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Abstract Circulating concentration of the essential trace ele-
ment selenium (Se) was significantly lower in inflammatory
disorders. Although Se plays physiological roles mainly
through the function of 25 selenoproteins, the response of
the selenogenome in immune tissues during inflammatory re-
actions remains unclear. The objective of this study was to
determine the Se retention and selenogenome expression in
immune tissues during the lipopolysaccharide (LPS)-induced
inflammatory response in porcine. A total of 12 male pigs
were randomly divided into two groups and injected with
LPS or saline. After 4 h postinjection, blood samples were
collected and pigs were euthanized. Pigs challenged with
LPS had 36.8 and 16.6 % lower (P < 0.05) Se concentrations
in the serum and spleen, respectively, than those injected with
saline. Moreover, the activities of GPX decreased (P < 0.05)
by 23.4, 26.6, and 30.4 % in the serum, thymus, and lymph
node, respectively, in the pigs injected with LPS. Furthermore,
the LPS challenge altered (P < 0.05) the mRNA expression of
14, 16, 10, and 6 selenoprotein genes in the liver, spleen,
thymus, and lymph node, respectively. Along with 10 previ-
ously reported selenoprotein genes, the response of Txnrd2,
Txnrd3, Sep15, Selh, Seli, Seln, Selo, Selt, Selx, and Sephs2 to
inflammatory reaction in immune tissues were newly

illustrated in this study. In conclusion, the LPS-induced in-
flammatory response impaired Se metabolism and was asso-
ciated with dysregulation of the selenogenome expression in
immune tissues.
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Introduction

Selenium (Se) is an essential trace element for humans and
animals. It plays pivotal roles in antioxidant defense, antican-
cer, detoxification, and improving immune function [1–5].
Numerous epidemiologic investigations and animal studies
have shown inverse correlations between Se deficiency and
inflammatory impairment, and lower serum Se status in in-
flammatory disorders with acute injury or trauma of tissues
[6–10]. In contrast, supplementation of proper doses of Se can
significantly alleviate and/or prevent the morbidity or mortal-
ity induced by inflammation in some clinical and animal stud-
ies [10–14]. In this regard, the retention and underlying mo-
lecular mechanism of Se in inflammatory response has recent-
ly gained increased attention.

A previous study has systematically investigated the reten-
tion of Se during the lipopolysaccharide (LPS)-induced acute
phase response in rats, which found a significant decrease of
Se content by 69.5 and 81.5 % in the plasma and liver, respec-
tively [15]. While, the Se content was increased in the spleen,
thymus, kidney, lung, heart, and muscle by LPS challenge,
indicating that Se could play important roles in these tissues
during an inflammatory response [15]. Since Se plays physi-
ological roles mainly through the function of 25
selenoproteins that contain Se in the form of selenocysteine
(Sec) [16, 17], understanding the response of selenogenome in
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those immune tissues during the inflammatory response
would be an important aspect. A recent study showed that
the serum Se and selenoprotein P (Sepp1) concentrations de-
clined in parallel by 50 and 61 % in mice after injection of
LPS, which was associated with downregulation of the hepat-
ic selenoprotein biosynthesis machinery [9]. Another in vitro
experiment showed that the amount of TXNRD1was substan-
tially increased, whereas GPX1 was modestly decreased in
LPS-treated macrophages [18]. Moreover, LPS treatment or
Fcγ receptor stimulation of mouse macrophages increased
expression of two endoplasmic reticulum (ER) selenoproteins,
Selk and Sels [19, 20]. In general, many of these past studies
were focused on a single or a few selenoproteins in the re-
sponse of inflammation in cells or single immune tissue.
However, little information is available on the responses of
the whole selenogenome during the inflammatory response in
human or higher animals. Since pigs are an excellent model
for human nutrition and medicine [21], we selected pigs to
determine the Se retention and whole selenogenome expres-
sion in immune tissues, including the liver, spleen, thymus,
and lymph node, during the LPS challenge induced inflam-
matory response.

