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Abstract More and more people use food supplements for
various reasons, e.g. to prevent mineral deficiency and dis-
eases (e.g. osteoporosis, diabetes, anaemia). Supplements
containing Cr(Il) are purchased primarily for weight loss
and antidiabetic effects. The aim of this study was to evaluate
the effects of supplementary Cr3 {chromium(III) propionate
complex, [Cr;O(0,CCH,CH3)4(H,0);]NO3)} on the mineral
status in female Wistar rats. The study was carried out on 30
female Wistar rats, divided into five groups (six animals in
each): a control group and test groups fed Cr3 supplemented
diets with 100, 200, 500 and 1000 mg Cr - kg ' diet (equiva-
lent to 10, 20, 50 and 100 mg Cr kg~ body mass (b.m.) per
day) given as Cr3 for 4 weeks. Supplementary Cr3 increased
the Cr content in tissues in a dose-dependent manner. High
dietary doses of Cr3, 20 and 100 mg Cr - kg ' b.m., increased
the Cu content in the liver and spleen as well as the Zn content
in the kidneys but decreased the liver Ca content. Doses of 50—
100 mg Cr -kg™" b.m. decreased the serum Fe concentration
and the Fe content in the liver and kidneys. Supplementation
with Cr3 at doses of 10 and 100 mg Cr -kg ' b.m. did not
affect the Mg content in the rats’ tissues. In conclusion, high
dietary doses of Cr3 (10 and 100 mg Cr- kg ' b.m.) given for
4 weeks affected the mineral status of Fe, Zn, Cu and Ca in the
tissues of healthy female Wistar rats.
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Introduction

In recent years, chromium has been one of the most investi-
gated dietary minerals. Chromium is a trace mineral that has
received much attention as a dietary supplement because good
dietary sources of chromium are scarce and the intake is usu-
ally low. Chromium(III) deficiency may contribute to carbo-
hydrate metabolism disorder [1].

Many trials proved the positive effect of supplementary
chromium(III) on fasting plasma glucose, lipid variables, espe-
cially in diabetic subjects [2—4]. For this reason, trivalent chro-
mium has been postulated to be necessary for insulin efficacy in
regulating the metabolism of carbohydrates, lipids and protein
[5]. A number of chromium compounds can be considered as a
perspective for metabolic syndrome treatment [6].

For over 50 years, chromium has generally been believed
to be an essential trace element. However, the mechanism(s)
of Cr action at the molecular level for this role and its essen-
tiality have not been substantiated. Recent research has not
supported the role of chromium [7].

In 2002, the Food and Nutrition Board of the US National
Academy of Science set the Adequate Intake (Al) of chromi-
um at 25 g -day ! for adult women and 35 pg -day ' for men
[8], which was lower than the previous recommended dietary
intake of 50-200 pg per day. Recently, the EFSA panel found
no evidence of beneficial effects associated with chromium
intake in healthy subjects and concluded that setting the Al
for chromium was not appropriate [5].

In general, the oral intake of chromium has low toxicity
partially due to its poor absorption (about 0.5-2.0%).
However, different Cr(III) compounds have diverse rates
of absorption [9]. Organic Cr(IIl) forms have greater bio-
availability than inorganic ones. It is well known that the
mineral intake at high doses has antagonistic effects on oth-
er elements [9].
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Chromium is one of the best-selling mineral supplements
in the USA [10]. Trivalent chromium, the form found in food
and dietary supplements, is considered to be safe. Many or-
ganic chromium complexes, including chromium picolinate
[Cr(Pic);], chromium nicotinate (NCB) [11, 12], chromium
histidinate (CrHis) [13, 14], chromium complex of D-phenyl-
alanine [Cr(D-Phe);] [15, 16], chromium propionate complex
(Cr3) [4, 17-19] and chromium glycinate complex (CrGly)
[19], have been synthesised and demonstrated to be biologi-
cally effective. Different coordinate ligands of these organic
chromium complexes exhibited different bioactive com-
pounds [20].

