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Abstract People taking dietary supplements are usually
determined to lose weight, supplement nutrition or reduce the
risk of illness and negative effects of their state of health.
Chromium(III) supplementation influence body composition
and mass, glucose and lipid metabolism and it enhance insulin
action. This fact could be of general interest because diabetes
mellitus is an increasing health problem in many countries. The
study describes the effects of high dietary doses of chromium(III)
complex with propionic acid [Cr3] (from 100 to 1000 mg
Cr·kg−1 diet) on the organisms of healthy female rats, with spe-
cial regard to overall nutritional, carbohydrate, lipid and blood
biochemical and morphological and haematological indices. The
study was carried out on 30 10-week-old female Wistar rats,
which were divided into five equal groups (six animals in each):
the control group and four groups of tested animals which
had free access to the diet supplemented with 100, 200,
500 and 1000 mg Cr·kg−1 (equivalent of 10, 20, 50 and
100 mg Cr · kg body weight (b.w.) · day-1), given as
[Cr3O(O2CCH2CH3)6(H2O)3]⋅NO3, also known as Cr3,
for 4 weeks. There were no significant differences in body
mass gains, feeding efficiency ratio, internal organ masses or
blood serum glucose concentrations, except for some changes
in the serum triglycerides concentration, which decreased in the
rats that received 500 and 1000 mg Cr·kg−1 diet, as opposed to
the group treated with 200 mg Cr·kg−1 diet. The dietary

supplementation of Cr3 for 4 weeks at doses of 100 to
1000 mg Cr·kg−1 diet did not affect overall nutritional indices
and most blood biochemical, morphological and haematological
indices.
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Introduction

Many studies have shown that Cr(III) plays an important role
in normal carbohydrate, fat and protein metabolism and it
improves insulin sensitivity [1–3]. However, the molecular
mechanism of chromium action has not been thoroughly in-
vestigated. For this reason, the essentiality of chromium(III)
has been greatly debated, as well as the effects of nutritional
and pharmacological chromium(III) supplementation, espe-
cially on healthy subjects [4–7].

In the last two decades, trivalent chromium has become very
popular as a nutritional supplement [8, 9]. It is used for body
mass loss, building lean muscle mass and improving glucose
and lipid metabolism [6]. The latest study by Ulas et al. [10]
indicates the beneficial effects of CrHis supplementation on rats
with diabetic retinopathy. Chromium is the second best-selling
mineral supplement in the USA after calcium and before iron
[11]. The Food and Nutrition Board of the US National
Academy of Science set the adequate intake (AI) of chromium
at 25 μg·day−1 for adult women and 35 μg·day−1 for men [12].
Trivalent chromium, the form found in food and dietary supple-
ments, is considered to be safe [13]. The absorption rate of Cr(III)
is very low, between 0.5 and 2 %. However, the organic forms
are more absorbable than the inorganic ones [2, 14–18]. Due to
the low absorption rate of chromium salts, it has become neces-
sary to design and develop new organic chromium compounds
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[19, 20]. Many organic chromium complexes, including chro-
mium picolinate, chromium nicotinate [21, 22], chromium
histidinate [23, 24], chromium complex of D-phenylalanine
[19, 25], chromium propionate complex [26, 27] and chromium
glycinate complex [28] have been synthesised and demon-
strated to be biologically effective. The form of trivalent chro-
mium compound has been observed to affect its biological
efficacy and toxicity [20, 29]. Chromium picolinate [Cr(pic)3]
is the most popular commercial chromium nutritional supple-
ment. However, the safety of Cr(pic)3 supplementation remains
controversial [30].

The [Cr3O(O2CCH2CH3)6(H2O)3]
+ cation, known as Cr3,

has been studied and proposed as an alternative supplemental
source of trivalent chromium. In a study conducted by
Clodfedler et al. in 2004 [31, 32], the trinuclear cation
[Cr3O(O2CCH2CH3)6(H2O)3]

+ was found in vitro to imitate
the chromodulin ability to stimulate the tyrosine kinase ac-
tivity of the insulin receptor and increase insulin sensitivity,
decrease plasma total cholesterol, LDL cholesterol as well as
triglycerides concentration, as was proved on healthy and
type-2 diabetic rat models.

Previous research has suggested that chromium propionate
complex is absorbed with very high efficiency of 40–60 %,
while popular Cr supplements such as: CrCl3, Cr(III)
nicotinate or Cr(pic)3 are absorbed at only 0.5–1.3 % of the
gavage dose [27].

The biological activity and safety of Cr3 has been studied
on various experimental models. In a previous study, Staniek
et al. [33, 34], Cr3 was demonstrated to exhibit low acute
toxicity (LD50>2000 mg·kg−1 body mass, the fourth class in
the EU classification system), low genotoxic potential [34]
and low teratogenic effect on female healthy rats [35].
Moreover, Cr3 was shown to improve carbohydrate and lipid
metabolism in healthy male Wistar rats [36] as well as insulin
sensitivity in male Wistar rats fed with a high-fructose diet
[37]. Cr3 given at doses of 10 and 50 mg·kg−1 diet (equals
to 1 and 5 mg Cr·kg−1 body mass per day) for 8 weeks was
able to restore insulin sensitivity and normalise the β cell
function almost to the level of the healthy Wistar rats in the
insulin-resistant rat model [37].

