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Abstract Currently, tissue damage induced by cobalt nanopar-
ticles (CoNPs) and cobalt ions (Co2+) are the most serious syn-
drome in the patients with metal-on-metal hip prostheses.
Therefore, an urgent need exists for the identification of the
mechanisms and the development of therapeutic strategies to
limit it. The purpose of this study was to explore the mechanism
of this damage and to demonstrate if L-ascorbic acid (L-AA)
could protect against the cell toxicities induced by CoNPs and
Co2+ in vitro. With CoNPs and Co2+ treatment, cell viability was
significantly decreased; the ROS (reactive oxygen species) level
in mitochondria was dramatically increased in CoNPs treated
cells, but cobalt ions could barely induce the ROS.
Consistently, the level of cell apoptosis was increased with the
upregulation of pro-apoptotic factors (caspases 8, 9, and 3, and
Bax) and the downregulation of anti-apoptotic factor Bcl-2.
Besides that, the levels of cytochrome c and AIF were increased
and released from mitochondria into the cytoplasm. After the
cells were pretreated with L-AA, the cell viability decreased by
CoNPs was reversed and the ROS induced by CoNPs was sup-
pressed. The level of cell apoptosis induced by CoNPs was

decreased as well. But it could not reverse the effects induced
by Co2+. These studies demonstrated that CoNPs induce extrin-
sic and intrinsic apoptotic pathways via generation of ROS, and
L-AA could prevent the cytotoxicity by reducing the level of
ROS.While Co2+ may induce cytotoxicity through other signals,
it could not be protected by L-AA treatment.
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Abbreviations
CoNPs Cobalt nanoparticles
Co2+ Cobalt ions
TEM Transmission electron microscopy
SEM Scanning electron microscope
MOM Metal-on-metal
L-AA L-Ascorbic acid
ROS Reactive oxygen species
Caspase Cysteinyl aspartate specific proteinase
IARC International Agency for Research on Cancer
GSH Glutathione

Introduction

Application of metal-on-metal (MoM) hip arthroplasty is associ-
ated with adverse effects including local soft-tissue reactions and
pseudotumors [1]. The MoM hip arthroplasty implants, made of
cobalt-chromium (CoCr) alloy, release large amounts of metal
nanoparticles and ions in vivo [2]. Commercially availableMoM
hip arthroplasty implants contain 62 % cobalt (Co) and 28 %
chromium (Cr), yielding aCo/Cr ratio of 2.21 [3]. CoNPs are one
of the most important degradation products of MoM implants
[4]. Therefore, cobalt may be potentially toxic inMoM implants.
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In vitro studies demonstrated cobalt caused cell oxidative stress
[5], DNA damage [6], inflammatory responses, and genotoxic
effects [7]. Furthermore, the International Agency for Research
on Cancer (IARC) has classified implanted metallic cobalt as
class 2B, Bpossibly carcinogenic to humans^ [8]. Our previous
study also demonstrated that exposure to CoNPs and Co2+ in-
duced cytotoxicity and genotoxicity in primary human T cells in
vitro [9]. Although several experiments suggested significant
cytotoxic effects were caused by CoNPs and Co2+ treatment,
the mechanism of nanomaterial-induced cytotoxicity still has
not been clarified yet.

Apoptosis plays an important role in metal toxicity [1].
Although a number of known or suspected human carcino-
genic metallic compounds have been shown to induce apopto-
sis, the relevance of these observations and the carcinogenic
process is still unclear [10]. Apoptosis induced by tungsten
carbide-Co (WC-Co) fine particles has been reported in vitro
[10, 11]. However, apoptotic pathways induced byCoNPs and
Co2+ are still elusive. Compared with fine particles, WC-Co
nanoparticles generated a higher level of ROS and caused
more oxidative stress, as evidenced by a decrease in glutathi-
one (GSH) levels [12]. Further studies indicated that catalase,
which largely quenched ROS, inhibited WC-Co particle-in-
duced mitochondrial membrane permeability damage in JB6
cells [13]. These results demonstrated that oxidative stress
plays an important role in the toxicities induced by WC-Co
particles, but the effect on cobalt nanoparticles is still not
clarified and needs to be demonstrated.

Along with the exposure to debris from MoM hip prosthe-
ses, nano-sized cobalt particles are released and would trigger
a series of biochemical reactions. Currently, it is not clear
whether CoNPs per se or solubilized Co2+ plays a greater role
in cytotoxicity. Evidences derived from biochemistry studies
involving other nanoparticles in vitro exposure, such as
Balb/3T3 cells, suggested that the nanoparticulate fraction
was more poisonous than the ionic form [14]. Nanoparticles
generated from MoM hip prostheses, including CoCr alloy
nanoparticles with an average size of 29.5 ± 6.3 nm, caused
greater cell toxicity than the micron-sized particles [15].

