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Abstract The zinc oxide (ZnO) nanoparticle has been widely
used in biomedical applications and cancer therapy and has
been reported to induce a selective cytotoxic effect on cancer
cell proliferation. The present study investigated the cytotox-
icity of ZnO nanoparticles against co-cultured C2C12
myoblastoma cancer cells and 3T3-L1 adipocytes. Our results
showed that the ZnO nanoparticles could be cytotoxic to
C2C12myoblastoma cancer cells than 3T3-L1 cells. Themes-
senger RNA (mRNA) expressions of p53 and bax were sig-
nificantly increased 114.3 and 118.2 % in the C2C12 cells,
whereas 42.5 and 40 % were increased in 3T3-L1 cells, re-
spectively. The mRNA expression of bcl-2 was reduced 38.2
and 28.5 % in the C2C12 and 3T3-L1 cells, respectively,
whereas the mRNA expression of caspase-3 was increased
80.7 and 51.6 % in the C2C12 and 3T3-L1 cells, respectively.
The protein expressions of p53, bax, and caspase-3 were sig-
nificantly increased 40, 81.8, and 80% in C2C12 cells, where-
as 20.3, 28.2, and 37.9 % were increased in 3T3-L1 cells,
respectively. The mRNA expression of bcl-2 was significantly
reduced 32.2 and 22.7 % in C2C12 and 3T3-L1 cells, respec-
tively. Caspase-3 enzyme activity and reactive oxygen species
(ROS) were increased in co-cultured C2C12 cells compared to
3T3-L1 cells. Taking all these data together, it may suggest
that ZnO nanoparticles severely induce apoptosis in C2C12
myoblastoma cancer cells than 3T3-L1 cells.
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Introduction

ZnO nanoparticles have been used in the biomedical applica-
tions and various therapy [1]. The manipulation of ZnO at the
nanoscale levels enables the precision engineering to control
the physicochemical properties of nanoparticles and their in-
teractions with cellular systems [2, 3]. ZnO has been widely
used in the cosmetic lotions [4] and increases the anti-bacterial
activity [5]. It is also utilized in the cotton fabric, rubber, and
food packaging industry [6]. Nanoparticles have been known
as a promising agent for cell imaging, biosensing, gene deliv-
ery, and cancer therapy. ZnO nanoparticles have attracted re-
searchers for their implications in the cancer therapy and have
been reported to induce cytotoxicity at in vitro and in vivo
level [7–10].

The uncontrolled proliferation and regulated cell death are
called apoptosis that plays a role in the development of cancer
and therapy. The suppressor gene p53 controls apoptosis,
DNA repair, and activation of cell cycle checkpoints [11].
The p53 protein triggers cell cycle arrest to provide time for
recovery from damage and self-medicated apoptosis in the
presence of DNA damage [12, 13]. The bcl-2 protein is anti-
apoptotic, whereas bax is pro-apoptotic. The bax/bcl-2 protein
ratio is a crucial factor in determining cell death in response.
The increased bax/bacl-2 ratio has been known to reduce the
resistance to apoptotic stimuli [14]. The role of caspases has
been well known in the apoptotic process [15, 16].

The present study investigates the cytotoxicity of ZnO nano-
particles against co-cultured C2C12 myoblastoma cancer cells
and 3T3-L1 adipocytes. Quantitative real-time polymerase
chain reaction (qPCR) andWestern blotting analysis were used
to measure the apoptosis-related gene expressions. Reactive
oxygen species (ROS) and increased oxidative stress could
play a crucial role in apoptosis [17, 18]. Therefore, the levels
of ROS, lipid peroxidation, glutathione, and anti-oxidant
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enzyme activity were determined. There is no study on the
effect of ZnO nanoparticles against the co-cultured cells. Cell
co-culturing has been considered more reliable and three-
dimensional compared to the monoculture of cells [19].