For humans, a typical Cr intake is 20—45 pg per day in
the diet [21], while doses of supplements may contain
200-1000 pg CrID) [1, 22]. These doses correspond to
daily body weight-adjusted doses of 0.29-
0.64 pg Cr(Ill) kg ' body mass (in the diet) and 2.86—
14.3 pug Cr(IID) ~kg71 b.m. (in supplements) in an individ-
ual with an average weight of 70 kg [23].

Few studies have been designed to evaluate the effects of
trivalent Cr supplementation on the content of Cr and other
minerals in animal tissues. Chromium is distributed to various
tissues of the body but appears to be most concentrated in the
kidneys, liver and muscles [24]. Dietary Cr supplementation
at high doses can potentially affect the mineral status due to
possible interactions with other macro- and microelements at
absorption, transport, metabolism, excretion and other levels
[25]. In this case, the high supply of Cr(Ill) can affect the
metabolism of other minerals in healthy rats. Therefore, the
aim of this study was to evaluate the effects of high doses of
chromium (III) complex with propionic acid, so-called Cr3
(100-1000 mg Cr ~kg71 diet, equivalent to 10, 20, 50 and
100 mg Cr/kg b.m. per day) on the mineral status in healthy
female rats.

Material and Methods
Test Chemicals

The chromium(IIT) complex with propionic acid in the form of
nitrate salt (chemical formula [Cr;O(O,CCH,CHj3)s(H,0);]INO3
(Cr3) was synthesised in a laboratory at the Department of
Product Ecology, Poznan University of Economics, Poland, ac-
cording to the method described by Earnshaw et al. [26]. The Cr3
was found to contain 21% of elemental Cr, determined by the
AAS method (spectrometer AAS-3 with BC correction, Zeiss,
Germany).

Animals and Diets

Thirty 10-week-old female Wistar rats were obtained from
the Department of Toxicology, Poznan University of

Medical Sciences, Poland. The animals were housed in
single cages, at controlled temperature, photoperiod and
air humidity (19-22 °C, 12-h light/dark cycle, 55-60% of
ambient air humidity). After 5-day adaptation to laborato-
ry conditions, the rats were divided into five equal groups
(the control group and groups treated with Cr3—six ani-
mals in each group, equal body weight of 180 g). All the
groups were fed a commercial diet for maintenance of
adult rodents (Labofeed H), enriched with 0, 100, 200,
500 and 1000 mg Cr(Ill)/kg of diet (ca. 0, 10, 20, 50
and 100 mg Cr/kg b.m. per day) given as
[Cr30(OzCCHch3)6(H20)3]NO3 for 4 weeks. Table 1
shows the composition of the basic Labofeed H diet.
The Cr content in the basic diet (the control group) was
0.5 + 0.06 mg ‘kg ', while in the supplemented diets it
was 107.5 + 6.5 mg- kg ' (A); 224.8 £ 32.4 mg- kg ' (B);
535.5 +26.22 mg- kg ' (C) and 1049.5 + 17.6 mg- kg '
(D), respectively. The diets were stored at 4 °C. The rats
were allowed free access to feed and distilled water
throughout the whole experiment.

The feed intake was measured daily, while body weight
gains were monitored weekly. At the end of the experiment,
after 12-h starvation, the rats were euthanised by intraperito-
neal injection of thiopental (40 mg- kg™ body mass). Blood
was collected into tubes; tissue samples (liver, kidneys, heart,
spleen, pancreas, ovaries) were collected, weighed and frozen.
The experimental protocol was approved by the Local
Bioethical Commission in Poznan (No. 12/2005).

Laboratory Analyses

The serum Fe concentration was determined with the colori-
metric method by means of 2,4,6-tri(2-pyridylo)-5-triazine.

Diet and tissue samples for mineral analyses were digested
with concentrated 65% spectra pure HNO3z (Merck) in a
Microwave Digestion System (MARS-5, CEM, USA).