Materials and Methods

Piglets, Treatments, and Sample Collection

All procedures for this experiment were approved by the
Animal Care and Use Committee of Hubei Province, China.
A total of 12 male pigs (Duroc × Large White × Landrace;
body weight at 18.4 ± 1.2 kg) were randomly allotted to two
groups. Each group of pigs were treated with saline or LPS.
The challenged group received an intraperitoneal injection
with E. coli LPS (E. coli serotype 055:B5, Sigma Chemical)
at 100 μg/kg BW, and the unchallenged group received an
equivalent amount of sterile saline. The dose of LPS
(100μg/kg BW)was chosen according to our previous studies
[22, 23], which showed increased expression of proinflamma-
tory cytokines in the immune tissues of weaned pigs. Many
studies have shown that, within 1∼6 h postinjection, LPS ac-
tivated the HPA axis and increased proinflammatory cytokine
production in rats and pigs [22–25]. Thus, we used the time
point of 4 h after LPS or saline treatment for experimental
measurements in serum or tissues. Blood was collected from
the anterior vena cava of pigs after 4 h of LPS injection. The
serum was prepared by centrifugation at 3500×g for 10 min at
4 °C and stored at −80 °C until further analysis. After blood
collection at 4 h, all pigs were humanely killed. The liver,
spleen, thymus, and lymph node were collected, frozen imme-
diately in liquid nitrogen, and then stored at −80 °C until
analysis of mRNA abundance.

Se Concentrations and GPX Activity Analysis

The concentrations of Se in serum and tissues were measured
by the hydride generation atomic fluorescence spectrometer
(AF-610B, Beijing Rayleigh Analytical Instrument Corp.,
Beijing, China), against the standard reference of Se [GBW
(E) 080441, National Research Center for Certified Reference
Materials, Beijing, China] as previously described [14]. Total
protein was extracted from 0.5 g liver tissue as previously
described [26]. The activity of GPX was measured by a col-
orimetric method using specific assay kits (A005) from the
Nanjing Jiancheng Bioengineering Institute of China.
Protein concentrations were measured by the bicinchoninic
acid assay [14].

Real-Time qPCR

Total RNA was prepared from the liver, spleen, thymus, and
lymph node (20–50 mg tissue) using TRIzol (Invitrogen) and
following the manufacturer’s instructions. The quality and
quantity of RNA were analyzed by an Agilent Bioanalyzer
2100 using an RNA 6000 Labchip ki t (Agi lent
Technologies, Amstelveen, Netherlands). The cDNAwas syn-
thesized from 1μg total RNAby using Super Script III reverse
transcriptase (Invitrogen) and following the manufacturer’s
instructions. The mRNA levels of 25 selenoprotein genes
were determined by qPCR (Bio-Rad CFX96 Touch) using
the SYBRR Green PCR Master Mix (Bio-Rad, USA) and
following the manufacturer ’s instructions. Primers
(Supplemental Table 1) for the selenoprotein genes and refer-
ence gene glyceraldehyde-3-phosphate dehydrogenase
(GADPH) were referenced from previous studies [27] and/or
designed using Primer Express 3.0 (Applied Biosystems,
Foster City, CA, USA). The 2−ddCt method was used for the
quantification with GADPH gene as a reference gene, and the
relative abundance was normalized to the control (as 1).

Statistical Analysis

Data were analyzed using Student’s t test by SPSS version 13
(Chicago, IL, USA). Data are presented as mean ± SE, and
significance was set at P < 0.05.

Results

Se Concentrations and GPX Activities

After 4 h of treatment with LPS, the Se concentrations in the
serum, liver, spleen, thymus, and lymph node was measured;
the results are presented in Fig. 1. Compared to pigs treated
with saline, the concentration of Se decreased (P < 0.05) by
36.8 and 16.6 % in the serum and spleen, respectively, in the
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pigs injected with LPS. However, the concentrations of Se in
the liver, thymus, and lymph node of pigs were not signifi-
cantly affected (P > 0.05) by the challenge of LPS (Fig. 1).
Meanwhile, the results of activities of GPX in the serum, liver,
spleen, thymus, and lymph node are displayed in Fig. 2.
Relative to pigs treated with saline, the pigs injected with
LPS led to decreased (P < 0.05) activities of GPX by 23.4,
26.6, and 30.4 % in the serum, thymus, and lymph node,
respectively. However, no changes in GPX activity
(P > 0.05) were seen in the liver and spleen after challenge
with LPS (Fig. 2).