Materials and Methods

ZnO nanoparticles (<100-nm particle size (DLS), Sigma-Al-
drich), Dulbecco’s modified Eagle’s medium (DMEM), fetal
bovine serum (FBS), and antibiotics were purchased from
Sigma. Primers were purchased from Macrogen Inc. (South
Korea). C2C12 and 3T3-L1 cells were purchased from ATCC
(10801 University Blvd, Manassas, USA).

Cell Culture

C2C12 and 3T3-L1 cells were incubated at a density of 8000
cells/cm2 and grown in DMEM containing 10% FBS and 1%
antibiotics at 37 °C in 5 % CO2. Confluent 3T3-L1 cells were
induced to differentiate with a standard differentiation medi-
um consisting of DMEM medium supplemented with 10 %
FBS, 250 nM dexamethasone, 0.5 mM 3-isobutyl-1-methyl-
xanthine, 5 μg/ml insulin, and 1 % antibiotics. 3T3-L1 cells
were maintained in this differentiation medium for 3 days.
C2C12 cells were grown up to 90 % confluence and trans-
ferred into the differentiation medium.

Co-Culture of C2C12 and 3T3-L1 Cells

C2C12 and 3T3-L1 cells were co-cultured by using Transwell
inserts with a 0.4-μm porous membrane to separate the cells.
Both cell types were grown independently and separately on
the Transwell plates. After cell differentiation, inserts contain-
ing 3T3-L1 cells were transferred to C2C12 cell-containing
plates, and inserts containing C2C12 cells were transferred to
a 3T3-L1 cell-containing plate [20]. Cells in the lower well
were utilized for analysis.

MTTAssay

Cytotoxicity of ZnO nanoparticle was determined by 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay [21]. C2C12 and 3T3-L1 cells were seeded at
a seeding density of 2 × 104 cells/ml into 96-well microplates.
Cells were allowed for 24 h to adhere and treated with various
concentrations of ZnO nanoparticle ranging 0.2, 0.4, 0.8, 1.6,
3.2, 6.4, and 12.8mg/l. Then, the cells were labeled withMTT
solution for 4 h, and absorption was measured at 570 nm.

Lipid Peroxidation

Malondialdehyde (MDA) was determined in the co-cultured
C2C12 and 3T3-L1 cells [22]. Cells were treated with 0.8, 1.6,
and 3.2 mg/l of ZnO nanoparticles for 36 h. A mixture of
0.1 ml supernatant and 1.9 ml of 0.1 M sodium phosphate
buffer (pH 7.4) was incubated for 1 h at room temperature.
After precipitation with 5 % trichloroacetic acid (TCA), it is
centrifuged, and the supernatant was collected. Then, 1 ml of
1 % of thiobarbituric acid (TBA) was added and boiled for
15 min. After cooling to room temperature, the absorbance
was measured at 532 nm and expressed in nanomole per mil-
ligram protein.

Determination of Cellular Reactive Oxygen Species

The cellular level of ROS was determined based on the mea-
surement of 2,7-dichlorodihydrofluorescein diacetate (DCF-
DA) in the co-cultured C2C12 and 3T3-L1 cells (2 × 104

cells/ml) [23]. Cells were treated with 0.8, 1.6, and 3.2 mg/l
of ZnO nanoparticles for 36 h. Cells were incubated with
5 μM of DCFH-DA in the growth medium for 30 min at
37 °C and 5 % CO2. The fluorescence was measured using a
fluorescent plate reader at excitation⁄emission wavelengths of
490 and 525 nm, respectively, and images were taken using a
fluorescence microscope (Axiovert 2000, Carl Zeiss,
Germany).

