act independently to induce MT transcription in
the presence of GC, a stress hormone [100–102]. ARE also
plays an important role in the induced expression of MT in
response to ROS, such as hydrogen peroxide [100, 103].
Notably, both GC and ROS are increased in an active infec-
tious state. Furthermore, maintaining the physiological con-
centrations of Zn is necessary to avoid oxidative stress, since
both Zn deficiency and Zn overload are pro-oxidant condi-
tions [104].

Differences Between Human and Bacterial MT

To date, four major isoforms, namely, MT-1, MT-2, MT-3, and
MT-4, have been identified in human. In human, MT-1 and
MT-2 were detected in all organs [105, 106]; MT-3 in the
brain, lung, kidney, and reproductive organs [107–111]; and
MT-4 in differentiating stratified squamous epithelial cells
[112]. In human, eight functional MT-1 isogenes have been
identified, namely, MT-1A, MT-1B, MT-1E, MT-1F, MT-1G,
MT-1H, MT-1M, and MT-1X [113, 114].

The very first MT-like proteins in bacteria were identified in
the marine cyanobacterium Synechococcus sp. (strain RRIMP
N1) and later in the freshwater strain Synechococcus TX-20
[91, 115]. These bacterial MTs were considerably different from
human MTs, as they contain aromatic amino acid His [116].
Bacterial MTs do not have any significant sequence homology
with human MTs, except for a high Cys content. In 1990s, the
gene for MT from Synechococcus PCC7942) was sequenced

Table 1 Zn-dependent bacterial metalloproteases that act as virulence factor

Virulence factor Source pathogens Mechanism of actions Reference

vEP Vibrio fulnificus Activate prothrombin and act as fibrinolytic
enzyme to facilitate the development of
systemic infection

[64]

ZmpB Burkholderia cenocepacia Proteolysis of alpha-1 proteinase inhibitor,
alpha(2)-macrogobulin, type IV collagen,
fibronectin, lactoferrin, transferrin, and im-
munoglobulins

[65]

Flavastacin Flavobacterium meningosepticum Exerts endopeptidase activity against variety
of cytokines and cytoskeletal proteins

[66, 67]

VV protease VV hemolysin Vibrio vulnificus Edematous and hemorrhagic skin damage
hemolysis and cytolysis to facilitate
bacterial invasion from the intestine to the
blood stream

[68, 69]

λ-toxin Clostridium perfringens Degrades collagen, fibronectin, fibrinogen,
IgA, and C3 component. Increases vascular
permeability and hemorrhagic edema

[70]

Pseudolysin Pseudomonas aeruginosa Degrade IgA [71, 72]

Fragilysin Bacteroides fragilis The enterotoxin causes tissue destruction and
facilitate bacterial invasion

[73–75]

IgA protease Streptococcus sanguis Seratia marcescens Degrade Ig [76, 77]

Mirabilysin Proteus mirabilis Degrade IgG, IgA [78, 79]

Pseudolysin P. aeruginosa Degrade IgG [80]

InhA1 Bacillus anthracis Cleave prothrombin and factor X to induce
clotting disrupt endothelial cell by cleaving
MAP kinases

[81–85]

Serratia 56 K protease Serratia marcescens Cleaves human lysozyme and human serum
transferrin, rat tropocollagen. Capable of
degrading defense-oriented humoral pro-
teins and tissue constituents. Toxic to fi-
broblasts

[77]

Protease Legionella pneumophila Degrade IL-2 and cleave CD4 on human T
cells, thus impedes T cell activation

[86]

Npr599 and InhA Bacillus anthracis Degrade host tissues, increase barrier
permeability, and/or modulate host de-
fenses

[87]
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(SmtA), along with the gene for the metal-responsive transcrip-
tion factor SmtB, and the operator-promoter region between the
two genes [117, 118]. A glutathione S-transferase (GST)-fusion
protein of SmtA expressed in E. coli revealed that SmtA is ca-
pable of binding Zn2+, Cd2+, Cu2+, and Hg2+ [118].