Liver mRNA Levels of Selenoprotein Genes

A total of 14 of the 25 assayed selenoprotein genes in the liver
were affected by LPS challenge in pigs (Fig. 3). The results
showed that the mRNA level ofDio3 (599%) was the greatest
increased (P < 0.05), followed byDio2 (379%), Sels (191%),
Txnrd1 (122 %), Seli (88 %), and Gpx1 (49 %) in the liver of
pigs injected with LPS, when compared with those injected
with saline. In contrast, pigs challenged with LPS had 45–
77 % lower (P < 0.05) Sepp1, Gpx2, Dio1, Txnrd2, Sephs,
Selo, Selx, and Seln mRNA abundance in the liver compared
with those injected with saline.

Spleen mRNA Levels of Selenoprotein Genes

A total of 16 of the 25 assayed selenoprotein genes in the
spleen were affected by LPS challenge in pigs (Fig. 4). The
results showed that the mRNA level of Dio2 (19.6 times) was
the greatest increased (P < 0.05), followed by Sels (246 %),
Txnrd1 (183 %), Gpx3 (138 %), and Selt (110 %), along with
other selenoprtoein genes (Selx, Dio1, Selk, Txnrd3, Seli, and
Sep15) from 23 to 63 % in the spleen of pigs injected with
LPS, when compared with those injected with saline. In con-
trast, pigs challenged with LPS showed the decrease of
(P < 0.05) mRNA abundance of Sepp1, Gpx2, Dio3,
Txnrd2, and Seln from 30 to 81 % in the spleen compared
with those injected with saline.

Lymph Node mRNA Levels of Selenoprotein Genes

Among the 25 selenoprotein genes assayed, 10 genes in the
lymph node were affected by LPS challenge in pigs (Fig. 5).
Specifically, relative to pigs treated with saline, the pigs
injected with LPS had higher (P < 0.05) Dio2 (140 %), Sels
(135 %), Gpx3 (98 %), Dio1 (89 %), Txnrd1 (52 %), Selk
(52 %), Selt (29 %), and Txnrd3 (28 %) mRNA abundance
in lymph node. However, pigs challenged with LPS led to the
increase of (P < 0.05) mRNA abundance of Sepp1 (25 %) and
Txnrd2 (19 %) in the lymph node compared with those
injected with saline.

Thymus mRNA Levels of Selenoprotein Genes

Among the 25 selenoprotein genes assayed, only 6 genes in
the thymus were affected by LPS challenge in pigs (Fig. 6).
Pigs challenged with LPS had higher (P < 0.05)Dio2 (193%),
Gpx3 (62 %), and Sels (52 %) mRNA abundance in the thy-
mus compared with those injected with saline. However, pigs
injected with LPS had lower (P < 0.05) Selh (36 %), Txnrd2
(24 %), and Selo(15 %) mRNA abundance in the thymus
compared with those injected with saline.

Discussion

The status of Se in body has been identified as an important
regulator of disease [28]. Particularly, the immune system
seems to depend on a well-maintained Se status to combat
bacterial and viral infections, oxidative damage from environ-
mental-, nutritional-, and age-related noxae, as well as other
inflammatory challenges [9, 29–31]. Moreover, many previ-
ous studies demonstrated circulating Se concentrations were
significantly lower in inflammatory disorders [6–9]. However,
the retention of Se and the responses of whole selenogenome
in the immune tissues during the inflammatory response are
not well understood. In an attempt to answer these questions,

Fig. 1 Effects of LPS challenge on concentrations of Se in the serum,
liver, spleen, thymus, and lymph node in pigs. Values are means ± SE,
n = 6. Labeled means with asterisk differ, P < 0.05

Fig. 2 Effects of LPS challenge on activity of GPX in the serum, liver,
spleen, thymus, and lymph node in pigs. Values are means ± SE, n = 6.
Labeled means with asterisk differ, P < 0.05
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we have taken the advantage of the pig model of LPS-induced
acute phase response that faithfully mimics some aspects of
immune stress.

The concentration of Se was reduced in serum, while was
not changed in the liver, thymus, and lymph node by LPS
challenge in pigs, which are similar to those in previous stud-
ies [9, 15]. The Se concentration in spleen was decreased in
our study, while Maehira et al. (2003) reported that the Se
concentration in spleen was not affected by LPS challenge in
rat [15]. These divergences could be due to the experimental
condition, such as the LPS injection dose, animal species, and
exposure times. Moreover, LPS challenge reduced GPX

activity in the serum, thymus, and lymph node in pigs. This
finding is in agreement with previous studies, which reported
that serum GPX activity was lower in LPS-induced rodents
and human subjects with severe systemic inflammatory re-
sponse syndrome, sepsis, and septic shock [12, 32]. Taken
together, these results are similar to previous reports, which
indicated that the metabolism of Se in immune tissues was
impaired in acute phase response.