In this study, we explored the mechanisms of cytotoxicity
of CoNPs together with Co2+ and developed strategies to re-
duce this cytotoxicity with L-AA treatment. The experimental
study is focused on CoNPs with an average size of 30 nm and
used Co2+ to identify the role of Co, without the addition of
Cr, in the adverse reactions. Balb/3T3 mouse fibroblast cells
were used in toxicity assays in vitro and are approved by the
European Centre of Validation of Alternative Methods
(ECVAM) [16]. L-Ascorbic acid (L-AA), an antioxidant, was
used to reduce the level of oxidative stress. It has been dem-
onstrated that the addition of physiological levels of L-AA
decreased the levels of ROS and cytotoxicity induced by
CoNPs and Co2+, respectively [17]. We hypothesized that
the intrinsic apoptotic pathway was triggered by ROS during

exposure to CoNPs in Balb/3T3 cells and contributed to tissue
damages in susceptible individuals following MoM hip re-
placement. The effects of CoNPs compared with Co2+ in
Balb/3T3 cells were also observed in this study.
Furthermore, for the first time, we used L-AA to alter
or reduce the toxicity induced by CoNPs and Co2+ in
Balb/3T3 cells.

Materials and Methods

Materials

Dulbecco’s modified Eagle’s medium (DMEM),
phosphate-buffered saline (PBS), Hank’s balanced salt
solution (GIBCO® HBSS), and fetal bovine serum
(FBS) were purchased f rom Gibco Invi t rogen
(Wilmington, MA, USA). Cobalt chloride (Co2+),
CoNPs (median size 30 nm), trypsin-EDTA, the
penicill in-streptomycin solution, LDH assay kit
(MAK066), and MTT (3-(4, 5-dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide) assay kit (TOX1) were
obtained from Sigma-Aldrich (St. Louis, MO, USA).
GSH, TRIzol-A+, and reverse transcriptase reaction kit
were procured from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). SYBR Green Real-time
PCR Master Mix, Cytochrome-C ELISA kit was pur-
chased from Shanghai Yanjin Biological (Shanghai,
China). Antibodies against caspase 3, caspase 8, caspase
9, Bax, Bcl-2, AIF, HO-1, and β-actin were obtained
from Cell Signaling Technology (Danvers, MA, USA).

Preparation of Co2+ and CoNPs

Co2+ was suspended in ultrapure water at a concentration of
50 mM, using a 0.22-μm filter to sterilize and store in a deep-
freeze for reserve. CoNPs were weighed the day before the
experiment, sterilized at 180 °C for 4 h, suspended in ultrapure
water at a concentration of 50 mM, sonicated for 15 min with
ultrasonic oscillators to disperse CoNPs suspension, and im-
mediately diluted in incomplete culture media (DMEM only).
Based on other studies and our pilot experiments, the concen-
trations of Co2+ and CoNPs ranging from 1 to 500 μM were
picked up.

Cell Culture

Balb/3T3 mouse fibroblast cells were purchased from ATCC
(Manassas, VA) and grown in DMEM supplemented with
10 % FBS, penicillin (100 U/mL), and streptomycin (100 g/
mL). The medium was replaced every 3 days. All cells were
grown at 37 °C in a humidified incubator containing 5%CO2.
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Characterization of Cobalt Nanoparticles

CoNPs were characterized for size, shape, and hydrodynamic
diameter. The size, microstructure, and elemental composition
of CoNPs were assessed by high-resolution scanning electron
microscopy (Hitachi 550 ultra high resolution SEM), trans-
mission electron microscopy (TEM, JEM-2100F, Japan),
and x-ray diffraction (XRD). In brief, CoNPs were suspended
in DMEM supplemented with 5 % FBS at a concentration of
1 mg/mL (pH 7.2–7.4), then the sample was sonicated by
using a sonicator bath until a homogeneous suspension
formed. A drop of aqueous CoNPs suspension was placed
onto a carbon-coated copper grid (300 mesh) and dried in air
to obtain SEM and TEM images. XRD was employed for
elemental analysis. Dynamic laser light scattering (DLS) mea-
surements were used to determine the hydrodynamic diameter
and size distribution of CoNPs in the cell culture medium.

Cellular Uptake

Balb/3T3 cells were incubated with CoNPs 50 μM for 24 h,
and the morphologies were analyzed by TEM. TEM analysis
was conducted by plating Balb/3T3 cells into six-well tissue
culture plates at a density of 5 × 106 cells/well. Followed by
CoNPs treatment for 24 h, cells were washed with PBS and
fixed with 2.5 % glutaraldehyde and 1% osmium tetroxide for
3 h, and then dehydrated using graded concentrations of eth-
anol. After infiltration and embedding in epoxy resin at 60 °C
for 48 h, ultra-thin sections (thickness 75 nm) were stained
with lead citrate and examined by TEM. TEM imaging and
measurement were performed on at least 100 CoNPs. The
ultra-thin sections were mounted on Cu lacey carbon-coated
TEM grids (200 mesh) and imaged.