The determination of the pH values for half-displacement
of bound metal suggested for SmtA in comparison with mam-
malianMTs a relatively higher affinity for Zn2+ and a relative-
ly lower affinity for Cd2+. Later, it was confirmed that the
purified SmtA binds four Zn2+ or Cd2+, where nine Cys resi-
dues participate in themetal binding [119]. In 2008, Gold et al.
(2008) reported a copper-binding MT (MymT), of ∼5 kDa, in
M. tuberculosis expression of which can be induced by other
metals such as Zn, Cd, Co, and Ni [120]. The MymT can also
be induced by nitrosative and oxidative stress, as well as mild-
ly acidic conditions and cell wall perturbation.

The inorganic core of SmtA strongly resembles the
Zn4Cys11 cluster of mammalian MT, despite different amino
acid sequences. In SmtA, four Zn2+ binds in a Zn4Cys9His2
cluster. InSmtA, the two ZnCys3His sites and one of the
ZnCys4 sites readily exchange Zn2+ for exogenous Cd2+,
while the remaining ZnCys4 remains inert [121]. This metal
binding behavior of SmtA is different from most of the MTs
where metal binding is generally kinetically labile [122, 123].
Moreover, Ball-cysteine^ MTs bind Cd2+ 10 times more
strongly than Zn2+, and stoichiometric amounts of Cd2+ are
usually sufficient to displace all of the Zn2+ from MT under
similar conditions to those used here [122].

Fighting for Zn: Man vs. Microbes

The human body is a rich reservoir of Zn and needs to main-
tain Zn homeostasis within the physiological range (as
discussed earlier). A number of microbial pathogens have
evolved to exploit the Zn reserve in different organs of the
human body. As a countermeasure, human body uses a num-
ber of defense mechanism to limit the availability of free Zn
but also to maintain Zn homeostasis. Zn-binding proteins in
eukaryotes, namely, psoriasin [124], calgranulin C [125, 126]
and calprotectin [127–129], exert their antimicrobial potential
through Zn2+ chelation. The same families of proteins also
have pro-inflammatory properties causing inflammation-
mediated pathologies [130]. Ironically, a number of pathogens
such as S. enterica [131, 132], Campylobacter jejuni [133],
Haemophilus influenzae [134], L. monocytogenes [8], and
Streptococcus pneumoniae [114] can counteract the antimi-
crobial potential of those proteins in different ways.

In an active infectious state, neutrophils that are recruited at
the site of infection secrete calprotectin, which mainly binds
Zn and Mn [135, 136], thus make the Zn unavailable for the
microbial invaders. Interestingly, Neisseria meningitidis was
shown to scavenge calprotectin-chelated Zn, thus evade

neutrophil-mediated killing [137]. Again, detection of the bac-
terial invaders via lipopolysaccharide can induce IL-6 expres-
sion, which in turn increases MT expression and reduces free
Zn2+ [138, 139]. Paradoxically, GC signaling can either in-
duceMT biosynthesis, hence reducing the free Zn2+ or induce
Zn2+ secretion from pancreatic cells aiding microbial Zn2+

feast [94]. MT controls human matrix metalloproteinases
(MMPs) by regulating Zn [140]. Host-derived MMP controls
influx of effector cells, killing of pathogens, resolution of in-
flammation, and remodeling of extracellular matrix [141].

Bacterial pathogen uses three strategies to combat host-
imposed Zn starvation or poisoning: (i) transcriptional regula-
tion by metal-sensing metalloregulatory proteins; (ii) Zn ef-
flux and acquisition across cell membranes; and (iii) Zn spar-
ing (increase the expression of non-Zn-requiring proteins to
replace essential Zn-dependent enzymes and proteins), and
allocation of Zn to Zn-requiring enzymes, processes that are
governed by Zn speciation in the cytoplasm [10]. An invading
pathogen acquires host Zn mostly (90%) from skeletal muscle
and bone and for the rest from the liver and kidneys [142,
143]. Intracellular Zn in these tissues is present at 100–
500 μM, a large portion of which is bound to MTs [144,
145]. Only a small part of the total body Zn, i.e., 0.1%, is
present in blood serum (1.25 μg/mL serum) that are bound
to albumin (73–91%), macroglobin (9–27%), or various se-
rum proteins and amino acids (2–8%) [146–148].