Quantitative Real-Time Polymerase Chain Reaction

Total RNAwas isolated from the co-cultured C2C12 and 3T3-
L1 cells (2 × 104 cells/ml) with TRIzol reagent according to the
manufacturer’s protocol. The qPCR was performed using a
cDNA equivalent of 10 ng of total RNA from each sample with
primers mouse specific for p53 (forward primer: 5′-
CACGTACTCTCCTCCCCTCAAT-3′, reverse primer: 5′-
AACTGCACAGGGCACGTCTT-3′), bax (forward primer: 5′-
CCAGGATGCGTCCACCAAGA-3′, reverse primer: 5′-
GGTGAGGACTCCAGCCACAA-3′), bcl-2 (forward prim-
er:5′-TGAGTACCTGAACCGGCATCT-3′, reverse primer: 5′-
GCATCCCAGCCTCCGTTAT-3′), caspase-3 (forward primer:
5′-CAAACTTTTTCAGAGGGGATCG-3′, reverse primer: 5′-
GCATACTGTTTCAGCATGGCAC-3′), and a housekeeping
g e n e G A P D H ( f o r w a r d p r i m e r : 5 ′ -
AGAACATCATCCCTGCCTC-3′, reverse primer: 5′-
GCCAAATTCGTTGTCATACC-3′). PCR was monitored
using the Mini Opticon Real-Time PCR System (Bio-Rad) [24].

Western Blot Analysis

The protein levels were determined in the co-cultured C2C12
and 3T3-L1 cells (2 × 104 cells/ml). Control and treated sam-
ples were lysed in lysis buffer, and equal amounts of protein
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samples were run on SDS-polyacrylamide gel and transferred
to PVDF membrane. After blocking, the membranes were
probed with primary antibodies p53, bax, bcl-2, and
caspase-3 overnight and incubated with secondary antibody
for 1 h. The proteins levels were determined by chemilumi-
nescence kit (Bioscience Technology, South Korea) [25].

Caspase-3 Assay

Caspase-3 enzyme activity was measured in the co-cultured
C2C12 and 3T3-L1 cells (2 × 104 cells/ml) based on the meth-
od of Muthuraman [26]. Cells were lysed in caspase assay
buffer and incubated with caspase-3 substrate Ac-DEVD-
AMC for 30 min at 37 °C. Caspase-3 activity was determined
at excitation 380 nm and emission at 440 nm in a Verso
fluorometer.

Statistical Analysis

All the values were expressed as means ± SEM. The statistical
analysis was carried out using SPSS 17 (590 Madison Ave-
nue, New York, USA). The difference between control and
test was determined using Student’s t test. A p < 0.05 was
considered to be significant.

Results

Cytotoxicity

C2C12 and 3T3-L1 cells were incubated with different con-
centrations (0.2–12.8 mg/l) of ZnO nanoparticles for 36 h
showing the dose-dependent effect that was evident from the
MTT assay (Fig. 1). ZnO nanoparticle was highly toxic to
normal cells at 6.4 and 12.8 mg/l. Therefore, we selected
0.8, 1.6, and 3.2 mg/l for further investigation.

Malondialdehyde and Reactive Oxygen Species Content

MDA content was increased 33.3, 80, and 140 % at 0.8, 1.6,
and 3.6 mg/l of ZnO nanoparticles in C2C12 cells, whereas it
was 38.4, 74.9, and 92.3 % in 3T3-L1 cells, respectively
(Fig. 2). ROS content was increased 25, 36.7, and 83.3 % at
0.8, 1.6, and 3.6 mg/l of ZnO nanoparticles in C2C12 cells,
whereas it was increased 10.7, 26.8, and 48% in 3T3-L1 cells,
respectively (Fig. 3).

Messenger RNA Expression

C2C12 and 3T3-L1 cells exposed to 3.6 mg/l of ZnO nano-
particles showed changes in the messenger RNA (mRNA)
expression of apoptotic-related genes such as p53, bax,
bcl-2, and caspase-3. The mRNA expressions of p53 and

bax were increased, whereas the expression of bcl-2 was
significantly decreased in ZnO nanoparticle-treated cells.
The mRNA expressions of p53 and bax were increased
114.3 and 118.2 % in the C2C12 cells, whereas it was
increased 42.5 and 40 % in 3T3-L1 cells, respectively.
The mRNA expression of the bcl-2 was reduced 38.2 and
28.5 % in the C2C12 and 3T3-L1 cells, respectively. The
mRNA expression of the caspase-3 enzyme was signifi-
cantly increased 80.7 and 51.6 % in the C2C12 and 3T3-
L1 cells, respectively (Fig. 4).