Ion Release in Medium

The cells were treated with 50 μM CoNPs for 4, 12, 24, 48,
and 72 h. The supernatants were collected and centrifuged at
1500×g for 15 min to obtain particle-free medium. The Co2+

levels were analyzed by inductively coupled plasma-mass
spectrometry (ICP-MS; Agilent 7500A Series). Briefly, the
medium was digested with 5 mL 16 M nitric acid followed
by 2 mL 30 % (w/w) hydrogen peroxide. The Co2+ content in
solution was determined using the ICP-MS. Results were
expressed as percentage of CoNPs concentrations.

Cell Viability Assays

Cytotoxicity induced by CoNPs and Co2+ was assessed by
functional impairment of the mitochondria using MTT assay
kit following the manufacturer’s instructions [18]. Briefly,
cells were plated in DMEM with 10 % FBS at a density of
104 cells/well in a 96-well plate. After 24 h, the cells were

treated with various doses of CoNPs (1, 5, 10, 50, 100, and
500 μM, respectively) or Co2+ (5, 10, 50, 100, and 500 μM,
respectively) for 12, 24, and 48 h. After incubation, the orig-
inal culture was dumped. The MTT labeling reagent was di-
luted to 0.05 mg/mL in DMEM with 10 % FBS, and then
added to each well. Followed by 4 h of incubation, the super-
natant was discarded. A total of 150 μL DMSO was added to
each well, and the solution was mixed using a microplate
oscillator for 10 min. The optical density (OD) of the wells
was measured at a wavelength of 490 nm. The cytotoxic con-
centration was calculated.

Protective Role of L-AA

The effect of L-AA in reducing the cytotoxicity of CoNPs and
Co2+ was assessed by an MTT assay kit and LDH assay kit.
The LDH assay was a precise, fast, and simple colorimetric
assay for quantifying cytotoxicity based on LDH activity re-
leased from damaged cells [19]. The LDH release in the cell
culture medium indicated cell membrane damage. Briefly,
cells were planted as before in a 96-well plate. After 24 h of
growth, cells were either pretreated with or without L-AA
(50 μM, 1 h), and followed by CoNPs (50 μM) or Co2+

(50 μM) treatment, respectively, for 24 h. Cell culture super-
natants were collected from centrifuged culture media for
LDH activity analysis. The LDH levels in the supernatants
were measured according to the manufacturer’s instruc-
tions. The results of MTT assay were measured by the
above method.

Measurement of Reactive Oxygen Species

Cells were treated with CoNPs (50 μM) or Co2+ (50 μM),
respectively, for 24 h in the absence and presence of L-AA
(50 μM) pretreated for 1 h. ROS levels were measured using
the fluorescence staining [2′, 7′-dichlorodihydro-fluorescein
diacetate (H2DCFDA)]. After exposure to nanoparticles, the
cells were incubated with H2DCFDA (10 μM) at 37 °C for
20 min. The cells were then washed twice with Hank’s bal-
anced salt solution (HBSS) to wipe off the extracellular
DCFH-DA. The cells were observed with confocal laser scan-
ning microscope and fluorescence microplate. The fluores-
cence was recorded at 488 nm/525 nm (excitation/emission)
wavelengths [18].

GSH Measurement

Glutathione (GSH) was determined in the cells with CoNPs
and Co2+ (50 μM, 24 h) treatment. After exposure, cells were
washed three times with PBS, scraped off, suspended in PBS,
and centrifuged at 1000×g. The cell pellet was homogenized
in 5 % 5-sulfosalicylic acid. The suspension was lysed by
freezing and thawing twice and, 5 min later, centrifuged at
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10,000×g for 10 min. GSH in the supernatant was measured
by its ability to convert 5,5¢-dithiobis(2-nitrobenzoic acid)
into the yellow product 2-nitrobenzoic acid, as described by
Rahman et al. [20]. The amount of GSH was expressed as
micromoles per liter of protein, quantified by the
Bradford method.

Real-Time Polymerase Chain Reaction

After treated with CoNPs (50μM) or Co2+ (50μM) for 24 h in
the absence and presence of L-AA (50 μM) pretreated for 1 h,
total RNAwas extracted with TRIzol-A+, and a reverse tran-
scriptase reaction kit was used to transcribe cDNA from
3000 ng of total RNA according to the manufacturer’s guide-
lines [18]. The SYBR Green Real-time PCR Master Mix was
used for all reactions, and quantitative real-time PCR was
performed with an Applied Biosystems ABI 7500 Real-
Time PCR System using reverse-transcribed cDNA as
templates. The primer sequences for the target genes
were as follows:

Bax,
Sense: 5′-AGGATGCGTCCACCL-AAGL-AA-3′,
Antisense: 5 ′-CL-AAAGTAGL-AAGAGGGCL-

AACCAC-3′;
Bcl-2,
S e n s e : 5 ′ - C GAG L - A AG L - A AGAGAG L -

AATCACAGG-3′,
Antisense: 5′-L-AATCCGTAGGL-AATCCCL-AACC-3′;
GAPDH,
Sense: 5′-TGL-AACGGGL-AAGCTCACTG-3′,
Antisense: 5′-GCTTCACCACCTTCTTGATGTC-3′.
For all reactions, cycling conditions were 10 min at 95 °C,

followed by 40 cycles of 95 °C for 30 s, 62 °C for 30 s, and
68 °C for 30 s. At the completion of cycling, melting curve
analysis was performed to establish the specificity of the PCR
product. Data were analyzed with Applied Biosystems 7500.
The expression of each candidate gene was internally normal-
ized using GAPDH. The relative quantitative value was
expressed by the 2−ΔΔCt method. Each experiment was per-
formed in duplicate and repeated three times.