In bacterial cells, the total cell-associated Zn is in the mil-
limolar range; however, the bioavailable Zn in the bacterial
cytoplasm is predicted to be in the picomolar to nanomolar
range [10, 149]. In one hand, Zn buffering between this 106-
fold concentration difference tells the overcapacity of bacterial
cell to chelate Zn, while the mechanism of which remains
unknown . Many ba c t e r i a l p a t h og en s s u ch a s
L. monocytogenes, S. enterica, Brucella abortus, and
Yersinia pestis depend on the ATP-binding cassette (ABC)
transporters to acquire Zn from human host [8, 131, 150].
These ABC transporters, common across Gram-positive and
Gram-negative bacteria [151], contains three components: the
periplasmic binding protein ZnuA binds a single Zn2+ with
high affinity, the ZnuB permease that actively transports Zn
through the inner membrane, and the ZnuC ATPase provides
energy by ATP hydrolysis [152, 153]. In contrast to Zn star-
vation condition, bacteria such as M. tuberculosis uses Zn-
efflux pumps to survive in macrophages [154]. Using liver
homogenate, Choudhuri et al. (1992) showed that at a lyso-
somal pH of around 4.7, about 60% of Zn can be displaced
from MT, thereby making it susceptible to degradation [155].
Hence, an increasing Zn excess condition due to its release
from MT and the subsequent degradation of the apo-MT
might overthrow the Zn-efflux pumps of the invading patho-
gen. In a severely Zn starvation condition, the Zn-free (apo)
form of Zn uptake repressor (Zur) of most bacteria shows low
affinity for the operator and overlapping promoter regions of
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high-affinity Zn uptake system(s) [10]. In addition, the Zn
efflux systems are repressed by the apo form of the Zn efflux
repressor, ZntR in Zn-limited conditions. With an increased
bioavailable Zn, the Zn-bound form of Zur binds to the oper-
ator site, thus preventing transcription of the Zn uptake sys-
tems [156]. Likewise, the efflux regulator, ZntR, binds Zn (in
Zn-excess condition) and allosterically activates transcription
of Zn-specific P-type ATPase efflux transporter (zntA) [157].

Metal-specific outer membrane also functions in Zn
uptake in Gram-negative bacteria [158, 159]. For exam-
ple, Neisseria ZnuD might be capable of transporting
free, hydrated Zn2+, as suggested by the structural and
computational studies [159]. In an escalation in the Zn
acquisition Barms race^ between microbe and host, an
outer-membrane porin-designated CbpA, a candidate
bacterial receptor for CP-Zn complexes, is thought to
capture this CP-bound Zn, consistent with a direct role
in Zn piracy [137].

Competition Between Host MTand Bacterial MT
for Host-Zn Pool

While Zn in human MTs is bound to Cys residues, the
same in bacterial MTs can be bound to Cys and aro-
matic amino acid, His [119]. MT binds Zn exceptionally
strongly owing to the exclusive coordination of the met-
al with cysteine sulfur ligands (stability constant of
Zn7MT-2 = 3.2 × 1013 M−1 at pH 7.4). Again, the
Zn-binding constants of most of the enzymes studied
are at least 1000 times lower than that of MT [160].
Commonly, Zn2+ forms tetrahedral complex involving
His, Glu or Asp, and Cys, in metalloproteins. The side
chains of residues are capable of binding one or two
Zn2+ [161, 162]. Notably, up to 20% of intracellular
Zn are complexed by MTs [163, 164]. In mammalian
MT, Zn2+ are bound tetrahedrally to Cys in both do-
mains. Zn-S cluster with in MT is very sensitive to
changes of cellular redox state. Therefore, a shift to
more oxidizing environment releases Zn from MT,
whereas a shift to more reducing environment leads
Zn binding to apo-MT [165, 166]. Thus, Zn2+, only
rapidly released by MTs, is able to play its relevant
function against oxidative stress and participate in im-
mune responses.

In healthy human serum, MT-1 plus MT-2 (MT-1/2)
concentration (n = 200) could be as low as 10 ng/mL
and as high as >90 ng/mL [167]. Earlier, it was report-
ed that the MT-1/2 concentration in human serum could
be in the range of 10–30 ng/mL [168] with an average
of 23 ± 4.6 ng/mL [169]. However, an increased level
of MT-1/2 was detected in various liver diseases such as
chronic hepatitis [167].