The concentration of copper (Cu), zinc (Zn), iron (Fe),
magnesium (Mg) and calcium (Ca) in mineralised samples
was determined with the flame atomic absorption spec-
trometry method F-AAS (Zeiss AAS-3, with BC,
Germany), while the concentration of Cr was measured
using a graphite furnace atomic absorption spectrometer
GF-AAS (AAS EA 5, with BC, Jenoptic, Germany). The
accuracy of Cu, Zn, Fe, Mg and Ca measurements was
assured by simultaneous analysis of certified reference
material (Pig Kidney BCR No. 186, Brussels), while the
analysis of Cr was controlled using certified reference
material (Virginia Tobacco Leaves CTA-VTL-2, Poland)
(Table 2). The mean recoveries of certified levels
(expressed as percentage of mean certified values) were
as follows: Cu—103%, Zn—101%, Fe—97%, Mg—
104%, Ca—103% and Cr—102%.
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Table 1  The composition of basic Labofeed H diet in the experiment
(mean + SD)

Component Unit Content
Energy MJ- 100 g™ 1.69 +0.03
Fat % 3.16 £0.07
Protein %o 24.10 £ 0.21
Carbohydrates % 54.96

Dry mass %o 88.73 £ 0.05
Ash % 6.51+0.11
Ca g kg 13.41 £ 1.61
Mg g kg™ 224 +0.06
Fe mg- kg ! 239.49 + 46.34
Zn mg- kg ! 133.19 + 4231
Cu mg- kg ! 20.42 £291
Statistical Analyses

The data were presented as mean £ SEM. The results were
analysed using one-way analysis of variance (ANOVA/
MANOVA) and the Tukey’s test to determine significant dif-
ferences (p < 0.05). All calculations were done using Statistica
ver. 7.0 software (StatSoft, Tulsa, USA).

Results

Figure 1 and Table 3 show the effects of Cr3 supplementation
on the tissular content of Cr, Cu, Zn, Fe, Mg and Ca in healthy
female rats. As expected, supplementary Cr3 increased the
liver and kidney Cr levels in a dose-dependent manner
(Fig. 1a). The addition of Cr(Ill) to the diet at a dose of
100 mg of Cr- kg ' did not significantly increase the liver Cr
content (3.91 + 0.24 vs. 2.96 + 0.18 pg- g ' dry mass).
However, in comparison with the control group
(2.96 + 0.18 ug- g ' d.m.), the doses of 200, 500 and
1000 mg of Cr(Ill)- kg " significantly increased the liver Cr
level, by 78% (5.27 + 0.23 pg- g ' d.m.), 242%

(10.13 £ 021 pg' g ' d.m.) and 504% (17.88 + 0.93 pg -g "
d.m.), respectively. Supplementary Cr3 at doses of 100-
1000 mg of Cr- kg™ increased the kidney Cr content by 229,
272, 844 and 1541%, respectively (Fig. 1b). All changes were
statistically significant. Moreover, in the animals fed the diets
containing 500 and 1000 mg Cr(II)- kg™', spleen Cr levels
were markedly higher, by 44 and 106%, respectively (Fig. 1c).

Supplementary Cr3 at doses of 100 to 1000 mg- Cr kg '
had no effect on the kidney Cu content in the female rats.
However, the dose of 200 mg Cr(Ill)- kg ' significantly in-
creased the liver Cu level by 16% (27.15+0.70 ug- g ' d.m.)
as compared with the control rats (23.42 +0.70 ug- g ' d.m.).
High doses of Cr(IIT) (500 and 1000 mg: kg ') increased the
spleen Cu content by 48% (14.90 + 0.52 ug- g ' d.m.) and
53% (15.43 + 0.57 ug- g ' d.m.), respectively vs. control
group (10.10 £ 0.70 pg- g ' d.m.) (Table 3).

Supplementary Cr3 did not affect the liver and spleen Zn
contents. However, in comparison with the control group
(110.1 + 4.9 ug- g ' d.m.), the diets supplemented with 500
and 1000 mg Cr(Ill)- kg ' significantly increased the kidney
Zn level, by 29% (141.7 + 5.5 ug- g ' d.m.) and 21%
(132.8 £ 3.6 ug- g ' d.m.), respectively.