Western Blot

Cells were plated at a density of 4 × 105 cells/well in six-well
plates and incubated for 24 h at 37 °C. Then the cells were
treated with CoNPs (50 μM) or Co2+ (50 μM) for 24 h in the
absence and presence of L-AA (50 μM) pretreated for 1 h.
After treatment, cells were washed twice with cold PBS, lysed
on ice for 30 min in lysis buffer (50 mM Tris-HCl pH 7.4,
1 mM EDTA, 100 mM NaCl, 20 mM NaF, 3 mM Na3VO4,
and 1 mM PMSF, with 1 % (v/v) NP-40 and protease inhibitor
cocktail). The lysates were centrifuged at 12,000×g for
15 min, and the supernatants were recovered. Protein

concentrations were determined using the bicinchoninic acid
method. After denaturation, 50 μg protein was separated on a
4–12 % Bis Tris gel (Invitrogen) and transferred to a nitrocel-
lulose membrane, and probed with the appropriate primary
antibodies overnight at 4 °C. Membrane-bound primary anti-
bodies were detected using the appropriate secondary antibod-
ies. Immunoblots for expression of caspase 9 (#9508), caspase
8 (#4927), and caspase 3 (#9662), Bax (D3R2M), Bcl-2
(D17C4), AIF (D39D2), HO-1 (#70,081), and β-actin
(#3700) were detected. All the antibodies were obtained from
Cell Signaling Technology (Danvers, MA, USA).
Experiments were performed three times, and equal loading
of protein was ensured by measuring β-actin expression.

Cytochrome-C ELISA Kit

Double antibody sandwich method was used to measure cy-
tochrome c. The microtiter plate was coated with purified
mouse cytochrome c antibody. The cytochrome c and HRP-
labeled cytochrome c antibody were successively added to the
microtiter plate resulting in an antibody-antigen-enzyme-
labeled antibody complex. After washing completely, chro-
mogenic substrate TMB was added. The absorbance (OD)
was recorded at 450 nm, and the concentration of cytochrome
c was calculated by comparing with standard curve. Samples
were processing according to the manufacture’s guidelines.

Statistical Analysis

Data were expressed as mean ± SD (standard deviation) of
three independent experiments performed in triplicates.
Statistical analysis of the data was performed using one-way
analysis of variance (ANOVA), followed by Dunnet’s test to
evaluate significance relative to control. All statistical analy-
ses were performed with SAS 9.1 statistical software (SAS
Institute, Cary, NC, USA). A p value less than 0.05 was con-
sidered significant.

Results

Characterization of CoNPs

In this study, the physical properties of the CoNPs were char-
acterized by TEM and SEM analyses. A minimum of 500
particles were analyzed. TEM images of CoNPs showed a
spherical morphology and the diameter of single particle was
approximately 31.5 ± 2.1 nm after suspension by ultrasonic
oscillators in DMEM containing 5 % FBS (pH 7.2–7.4)
(Fig. 1a). Using SEM analysis, we found that the nanoparti-
cles were almost smooth and spherical uniformly, with a mean
size of 28.6 ± 3.2 nm (Fig. 1b), which was consistent with the
TEM analysis. XRD analysis was employed for elemental
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analysis, confirming the presence of Co elements in
CoNPs (Fig. 1c). DLS measurements further confirmed
the diameter of CoNPs with a size distribution, which
demonstrated that more than 30 % CoNPs was around
30 nm (Fig. 1d).

Cellular Uptake of CoNPs

The uptake of CoNPs by cells is an important factor to assess
cytotoxicity and was assessed using TEM analysis after the
cells were treated with CoNPs for 24 h (Fig. 2). Compared
with non-treatment, there were more cells with nuclear con-
densation, degenerated mitochondria, and extensive
vacuolization with CoNPs treated (Fig. 2a). And the TEM
image also revealed that there were many CoNPs in the cells,

which indicated that the CoNPs could be uptaken by the cells
and induce apoptosis.

Ion Release from CoNPs

The release of Co2+ from CoNPs in culture medium was an-
alyzed by ICP-MS after 4, 12, 24, 48, and 72 h of incubation
with the indicated doses. A time-dependent increase in the
release of Co2+ from CoNPs was found with CoNPs treatment
(p < 0.01) (Fig. 3).