Changes of Host-MT Expression in Response
to Infectious Diseases

Bacterial Infection and MT Expression

A number of evidence has shown the link between the MT
expression in different human organs in relation to bacterial in-
fectious diseases. Given the fact that there is instant increase of
hepaticMTexpression in response to bacterial infection, an effect
that is generally mediated by endotoxin (lipopolysaccharide
(LPS)), leads to classify MTs as acute phase proteins [170,
171]. Bacterial lipopolysaccharide-induced MT overexpression
in liver is often mediated by pro-inflammatory cytokines, includ-
ing IL-1, IL-6, TNF-α, interferon (IFN)-γ [172], nitric oxide
[173], and the stress hormone glucocorticoids [174].

MT expression in inflammatory bowel diseases (IBD) is
somewhat inconclusive. In organ biopsies of the IBD patients,
MT expression was generally lower, such as in ulcerative colitis
and Crohn’s disease, compared to the control specimens
[175–178]. However, MToverexpression was observed in fibro-
blasts and intestinal epithelial cells of ulcerative and fissural le-
sions in ulcerative colitis and Crohn’s disease [179]. Since MT
expression depends on the time and degree of inflammation as
well as on the tissue of origin, hence the inconsistencies could be
explained by different sampling [170].

Viral Infection and MT Expression

O’Connor et al. (2014) reported a significant upregulation of
MT genes when compared to the IFN-stimulated genes in
hepatitis-C virus-infected liver biopsies of IFNL-3
rs8099917 responders [180]. Fibrosis scores were also in-
versely correlated with MT levels in the liver biopsies. The
higherMTexpression in the responders was seen as reason for
the improved HCV clearance, hence was linked with clinical
relevance. In a murine experimental model of coxsackievirus
infection, MTexpression was increased by fivefold (P < 0.01)
in liver and kidneys, and in spleen by 34% (P < 0.05) [181].

Role of Host MT in Directing Zn to Activate Immune
Response Against the Infection

Proliferation of lymphocytes in the presence of concanavalin
A or lipopolysaccharides [182–184], and proliferation of cy-
totoxic T lymphocytes (CTLs) in mixed lymphocyte reac-
tions, can be augmented by MT [185]. The exo-MTwas sug-
gested to facilitate the proliferation of immature T cells, but
suppress their terminal differentiation [185].

Macrophages treated with the in vitro exo-MT produce
superoxide through respiratory burst to destroy antigen
[183]. In PBL, ROS is produced during respiratory burst as
a self-defensemechanism [186–188]. In PBL, pre-synthesized
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MTs from their precursors or freshly synthesized MT induced
by the dietary Zn [95, 189] provide protection against apopto-
sis, necrosis, or DNA breakdown caused by ROS. Zn supple-
mentation may also help to prevent oxidative damage of DNA
due to arsenic exposure by induction of MT expression [190,
191]. Furthermore, transportation of MT to the cell membrane
is necessary for their immunoregulatory properties, where Zn
is involved in transporting MT to the cell membrane and reg-
ulating T cell [192].

Summary: Host Winning Factor in Zn Regulation
Using MT

Fighting for the Zn in nutritional immunity using MT offers a
number of advantages for the human host. For example, (i) the
number of Zn atoms bound per MT is higher in human MT
(seven Zn) compared to that of bacterial MT (four Zn); (ii)
exchange of Zn between free Zn2+ and MT-bound Zn is ther-
modynamically favorable for human MT, as at least one MT-
bound Zn in bacterial MT is unlikely to be released; (iii) at the
time of infection, human MT synthesis can be upregulated by
a number of infection related responses such as ROS, and GC;
(iv) bioavailable Zn2+ in bacterial cells remains in picomolar
to nanomolar range, while in immune cells such as lympho-
cytes and macrophages, that amount may range in micromolar
level; and (v) in response to infection resulting in the redistri-
bution of Zn, upregulated MT biosynthesis is not limited to
the site of infection but can be observed by number of organs
such as kidney and liver. Thus, it is expected that at the time of
active infection, upregulated biosynthesis of humanMTmight
play a major role in nutritional immunity.
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