The effect of supplementary Cr3 on Fe metabolism was
assessed on the basis of morphological and haematological
blood indices, such as haemoglobin concentration (Hb),
haematocrit ratio (HCT), the number of erythrocytes in the
blood (RBC), mean platelet volume (MPV), mean corpuscular
volume (MCV), mean corpuscular haemoglobin concentra-
tion (MCHC), red cell distribution width (RDW) (the data
were presented in our previous paper) [27], serum Fe concen-
tration and tissular Fe content (liver, kidney and spleen)
(Table 3). The haematological indices under analysis in the
rats supplemented with Cr3 were not significantly different
from the control rats [27]. However, the highest dose of Cr
1000 mg kg ' (100 mg' kg ' b.m.) decreased the serum Fe
concentration by 28%. As far as the tissular Fe levels are
concerned, the Cr doses of 500 and 1000 mg: kg ' significant-
ly reduced the liver Fe content by 20% (1002 = 58 ng- g
d.m.) and 21% (1020 + 54 pg- g ' d.m.), respectively, and the

Table 2 The accuracy of the

Certified value
(nggh)

Analytical value
(ggh)

Method accuracy
[% certified value]

method of determination of Element Number of samples
elements (mean = SD) (n)

Ca 6

Mg 6

Fe 6

Zn 6

Cu 6

Cr 6

Certified reference material Pig Kidney BCR No. 186

295+2 291.13 £7.46 98.7
830+8 843.80 £ 11.25 101.7
299 2 295.96 £ 11.53 99.0
128 +£3 123.60 +1.52 96.6
31.9+04 31.87+£0.20 99.9
Virginia Tobacco Leaves CTA-VTL-2

1.87+0.16 1.81+0.14 96.9
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Table 3  The effect of supplementary Cr3 on the mineral status in healthy female rats (mean + SEM)

Index Experimental groups
Control A B C D
(1 mg kg™ (100 mg- kg ") (200 mg- kg ") (500 mg- kg ") (1000 mg- kg ™"
Cr status
Liver Cr content (ug g ' d.m.) 2.96 +0.18° 3.91 +0.24% 527+0.23° 10.13 £0.21° 17.88 +£0.93¢
Kidney Cr content (ug' g~* d.m.) 1.69 +0.12° 556+031° 6.28 +0.71% 15.95 +0.79¢ 27.74 +1.09°
Spleen Cr content (ug g ' d.m.) 7.25 £0.44* 7.95+0.47* 8.90 + 0.39%° 10.43 +0.47° 14.93 +0.79¢
Cu status
Liver Cu content (ug' g ' d.m.) 23.42 +0.70° 24.26 + 0.66" 27.15 +0.70° 2422 +0.77° 24.04 + 0.66
Kidney Cu content (ug: g ' d.m.) 5738 +5.34 52.09 +2.08 55.55+3.97 58.83+2.79 49.30 +4.42
Spleen Cu content (ug- g d.m.) 10.10 + 0.70° 13.57 £ 2.11* 9.41 +0.42° 14.90 + 0.52° 15.43 £0.57°
Zn status
Liver Zn content (ug- g~' d.m.) 1282+52 1223 +6.0 118.1+3.5 129.7+3.0 136.4 + 6.0
Kidney Zn content (ug: g ' d.m.) 110.1 £ 4.9* 1202 + 3.1 121.3 + 6.8% 1417 £5.5° 132.8 £ 3.6
Spleen Zn content (ug: g71 d.m.) 130.4+4.0 118.7 £ 4.6 126.1 £3.8 122.0+5.4 121.7+8.5
Fe status
Serum Fe concentration (ug- dl™") 206 + 19° 248 + 10% 242 + 15% 246 + 15% 214 £ 15°
Liver Fe content (ug' g ' d.m.) 1272 + 42° 1202 + 44 1163 + 39 1002 + 58° 1020 + 54*
Kidney Fe content (ug- g ' d.m.) 490 +21° 460 + 20 429 + 24 402 + 19%° 375 +13°
Spleen Fe content (ug- g ' d.m.) 7364 + 554 7592 + 484 7420 + 438 7241 + 354 8672 £ 615
Mg status
Liver Mg content (ug' g ' d.m.) 851 £33 844 + 37 801 + 30 865 +25 868 +29
Kidney Mg content (ug- g ' d.m.) 978 + 28 980 + 20 973 £ 18 1001 £ 42 979 £ 47
Spleen Mg content (ug: g ' d.m.) 1078 =42 914 £22 964 + 24 994 £ 32 994 + 55
Ca status
Liver Ca content (ug: g ' d.m.) 49.8 +1.4° 432+ 1.6° 25.6+3.1° 23.0 + 1.0 15.7 £ 1.0°
Kidney Ca content (ug: g ' d.m.) 226+ 10 25314 264 £ 11 267 £ 11 267 £ 12
Spleen Ca content (ug: g ' d.m.) 547 £52 548 £53 519+ 51 486 + 44 367 38