Effects of CoNPs and Co2+ on Cell Viability

To determine the cytotoxicity induced by CoNPs and Co2+,
Balb/3T3 cells were treated with different doses of either

Fig. 1 Characterization of CoNPs. a TEM analysis of CoNPs
morphology: CoNPs were mainly spherical with a mean diameter of
31.5 ± 2.1 nm (scale bar representing 100 nm). The size distribution
was obtained by measuring 500 CoNPs. b SEM analysis of CoNPs
morphology: CoNPs were mainly spherical with a mean diameter of

28.6 ± 3.2 nm (scale bar representing 30 nm). c XRD analysis was
employed for elemental analysis, confirming the presence of Co
elements in CoNPs. d DLS measurements further confirmed the
diameter of CoNPs with a size distribution, which demonstrated that
more than 30 % CoNPs was around 30 nm
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CoNPs or Co2+ (ranged from 1 to 500 μM). After the indicat-
ed times (12, 24, and 48 h), MTT assay was used to evaluate
the cell viability. CoNPs at 5 μM did not have an obvious
influence on cell viability, but a significant reduction of cell
viability was induced by CoNPs above 10 μM. However,
Co2+ inhibited cell viability at concentrations of 50 μM and
higher (Fig. 4). The CC50 values at 24 h treated were approx-
imately 50 and 200 μM for CoNPs and Co2+, respectively,
which was selected for the subsequent experiments.

L-AA Protected Against CoNPs Induced Cytotoxicity
by the Antioxidant Effects

Under oxidative stress, LDH was released from cell mem-
brane, producing biological toxicity. To attenuate the

biological toxicity induced by CoNPs, L-ascorbic acid (L-
AA), a common antioxidant, was employed. After treated
with CoNPs (50 μM) or Co2+ (50 μM) in the absence or
presence of L-AA (50 μM) for 24 h, the cell viability and
biological toxicity were determined by MTT and LDH assays
(Fig. 5a, b). In MTT and LDH assays, the viability of the cells
treated with Co2+ was higher than those treated with CoNPs at
the comparable dosage, indicating a higher cytotoxicity of
CoNPs treatment. Compared with CoNPs treatment alone,
L-AA pretreated for an hour could significantly increase the
cell viability (p < 0.01), which indicated that the cytotoxicity
induced by CoNPs may be caused by oxidative stress.
However, pretreatment with L-AA had no effect on the de-
creased cell viability induced by Co2+.

Effects of CoNPs and Co2+ on Cellular ROS, Heme
Oxygenase 1 (HO-1), and GSH

Oxidative stress is one of the most important complications
induced by nanoparticle exposure [21]. To investigate the lev-
el of oxidative stress induced by CoNPs and Co2+, the ROS
level was measured. H2DCFDA, a general ROS sensitive dye,
was used to monitor ROS generation induced by CoNPs and
Co2+ in intact cells. As shown in Fig. 6a and b, ROS levels of
cultured cells were significantly increased after 24 h of expo-
sure to 50 μM CoNPs (p < 0.01), while L-AA (50 μM) sig-
nificantly attenuated the increase (p < 0.01). Co2+ barely
increased the ROS level, and L-AA also attenuated the
increase mildly.

Since HO-1 is induced by multiple forms of chemical and
physical cellular stress; it can represent a general marker of
oxidative cellular stress and cytoprotection in oxidative stress
[22]. Western blot analysis indicated that CoNPs (50 μM)
stimulated HO-1 expression (p < 0.01), and L-AA totally
inhibited this expression (p < 0.01), while Co2+ showed no

Fig. 2 Cellular uptake of CoNPs. Cells were treated with cobalt
nanoparticles (CoNPs 50 μM) for 24 h. a TEM analysis reveals that
there were more cells with nuclear condensation, mitochondria

degeneration, and extensive vacuolization in the cells with CoNPs
treatment; b TEM images revealed that the CoNPs were uptaken into
cytoplasm (indicated by arrows)

Fig. 3 Ion release from CoNPs. Co2+ released from 50 μM of CoNPs
after 4, 12, 24, 48, and 72 h of incubation in cell culture medium were
measured by ICP-MS. All data were expressed as mean ± SD of three
independent experiments performed in triplicates. A linear trend between
the Co2+ release levels and the exposure time (p < 0.001) was observed.
*p < 0.05, **p < 0.01, vs. 4 h group
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effect on the level of HO-1expression (Fig. 6c). Similarly,
GSH is an important antioxidant that protects cells against
apoptosis by removing toxic hydrogen peroxide from cells
[23]. Further, depletion of GSH appears to promote intracel-
lular ROS accumulation and HO-1 expression, leading to ap-
optosis [24]. Altered GSH and HO-1 levels represent in-
creased cellular response to oxidative stress. CoNPs treatment
decreased GSH levels (p < 0.01) and L-AA reversed this de-
crease (p < 0.05) as measured by the GSH assay kit, while
Co2+ had little effect on GSH (Fig. 6d).

Effects of CoNPs and Co2+ on Cytochrome c
and Apoptosis Inducing Factor (AIF)

To test the effects of CoNPs and Co2+ on the intrinsic pathway
of apoptosis and the protective effect of L-AA, Balb/3T3 cells
were treated with CoNPs (50 μM) or Co2+ (50 μM) in the
absence or presence of L-AA (50 μM) for 24 h.