Another new dimension of the present study was the
mRNA response profiles of 25 selenoprotein genes to the
LPS challenge in the four immune tissues, including the liver,
spleen, thymus, and lymph node. These profiles enabled us for

Fig. 4 Effects of LPS challenge on relative mRNA levels of selenoprotein genes in the spleen in pigs. Values are means ± SE, n = 6. Labeled means with
asterisk differ, P < 0.05

Fig. 3 Effects of LPS challenge on relative mRNA levels of selenoprotein genes in the liver in pigs. Values are means ± SE, n = 6. Labeled means with
asterisk differ, P < 0.05
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the first time to systematically explore the selenoprotein genes
that might be involved in the inflammatory reaction induced
by LPS challenge. Among all the genes assayed, LPS chal-
lenge affected mRNA levels of 14, 16, 10, and 6 selenoprotein
genes in the liver, spleen, thymus, and lymph node, respec-
tively. Specifically, LPS challenge consistently downregulated
the mRNA levels of Sepp1, Txnrd2, Gpx2, Seln, Selo, Selh,
and Sephs2, but upregulated those of Sels, Dio2, Gpx3,
Txnrd1, Txnrd3, Selk, Selt, Seli, Gpx1, and Sep15 in the liver,
spleen, thymus, and/or lymph node. Whereas, there are three
selenoprotein genes (Dio1, Dio3, and Selx) did not exhibit a
common response to LPS challenge across the four tissues.
Whereas Sepp1 [9, 18], Sels [33],Gpx1 [18],Gpx2 [34],Gpx3
[35], Txnrd1 [18], Selk [20, 36],Dio1 [37],Dio2 [37–39], and
Dio3 [37] were shown to have protective functions against or
involved in inflammation, the potential involvements of
Txnrd2, Txnrd3, Sep15, Selh, Seli, Seln, Selo, Selt, Selx, and
Sephs2 in this regard are newly illustrated by us in the present
study. Coincidently, eight of these ten genes (Txnrd2, Txnrd3,
Sep15, Selh, Seln, Selo, Selt, and Selx) code for proteins,
which possess antioxidant capacity [5, 16, 17, 40–42].
Although these selenoproteins might cope with the oxidative
stress induced by LPS [43, 44], it is hard for us to explain why
some of them (Txnrd3, Sep15, Selt, and Selx) were upregulat-
ed and others (Txnrd2, Selh, Seln, Selo, and Selx) were

downregulated in the immune tissues during the LPS chal-
lenge. Although the protein encoded by Seli possibly involved
in phospholipid biosynthesis and Sephs2 plays a crucial role
in synthesis of all selenoproteins [40], their exact role in in-
flammatory reaction remain to be determined.

Nevertheless, several seemingly conflicting or inconsistent
scenarios were observed in the present study. Despite some
selenoprtoein genes (Sepp1, Sels, Gpx3, Dio2, Txnrd1, and
Txnrd2) exhibited a common response to LPS challenge
across three to four immune tissues, other selenoprtoein genes
(Dio1, Dio3, and Selx) even showed different responses to
LPS challenge across immune tissues. Meanwhile, no single
immune tissue showed any common response to LPS chal-
lenge across various selenoprotein genes. These divergences
suggest that regulations of selenoprotein genes as well as Se
metabolism by an LPS-induced inflammatory reaction may
vary in various immune tissues. Meanwhile, the GPX activity
in the thymus and lymph node were not in accordance with
Gpx3 mRNA abundance. This paradoxic discrepancy may be
interpreted by a complex feedback or posttranscriptional
mechanism in regulating GPX3 synthesis [45, 46].

In conclusion, the present study indicated that a LPS-induced
acute phase response impaired Se metabolism in immune tis-
sues. This was demonstrated by decreasing Se concentrations
and/or GPX activity in the serum, spleen, thymus, and/or lymph
node. Moreover, the LPS-induced dysregulation of Se metabo-
lism was associated with altered mRNA expression of 14, 16,
10, and 6 selenoprotein genes in the liver, spleen, thymus, and
lymph node, respectively. These findings could help us to better
understand the impairment of Se and selenogenomemetabolism
in immune tissues during an inflammatory reaction.
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