The values in the same row that do not share the same superscript letter are significantly different (P < 0.05)

Control control group, A group supplemented with 100 mg Cr(Il) kg ' diet, B group supplemented with 200 mg Cr(IIl)- kg ' diet, C group
supplemented with 500 mg Cr(ITl)- kg ™' diet, D group supplemented with 1000 mg Cr(Ill)- kg " diet, d.m. dry mass, d! decilitre

The kidney and spleen Ca levels in the groups supplement-
ed with Cr3 were not different than in the control group.
However, supplementary Cr3 decreased the liver Ca level in
a dose-dependent manner. The addition of Cr(III) at a dose of
100 mg: kg ' to the diet had no effect. However, in compar-
ison with the control group (49.8 + 1.4 pg- g ' d.m.), the doses
of 200, 500 and 1000 mg- kg ' significantly increased the
liver Ca level, by 49, 59 and 68%, respectively.

Discussion

Our previous studies showed that Cr3 was a relatively safe
compound [18, 28, 29].

Publications concerning Cr are related to the transport, dis-
tribution and bioactivities of this element from various Cr
compounds in different biological models.

@ Springer

The effects of the nutritional supplement Cr3 on healthy
rats and rat models of insulin resistance and type 1 and 2
diabetes have been examined [4, 17, 27, 30-34]. Some reports
have shown that chromium(IIT) has beneficial effects for the
organism with disturbances of glucose and lipid metabolism
[4, 17, 31]. However, data from the experiments conducted in
healthy individuals quite often explicitly show lack of any
favourable impact of Cr(Ill) on carbohydrates/lipid metabo-
lism [27, 32-34]. Our study [27] showed no effect of Cr3 at
doses 100-1000 mg of Cr(Ill) kg™ ' diet on serum glucose,
total cholesterol, LDL-cholesterol, and HDL-cholesterol con-
centration (Table 4).

Bennett et al. [34] found that Cr3 at doses of 1, 5 and
10 mg Cr- kg ' lowered plasma insulin, leptin and triglycerides
concentrations but had no effect on plasma HDL, LDL and
total cholesterol after 10 weeks of treatment in male Sprague-
Dawley rats. Healthy Sprague-Dawley rats treated daily with
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20 pg: kg ' body mass as Cr3 intravenously for 12 weeks had
lower blood plasma insulin, total cholesterol, LDL, HDL and
triglycerides but not glucose levels [31]. The data obtained by
Herring et al. [32] strongly suggest that long-term (15-month)
Cr3 supplementation does not significantly affect metabolic
responses in blood glucose concentration to glucose and insu-
lin in male Wistar rats consuming a normal diet or high-fat,
high-carbohydrate cafeteria-style diet. Also Krdl et al. [33]
confirmed that supplementary Cr3, given in the dosages 0.6
and 3 mg- kg ' b.m. for 8 weeks, did not affect serum glucose,
insulin and HOMA-IR index and serum lipid indices, except
TAG (tended to decrease) in rats fed high-fat diet.

Unfortunately, the molecular mechanism by which chromi-
um affects glucose and lipid metabolism is still unclear. This
turn leads to the hypothesis that chromium ion supplementa-
tion have been beneficial only in disorders of glucose and lipid
metabolism [35]. Most of the available literature exploring the
effects of chromium supplementation in rats have been short-
term studies [4, 25, 27-29, 36, 37]. Few have looked at the
effect of long-term chromium supplementation [17, 31, 38,
39]. For the other roles of chromium in the body, we should
use this supplement in a reasonable manner, being aware its
possible side-effects.

However, there is little data on the influence of Cr on the
mineral status in healthy individuals, particularly at pharma-
cological levels. Dietary supplementation with high doses of
Cr(III) may disorder the status of other elements.