ELISA assay revealed that both CoNPs and Co2+ caused
cytochrome c release from mitochondria to cytoplasm
(p < 0.05), and CoNPs exhibited a greater potency
(p < 0.01), while L-AA attenuated this release induced by
CoNPs (p < 0.05) (Fig. 7a).

AIF is a pro-apoptotic factor existing in the mitochondrial
intermembrane space [25]. The expression of AIF was exam-
ined byWestern blot. Upon treatment with CoNPs, the expres-
sion of AIF was increased, but L-AA pretreatment attenuated
this increase. Also, it is very interesting that L-AA could not
suppress the effect induced by Co2+ (Fig. 7b).

Effects of CoNPs andCo2+ on BAX, Bcl-2, and Caspases 3,
8, and 9

The pro-apoptotic Bax and anti-apoptotic Bcl-2 were detected
by Western blot and RT-PCR. In the RT-PCR analysis, the
ratio of Bax/Bcl-2 was significantly upregulated by CoNPs

Fig. 4 Cytoxicity analysis in Balb/3T3 cells exposed to CoNPs
and Co2+. Cells were treated with CoNPs (0–500 μM) and Co2+

(0–500 μM) for 12, 24, and 48 h. All data were expressed as

mean ± SD of three independent experiments performed in tripli-
cates. **p < 0.01, vs. control

Fig. 5 Protective effect of L-AA on cell viability of Balb/3T3 cells
exposed to CoNPs and Co2+. Cells were treated with CoNP (50 μM) or
Co2+ (50 μM) in the absence or presence of L-AA (50 μM) for 24 h. L-
AA pretreatment occurred an hour before CoNPs and Co2+. a Data of

cells treated with MTT. b Data of cells treated with LDH. All data were
expressed as mean ± SD of three independent experiments performed in
triplicates. *p < 0.05, **p < 0.01, vs. control. ##p < 0.01, vs. CoNPs
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(p < 0.01) and Co2+ (p < 0.05), while L-AA attenuated the
increase by CoNPs (p < 0.05) but had little effect on the Co2+-
induced increase (Fig. 8a). Western blots revealed that the
expression of Bax was increased by CoNPs and Co2+, while
Bcl-2 was significantly decreased, especially by CoNPs.
Pretreatment with L-AA, similarly, attenuated the effects
of CoNPs, while L-AA had little effect on the Co2+-
treated cells (Fig. 8b).

To further confirm the activation of apoptosis,
Western blot analysis revealed that caspases 3, 8, and

9 were significantly cleaved when exposed to CoNPs
and Co2+, especially when treated with CoNPs. L-AA
reduced the cleaved caspase expression induced by
CoNPs but not Co2+ (Fig. 8b).

Discussion

With the increasing use ofMoM hip arthroplasty in orthopedic
surgery, metal nanoparticles released from the prosthesis have

Fig. 6 Effects of CoNPs and Co2+ on cellular ROS,HO-1, and GSH. a, b
Generation of cellular ROS in Balb/3T3 cells exposed to CoNPs and
Co2+. Cells were grown for 1 day in six-well plates and exposed to
CoNPs (50 μM) or Co2+ (50 μM) for 24 h with or without L-AA
(50 μM) 1 h pretreatment. H2O2 (100 μM) was used as a positive
control. a Cells were visualized with a confocal laser scanning
microscope. Each slide was scanned at ×200. The green color indicates
the fluorescence of detected ROS production. b Cells were measured by
fluorescence microscopy. All data were expressed as mean ± SD of three
independent experiments performed in triplicates. c Effects of CoNPs and

Co2+ on the expression of HO-1. Cells were treated with CoNPs (50 μM)
or Co2+ (50 μM) in the absence or presence of L-AA (50 μM) for 24 h. L-
AAwas used for pretreatment 1 h before the addition of CoNPs and Co2+.
All data were expressed as mean ± SD of three independent experiments
performed in triplicates. d Effects of CoNPs and Co2+ on GSH. Cells
were treated with CoNP (50 μM) or Co2+ (50 μM) in the absence or
presence of L-AA (50 μM) for 24 h, with L-AA pretreatment 1 h
before treatment with CoNPs and Co2+. All data were expressed as
mean ± SD of three independent experiments performed in triplicates.
**p < 0.01, vs. control. #p < 0.05 and ##p < 0.01, vs. CoNPs
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been recognized as a potential health threat [1]. It has been
reported that MoM prostheses cause unexplained pain [26],
high blood metal ion levels [27], and early revision rates [28].
In occupational settings, exposure to cobalt leads to various
lung diseases, such as interstitial pneumonitis, fibrosis, and
asthma [29, 30]. Investigation of periprosthetic tissue showed
the presence of metal debris in the form of CoCr nanoparticles
and Co as the most likely reactive agent [31, 32]. The toxic
effects of CoNPs are likely influenced by their ability to enter
cells, leading to corrosion in biological systems [33], which
prompted studies of cellular uptake and entry of both

nanoparticles and metal ions [34]. However, the molecular
mechanisms involved in metal-induced cytotoxicity and the
molecular events mediating cellular responses to Co particles
remain to be elucidated. In this study, we focused on investi-
gations into the mechanisms of CoNPs and Co2+ in the ad-
verse reactions and evaluated the protective effect of L-AA
against cobalt-induced cytotoxicity in Balb/3T3 cells in vitro.