Fig. 1 Effects of ZnO nanoparticles on cell viability. C2C12 and 3T3-L1
were seeded at seeding densities of 2 × 104 cells/ml into 96 wells. Cells
were labeled with MTT solution for 4 h. Values were expressed as
means ± SEM, n = 6

Fig. 2 Determination of MDA content in the C2C12 and 3T3-L1 cells.
Cells were exposed to 0.8, 1.6, and 3.2 mg/l ZnO nanoparticles. Values
were expressed as mean ± SEM, n = 6, *p < 0.05 compared with the
control
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Protein Expression

Western blot analysis determined the effect of ZnO nanopar-
ticles on p53, bax, bcl-2, and caspase-3 protein expression in
the co-cultured C2C12 and 3T3-L1-L1 cells. The protein ex-
pressions of p53, bax, and caspase-3 were increased 40, 81.8,
and 80 % in the C2C12 cells, whereas 20.3, 28.2, and 37.9 %
were increased in the 3T3-L1 cells, respectively. The mRNA

expression of the bcl-2 was decreased 32.2 and 22.7 % in the
C2C12 and 3T3-L1 cells, respectively (Fig. 5).

Caspase-3 Activity

Caspase-3 activity was increased 21.4, 35.7, and 71.4 % at
0.8, 1.6, and 3.6 mg/l of ZnO nanoparticles in C2C12 cells,
whereas it was 14.3, 33.3, and 58.3 % in 3T3-L1 cells, respec-
tively (Fig. 6).

Discussion

The rapid growth of the nanotechnology leads to the huge
production and application of nanoparticles and its wide use
in medicine, cosmetics, sunscreens, and food products [27].
Nanoparticles have been utilized in the treatment of human
diseases [28]. The size, shape, crystal structure, purity, hydro-
dynamic size, agglomeration, and aqueous stability of nano-
particles are critical for the better interpretation of results in
biomedical research [17]. ZnO nanoparticles could act as nov-
el photosensitizers of the conventional photosensitizing drugs
in the photodynamic therapy of cancer [29]. UV irradiation
enhances the ZnO nanoparticle’s ability to suppress the cancer
cell proliferation [30].

The selective action of anti-cancer drugs is one of the major
challenges [31]. The ability of most of cancer cells to avoid
apoptosis and propagate rapidly could be the target of several
anti-cancer drugs. Our study shows that ZnO nanoparticles
could selectively induce severe toxicity in cancer cells than

Fig. 3 Determination of ROS content in the C2C12 and 3T3-L1 cells.
Cells were exposed to 0.8, 1.6, and 3.2 mg/l of ZnO nanoparticles. Values
were expressed as mean ± SEM, n = 6, *p < 0.05 compared with the
control

Fig. 4 The mRNA expression of p53, bax, bcl-2, and caspase-3 in ZnO
nanoparticle-treated C2C12 cells (a) and 3T3-L1 cells (b). Expressions of
p53, bax, bcl-2, and caspase-3 mRNA were related to GAPDH and

presented as a fold. The relative expression values were the normalized
mean ± SEM, n = 6, *p < 0.05
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normal cells. ZnO nanoparticles have induced severe cytotox-
icity in human glioma cells than normal human astrocytes
[32]. Our results agreed with these findings.