The accumulation of Cr in the liver and kidneys of rats
receiving supplementary Cr3 was observed, but the results
depended on the chemical form and dose of Cr. The Cr content
in the liver, kidneys and spleen was found to increase in a
manner dependent on the supply of Cr(Ill) in the diet. Other
authors found similar relationships between the intake of
Cr(IIT) and its concentration in the liver and kidney tissues in
normal rats [40-42], in rats with diabetes mellitus type 1 and 2
[17, 30], in pig [43] and in quails [44].

Lindemann et al. [45] demonstrated differences be-
tween Cr sources in Cr concentrations in various tissues.
In a study conducted by Yoshida et al. [37], the different
effects of Cr on Cr concentration in the liver, kidney and
femur were the result of the dietary Cr level (1,
10,100 pg- g ' diet) than chemical form (CrPic vs.
CrCly). However, the greatest Cr concentration was found
in kidneys, which was also confirmed in our study. Wang
et al. [46] also reported that supplementary Cr at a dose of
200 pg kg ' from CrNano and CrPic for 40 days in-
creased the blood Cr level, Cr content in the liver, kidneys
and heart as well as faeces and urine in finishing pigs.
Different results were obtained by Clodfelder et al. [4],
who found that 24-week supplementation with Cr3 at
doses ranging from 250 to 1000 pg Cr- kg ' diet did
not increase the content of Cr in the liver and kidneys in
healthy rats or the animals with type 2 diabetes. It is

assumed that the absorption and utilisation of Cr depend
on its status in the gastrointestinal tract [46].

Some authors [47—49] indicated that prolonged supple-
mentation with Cr(IIT) compounds may have negative impact
on the metabolism of Fe due to the fact that Cr and Fe are
bound with the same protein—transferrin. Human serum
transferrin (Tf) is the iron transport protein responsible for
delivering iron and a variety of other metals to cells [50].
This protein consists of two almost identical lobes, referred
to as the C-lobe and the N-lobe, which can bind one metal ion
each [51-53]. It was found that Fe®* binding to the C-lobe is
approximately 20 times stronger than Fe’* binding to the N-
lobe. Trivalent chromium (Cr**) same for iron (Fe**) typically
binds to the C-lobe first, followed by loading into the N-lobe.
Under normal conditions, only approximately 30% of the po-
tential Fe** binding sites in Tf are occupied, leaving the un-
occupied binding sites in either the C-lobe or the N-lobe, or
both, to potentially bind other metal ions [51, 52]. Cr**, Cu**,
7Zn**, AIP*, Ga®*, Ni* and Ti** are known to bind to Tf, and
these metal ions could either compete with Fe** for Tf coor-
dination or bind to the unoccupied lobes of Tf [54]. Cr’*
preferentially binds to the C-lobe of Tf, suggesting that it
has the potential to compete with Fe** for that binding pocket.
When saturation of transferrin with iron increases to over
50%, iron competes with chromium binding, affecting its
transport [55]. The relationship between iron and chromium
metabolism needs to be further investigated. It is not yet clear
if chromium decreases iron absorption or if it is also involved
in the downregulation of iron absorption [55]. It is also possi-
ble that exposure to high doses of Cr causes Cr>* to bind to Tf
and interferes with normal iron uptake, thus affecting Fe me-
tabolism [1]. In case of oversupply of Cr, it may reduce Fe
transportation to the cells, wherein the Cr-Fe interaction may
occur already in the intestine, where these elements compete
for a common site of absorption. A similar mechanism of
interaction can also occur between supplementary Cr3 and
Zn and Cu, as the absorption of these elements is
interdependent.

In our study, the blood morphological indices remained
unchanged, which indicates that Cr3 did not affect erythropoi-
esis [27]. A lower Fe level in the serum and tissue stores (in
the liver and kidneys) was noted, but these changes occurred
only after the application of very high doses of Cr(III) (50 and
100 mg Cr(Ill)- kg ' b.m.). These results correspond to the
study by Anderson et al. [47], who found a reduced Fe level in
the tissues of rats supplemented with CrCls. Also, Ani et al.
[48] reported reduced transferrin saturation and tissue stores of
Fe as well as lower haemoglobin and haematocrit index in rats
fed a diet with a high dose of Cr(II).