Previous studies have demonstrated that CoCr alloy nano-
sized particles induced more cell damage than micron-sized
particles at equivalent concentrations, suggesting that particle
size and surface area may play an important role [15]. Since
uptake of CoNPs by cells is closely related to biological be-
havior, we hypothesized that the uptake of CoNPs by
Balb/3T3 cells triggered oxidant stress or cell toxicity.
CoNPs gradually dissolve in culture medium and release
Co2+, which prompted the question whether the cytotoxic ef-
fect was related to particle per se or released ions, or both [35].
ICP-MS was used to measure the ions released from CoNPs.
However, under our experimental conditions, the Co2+ re-
leased from CoNPs was not adequate to induce cell damage.
Therefore, the contribution of ions released from CoNPs in
DMEMwas minimal in inducing cell damage, consistent with
our findings in a previous study [9]. In this study, the MTT
assay showed that both CoNPs and Co2+ induced a decrease in
the viability of Balb/3T3 cells. The cytotoxic effects of CoNPs
were stronger than Co2+, which indicated that the CoNPs
showed higher toxicity than Co2+ at similar concentrations.
Consistently, LDH leakage to medium due to cell membrane
damage indicated irreversible cell death. Pretreatment with L-
AA mostly decreased this cytotoxicity, which demonstrated
that L-AA protected against Co-induced cytotoxicity through
certain protective mechanisms.

Intracellular ROS is a key indicator of various toxic effects
associated with nanoparticles [36]. Nanoparticle exposure in-
duces a pro-oxidant environment in the cells, perturbs the
redox equilibrium, and leads to adverse biological conse-
quences ranging from early inflammation to relatively large-
scale cell death. By measuring ROS, we observed that CoNPs
generated a high level of free radicals and induced greater
oxidative stress, as evidenced by fluorescence staining, with
the decrease of GSH and the increase of HO-1, which played
an important role in cellular protection against oxidative
stress, hypoxia, or inflammation. The results confirmed the
findings of previous studies, which showed that nanoparticles
induced toxicity through oxidative stress by generating ROS
in cells [37, 38]. Co2+ showed no significant increase of ROS.
These effects induced by CoNPs were partially prevented by
pretreatment with L-AA, an antioxidant precursor of the glu-
tathione deactivating ROS system. However, L-AA had little
effect on Co2+, which indicated that the apoptosis induced by
CoNPs may correlate with the induction of ROS, and the
protective effect of L-AA on cells may be due to the reduction
of ROS. Apoptosis is programmed cell death, which is widely

Fig. 7 Effects of CoNPs and Co2+ on cytochrome c and AIF. a Effects of
CoNPs and Co2+ on cytochrome c. Cells were treated with CoNP
(50 μM) or Co2+ (50 μM) in the absence or presence of L-AA (50 μM)
for 24 h. L-AA pretreatment occurred 1 h before treatment with CoNPs
and Co2+. The release of cytochrome c frommitochondria into cytoplasm
was measured by ELISA assay. All data were expressed as mean ± SD of
three independent experiments performed in triplicates. b Effects of
CoNPs and Co2+ on the expression of AIF. Cells were treated with
CoNP (50 μM) or Co2+ (50 μM) in the absence and presence of L-AA
(50 μM) for 24 h. L-AA pretreatment occurred 1 h before CoNPs and
Co2+ treatments. The altered protein levels were determined by Western
blot. β-Actin was set as a protein loading control. *p < 0.05, **p < 0.01,
vs. control. #p < 0.05, vs. CoNPs
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recognized as critically important in health and disease.
Although studies have demonstrated that CoNPs and Co2+

both induce cell apoptosis [39], the molecular pathways have
not been well investigated. In mammals, signaling cascades
culminating in apoptotic cell death can be divided into intrin-
sic or extrinsic pathways. The extrinsic pathway is triggered
upon activation of death receptors. In this study, CoNPs and
Co2+ activated caspase 8, and the effects of CoNPs were stron-
ger than those of Co2+. These results implied that the apoptotic
process induced by CoNPs and Co2+ may be initiated by the
extrinsic signaling pathway. The intrinsic pathway is initiated
inmitochondria by oxidative stress and other factors, followed
by the release of cytochrome c and AIF from mitochondria
into the cytoplasm [40]. Our study demonstrated that both
CoNPs and Co2+ induced the release of cytochrome c and
AIF frommitochondria to cytoplasm, and CoNPs had a stron-
ger effect. These results suggested the possible induction of
the intrinsic apoptotic pathway in cells induced by
CoNPs and Co2+.