The shape of ZnO nanoparticles plays a significant role in
cancer cell inhibition. The rod-shaped ZnO nanoparticles

induce less cytotoxicity in osteoblast cancer cells than spher-
ical ZnO nanoparticles [33]. In our study, we have observed
that spherical ZnO nanoparticles seem to be much more cyto-
toxic to cancer cells. The stability of the particles in cell cul-
ture and toxicity of dissolved Zn2+ ions are also to be con-
cerned. ZnO nanoparticles release Zn2+ when they are
suspended in the medium [34]. However, the released levels
of Zn2+ were insufficient to promote toxicity to cells unless the
particulate matter is in contact with the cells [35].

The clinical importance of ZnO nanoparticles is its selectivity
in cancer cell inhibition. The greatest challenge for anti-cancer
drugs is the differentiation of normal and cancer cells. ZnO
nanoparticles selectively inhibit human myeloblastic leukemia
cells compared to the normal peripheral bloodmononuclear cells
[36] and selectively inhibit cancerous T cells than normal cells
[37]. In the present study, we have used the co-cultured mouse
myoblastoma cancer cells and mouse adipocytes to investigate
the selective effect of ZnO nanoparticles. Co-culture experiments
are believed to bemore reliable and have three-dimensional view
compared to the monoculture experiments.

The mRNA and protein expressions of p53, bax, and
caspase-3 were significantly increased in C2C12 cancer cells
than normal 3T3-L1 cells. The expression of bcl-2 was signif-
icantly decreased in C2C12 cancer cells than normal 3T3-L1
cells. Under cellular stress, p53 triggers cell cycle arrest to
provide time for the recovery and self-medicated apoptosis

Fig. 5 Protein expression of p53, bax, bcl-2, and caspase-3 in ZnO
nanoparticle-treated C2C12 myoblastoma cancer cells (a) and 3T3-L1
adipocytes (b). Western blot analysis of C2C12 myoblastoma cancer cell

and 3T3-L1 adipocyte extracts probed with anti-p53, bax, bcl-2,
and caspase-3. Quantitation analysis was carried out using densitometry.
Values were expressed as means ± SEM, n = 6, *p < 0.05

Fig. 6 Percentage changes in caspase-3 activity in C2C12 and 3T3-L1
cells treated with different concentrations of ZnO nanoparticles (0.8, 1.6,
and 3.2 mg/l)
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[11]. The role of p53 is to up-regulate the expression of bax.
The bax is up-regulated by p53 [38], and in our study, the
expression of bax was increased. The formation of DNA frag-
ments was regarded as a biochemical hallmark of apoptosis
[39]. Increased expression of caspase-3 could activate autoca-
talysis and activates other members of the caspase family
leading to irreversible apoptosis [40]. In the present study,
caspase-3 activity was increased in C2C12 cancer cells than
3T3-L1 cells.

Enzymatic peroxidation of fatty acids leads to the generation
of ROS [41]. Recent research on cancer demonstrates that sev-
eral apoptotic stimuli share a common mechanistic pathway
characterized by the ROS generation and oxidative stress
[42]. ROS includes superoxide radical (O2−), hydrogen perox-
ide (H2O2), and hydroxyl radical (OH), which cause damage to
DNA and proteins [43]. ROS has been generated from mito-
chondria and endoplasmic reticulum [44]. Cells could be in-
jured when exposed to a higher concentration of ROS [45].
Higher concentration of ZnO nanoparticles could increase
ROS through increased MDA content [46]. ROS and MDA
content were significantly increased in C2C12 cancer cells than
normal 3T3-L1 cells. Increased intracellular ROS and MDA in
ZnO nanoparticle-treated C2C12 cancer cells might be a key
mechanism for increased apoptosis in cancer cells.

Conclusion

In summary, the present study shows that the ZnO nanoparti-
cle induces apoptosis in C2C12 myoblastoma cancer through
the activation of ROS, p53, bax/bcl-2 ratio, and caspase-3
pathways. Selective cytotoxicity of ZnO nanoparticles on can-
cer cells against co-cultured cancer and normal cells suggests
that ZnO nanoparticles are a promising drug in the cancer
research and therapy.
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