Sun et al. [17] found that Cr3 administered to normal
Sprague-Dawley (SD) rats at a dose of 20 pg- kg ' b.m. for
24 weeks did not have a significant effect on the liver and
kidney Fe contents. However, they observed higher liver Fe
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Table 4  The effect high dietary doses of Cr3 on blood glucose concentration and lipid profile indices in female rat (mean + SEM) [27]

Index Experimental groups

Control A B C D

(1 mg- kg™ (100 mg- kg ") (200 mg- kg ") (500 mg kg ") (1000 mg- kg™
Glucose concentration (mg darh 105.7+4.9 98.7+ 8.6 98.8 +4.1 92.5+2.5 948 +3.9
Total-cholesterol concentration (mg darh 61.5+84 722+2.8 67.0+5.5 63.3+4.6 643+2.6
LDL-cholesterol concentration (mg darh 4.67 +0.49 5.17 £0.54 5.17 £0.54 5.00 +0.26 5.17+0.87
HDL-cholesterol concentration (mg di™") 39.8+3.6 415+13 39.8+1.8 37235 38.8+1.0
TAG-triglycerides concentration (mg dI”") 30.7 £1.9%® 322+2.8% 37.0+3.0° 252+£2.4° 253 +£2.6°

The values in the same row that do not share the same superscript letter are significantly different (P < 0.05)

Control control group, A group supplemented with 100 mg Cr(Ill)- kg ' diet, B group supplemented with 200 mg Cr(IIl)- kg ' diet, C group
supplemented with 500 mg Cr(IIl) kg ™' diet, D group supplemented with 1000 mg Cr(Ill) kg ' diet

level and lower kidney Fe concentrations than their controls in
Zucker obese (ZKO) rats [17]. Also, Love et al. [56] observed
that the dietary Cr (16-2000 pg- kg ' diet) given for 23 weeks
had no effect on the blood iron level in Zucker lean (ZKL)
rats. Similarly, Clodfelder et al. [4] did not observe adverse
effects of Cr3 on the Fe status when given to healthy rats or to
the animals with type 2 diabetes for 24 weeks as an aqueous
solution at doses 0f 2501000 pg of Cr- kg ' b.m. In contrast,
Cr3 supplementary in doses 10 and 50 mg- kg ' diet for
8 weeks increased kidney Fe and spleen Cu contents but did
not affect Zn status in rats fed with high-fat diet [33]. The
studies by Shara et al. [38, 39] demonstrated that long-term
supplementation with complex Cr(IIl) with niacin did not af-
fect the metabolism of Fe in the rat (as assessed by the content
of Fe in the serum, TIBC, RBC, haecmoglobin and selected
indicators of blood morphology). Prescha et al. [36] reported
that supplementary Cr in a diet enriched with cellulose and/or
pectin led to higher Cr and Fe contents in the femurs but did
not change the Fe content in the liver, kidneys and muscles in
male Buffalo rats.

Research on humans supplemented with Cr(III) at doses
of 200-1000 pg- day ' did not confirm significant effects
on the Fe status. Campbell et al. [57] showed that 3-month
supplementation of males aged 60—70 years with Cr(Pic); at
an amount of 924 ug of Cr- day ' had no effect on the Fe
status. Similarly, Lukaski et al. [58] did not observe any
changes in haemoglobin, haematocrit, serum Fe content,
TIBC or transferrin saturation in 83 premenopausal women
supplemented with Cr(Pic); at a dose of 200 pg Cr- day .
Volpe et al. [59] found that 12-week supplementation with
Cr(Pic)s at a dose of 400 ug- day ' combined with the ex-
ercise programme did not affect Fe or Zn levels in the serum
of women with moderate obesity.

Anderson et al. [43] studied the effect of Cr(Pic); supple-
mentation on the tissular levels of Fe, Zn and Cu in pigs. They
found that Cr did not affect the level of these elements in the
liver and heart but caused an increase in the Fe content and
decrease in Zn and Cu contents in the kidneys.

@ Springer

Pechova et al. [60] observed that the addition of Cr(III) in the
form of chromium yeast (5 mg: day " at the initial period of the
experiment and increased to 8 mg- day ' after 136 days) in-
creased the Cu content, reduced the Mg and P levels in the serum,
but had no effect on the plasma Zn concentration in young bulls.