The mitochondria-mediated intrinsic apoptotic pathway is
controlled by Bcl-2 family proteins, which mediates the re-
sponse to apoptosis. The balance between the pro- and anti-
apoptotic proteins of the Bcl-2 family determines cell survival
or death [41]. In this study, both CoNPs and Co2+ increased
the pro-apoptotic factor Bax but decreased the anti-apoptotic
factor Bcl-2, especially in CoNPs-treated cells. Addition of L-
AA to CoNPs-treated cells attenuated the increase in Bax ex-
pression and reversed the decrease of Bcl-2 expression. To
further confirm the intrinsic apoptotic pathway activation,
mRNA levels of Bax and Bcl-2 were examined by RT-PCR.
We found that the ratio of BAX/Bcl-2 mRNAwas significant-
ly upregulated when cells were exposed to CoNPs and Co2+,
and pretreatment with L-AA attenuated Bax/Bcl-2

transcription induced by CoNPs. Many pro-apoptotic pro-
teins, including cytochrome c, AIF, heat shock proteins,
Smac/Diablo, and endonuclease G, are released from mito-
chondria into cytoplasm after alteration in Bax and Bcl-2
levels following pore formation in the mitochondrial mem-
brane and apoptosis [42]. AIF triggers caspase-independent
pathways in apoptosis by inducing DNA fragmentation and
chromatin condensation [43], while cytochrome c induces ap-
optosis in a caspase-dependent pathway [44]. Therefore, these
results suggest that intrinsic apoptosis induced by CoNPs and
Co2+ in Balb/3T3 cells mediates both caspase-dependent and
caspase-independent pathways.

Caspases are a family of cysteine proteases, which play
important and essential roles in apoptosis, necrosis, and in-
flammation. Eleven caspases have been identified in humans.
In the present study, CoNPs and Co2+ significantly activated
caspases 8 and 9, and then activated caspase 3. Administration
of L-AA obviously decreased the expression of cleaved
caspases 3, 8, and 9 induced by CoNPs. As demonstrated by
previous studies, the addition of antioxidants NAC and CsA
prevented caspase 3 activation, which supported the hypothesis
that apoptosis was triggered by oxidative stress [39]. The nov-
elty of the present study relates to confirming the role of L-AA
in protection against both extrinsic and intrinsic apoptosis path-
ways induced by CoNPs, by decreasing the generation of ROS.

In conclusion, the key findings of this study are as follows:
(1) The cytotoxicity and apoptosis induced by CoNPs and
Co2+ in Balb/3T3 cells were possibly induced via both extrin-
sic and intrinsic apoptotic pathways, which include upregula-
tion of Bax, caspase 3, 8, and 9, downregulation of Bcl-2, as
well as release of AIF and cytochrome c from mitochondria
into the cytoplasm. Apoptosis induced by CoNPs was proba-
bly activated through ROS since L-AA significantly

Fig. 8 Effects of CoNPs and Co2+ on BAX, Bcl-2, and caspases 3, 8, and
9. a Effects of CoNPs and Co2+ on mRNA ratio of Bax/Bcl-2. Cells were
treated with CoNP (50 μM) or Co2+ (50 μM) in the absence and presence
of L-AA (50 μM) for 24 h. Pretreatment with L-AA occurred 1 h before
CoNPs and Co2+ treatments. The expression of Bax and Bcl-2 mRNA
was detected by RT-PCR. All data were expressed as mean ± SD of three
independent experiments performed in triplicates. bEffects of CoNPs and

Co2+ on the expression of Bcl-2, Bax, and caspases 3, 8, and caspase 9.
Cells were treated with CoNPs (50 μM) or Co2+ (50 μM) in the absence
and presence of L-AA (50μM) for 24 h, with L-AA 1 h pretreatment. The
changes in the protein levels were determined by Western blot. β-Actin
was set as a protein loading control. *p < 0.05, **p < 0.01, vs. control;
#p < 0.05, vs. CoNPs

Cobalt Nanoparticle- and Ion-Induced Toxicities 437



attenuated the increase in ROS induced by CoNPs. (2) We
also demonstrated that L-AA protected against CoNPs-
induced cytotoxicity and apoptosis in Balb/3T3 cells by
blocking ROS induction. These findings offer novel insights
supporting antioxidant therapy as a viable therapeutic option
with potential for disease-modifying effects against adverse
reactions induced by MoM hip prostheses. (3) The mecha-
nisms of extrinsic and intrinsic apoptotic pathways induced
by Co2+ need further study. Compared with Co2+, CoNPs
induced larger reduction of GSH, increased HO-1 expression,
and increased the production of ROS, whereas Co2+ did not
induce a significant effect on these aspects. Although some
studies indicated that Co2+ also generated ROS, the opposite
conclusions may be attributed to different concentrations and
time points and different chemical purities of the Co salt [45].
(4) Although L-AA acid reduced the cytotoxicity induced by
CoNPs partially, it could not completely reduce the cytotox-
icity induced by CoNPs, suggesting that there may be some
other mechanisms of CoNPs-triggered cell toxicity. A previ-
ous study reporting silver nanoparticle toxicity demonstrated
another pathway induced by cell-cycle inhibition of S-phase
leading to anti-proliferative effect, which is a ROS-
independent pathway and plays an important role in apoptosis
[46]. These two hypotheses still need further investigation.
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