Amatya et al. [61] conducted a study on broilers fed diets
supplemented with 200 ug Cr- kg™ in the form of CrCl; and
yeast chromium for 21 and 35 days. They found that the Cr
level in the liver was lower than in the control group, the Cu
content increased in the blood serum and liver, while the Fe
and Mn content decreased in the liver.

Debski et al. [62] reported an increase in the Cr and Cu
content, but no change in the Zn level in the livers of hens fed
a diet enriched with chromium yeast (0.5 mg- kg ' dry mass)
for 2 months.

Sahin et al. [44] showed that supplementary Cr(Pic); (200,
400, 800, 1200 ug Cr kgfl) increased the Cr and Zn content
but decreased the Cu level in the serum, liver, kidneys and
muscles. The concentrations of Fe and Mg did not change in
these tissues as dietary chromium supplementation was in-
creased in the Japanese quail. Krejpcio et al. [63] found that
supplementation with Cr3 (5 mg- kg ' of diet) did not affect Mg
levels in Wistar rats. Krol et al. [64] showed that Cr3 supple-
mentation disturb mineral homeostasis in the rats’ organs fed
high-fructose diet. Cr3 increased Mg, Cu and Cr levels, al-
though it did not influence tissular Ca, Fe and Zn contents,
given for 4 weeks in doses 1 and 5 mg: kg™’ b.w. per day.

The addition of Cr(IIl) to the fibre-free diet and to the diets
with cellulose or pectin did not change the Zn, Mg and P contents
in the femur and Cr, Fe, and Zn levels in the muscles in rats [36].
However, the addition of pectin or cellulose to the diets, espe-
cially with Cr, increased the Zn content in the liver and kidneys
and changed the Mg and Ca levels in these tissues [36].

Dogukan et al. [13] reported that supplementation with
chromium histidinate (CrHis) increased the serum, liver, kid-
ney Cr and Zn contents but decreased the Cu levels both in
diabetic and non-diabetic rats. However, the serum, liver and
kidney Fe concentrations were unchanged. In our previous
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studies [25], we observed that the Cu, Zn, Fe and Mg concen-
tration in the liver of obese Zucker rats was lower than in ZDF
and/or lean Zucker rats.

The role of Cr in the Ca of bone metabolism is unclear.
CrPic; has been found to reduce the urinary excretion of hy-
droxyproline and Ca in postmenopausal women, presumably
indicating a reduced rate of bone resorption [65]. Evans et al.
[65] observed reduced Ca excretion, an increased dehydroepi-
androsterone level (DHEA) and reduced hydroxyproline to cre-
atinine ratio in the urine of postmenopausal women after 60-day
supplementation with Cr(Pic); at a dose of 200 g day ', sug-
gesting that Cr(IlI) could effectively prevent osteoporosis.

In other studies, the liver Ca content in lean rats was sig-
nificantly increased by Cr3 and CrPic; when administered at
1 mg Cr kg™' b.m., but the Mg level was not affected [25].
Prescha et al. [36] showed that the liver Ca content was very
sensitive to supplemental Cr when given together with pectin
and cellulose to Buffalo rats.

This study showed that high doses of supplementary Cr3
(100-1000 mg Cr(11I)- kgf1 of diet) reduced the Ca content in
the rat liver in a dose-dependent manner. The research by
Sankaramanivela et al. [66] revealed that the exposure of male
Wistar rats to K,Cr,O5 at a dose of 0.5 mg: kgf1 b.m. for
5 days increased the Ca content in the femur and cranial vault
but reduced the activity of ALP and TRAP (resistant acid
phosphatase tartrate), which the authors explained with low
Ca resorption activity from the bone tissue.

The results of this experiment suggest that supplementary
doses of Cr3 (100-1000 mg Cr- kg ' diet; eq. ~10—
100 mg Cr- kg ™' b.m) given for 4 weeks did not affect the
Mg status but influenced the Cr, Fe, Zn, Cu and Ca levels in
healthy female Wistar rats.

In conclusion, high dietary Cr3 supplementation may affect
the mineral balance in rat tissues.
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