In this study, we focused on the effects of high dietary doses
of Cr3 on nutritional and selected blood indices in female rats.

Material and Methods

Test Chemicals

Chromium(III) propionate (Cr3) in the form of nitrate salt
(chemical formula [Cr3O(O2CCH2CH3)6(H2O)3]

+NO3
− was

obtained in a laboratory at the Department of Technology
and Instrumental Analysis, Poznań University of Economics,
with the method described by Earnshaw et al. [38]. The

contents of elemental Cr (21 %) was determined with the
AAS method (spectrometer AAS-3 with BC correction,
Zeiss, Germany).

Animals and Diets

Thirty female Wistar rats (n=30 females, age: 10 weeks old)
were received from the Department of Toxicology, Medical
University of Poznań, Poland. The animals were housed in the
university-approved animal facility, in rooms maintained at
22±1 °C, with 55–60 % humidity and 12-h photoperiod
(12-h light/dark cycle). After 5-day adaptation to the laboratory
conditions, the rats were divided into five equal groups (the
control group and groups treated with chromium(III) complex
with propionic acid—six animals in each group, equal body
mass 180 g). All the groups were fed with a commercial diet
for maintenance of adult rodents (Labofeed H), enriched with
0, 100, 200, 500 and 1000 mg Cr(III)·kg-1 of diet (ca. 0, 10,
20, 50 and 100 mg Cr·kg body weight (b.w.)·day-1) given as
Cr3 for 4 weeks (Table 1). The Cr content in the basic diet was
0.5±0.06 mg·kg−1 (control group – C). The following
contents of Cr(III) were measured in individual experimen-
tal diets: 107.5±6.5 mg·kg−1 A; 224.8±32.4 mg·kg−1 B;
535.5±26.22 mg·kg−1 C and 1049.5±17.6 mg·kg−1 D, respec-
tively. The recommended level of dietary Cr for rats is around
1 mg·kg−1 diet (AIN-93). In the experiment, we used supra-
nutritional doses of Cr, which were 100, 200, 500 and 1000
times greater than the reference one.

The rats were allowed free access to food and distilled
water throughout the experiment period. The feed intake was
measured daily, while body weight gains were monitored
weekly. At the end of the experiment, after 12-h starvation,
the rats were euthanised by intraperitoneal injection of thio-
pental (40 mg·kg−1 body weight). Blood was collected into
tubes, and tissue samples (liver, kidneys, heart, spleen, pan-
creas, ovaries) were collected and weighed. All the procedures
applied to animals had been approved by the Local Bioethical
Commission in Poznań (no. 12/2005).

Laboratory Analysis

Blood serum indices were determined with the following
methods: glucose concentration with the UV photometric
method [39] and total, LDL, HDL and triglycerides
(triacylglycerol) concentrations (TAG) with the colorimetric
methods [40–42], using Olympus AU 560 equipment. The
activity of ALT, AST and AP enzymes was measured with
the kinetic methods [43, 44] and the urea concentration was
measured with the kinetic method, using urease and glutamine
dehydrogenase [45]. The total protein concentration was mea-
sured with the colorimetric method, using Cu2+ ions [46] and
the creatinine concentration was measured with the Jaffe ki-
netic method with picric acid [45].
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The blood haemoglobin (Hb) level was determined with
the Drabkin cyanohaemoglobin method. The red blood cell
count (RBC) and other blood morphology indices
(haematocrit, mean corpuscular volume (MCV), mean cor-
puscular haemoglobin (MCH), mean corpuscular
haemoglobin concentration (MCHC), white blood cell count
(WBC), platelets (PLT), lymphocytes (LYMPH),
granulocytes (GRAN), minimum inhibitory dilution (MID),
platelet distribution width (PDW), mean platelet volume
(MPV), red cell distributionwidth based on standard deviation
(RDW) were obtained by means of the CELLDYN-1700
analytical haematology system [47].

For mineral analyses, diet samples were digested with con-
centrated 65 % spectra pure HNO3 (Merck) in a Microwave
Digestion System (MARS-5, CEM, USA). The concentra-
tions of copper (Cu), zinc (Zn), iron (Fe), magnesium (Mg)
and calcium (Ca) in mineralised samples were determined
with the flame atomic absorption spectrometry method
(F-AAS; Zeiss AAS-3, with BC, Germany). The Cr concen-
tration was measured with a graphite furnace atomic absorp-
tion spectrometer (AAS EA 5, with BC, Jenoptic, Germany).

Statistical Analysis

The results are presented as mean±SEM. The data were
analysed by means of one-way analysis of variance
(ANOVA/MANOVA), followed by the Tukey’s test to deter-
mine specific significant differences (p<0.05) using Statistica
ver. 7.0 software (StatSoft, Tulsa, USA).

Results

The effects of Cr3 on overall nutritional indices are presented
in Table 2. As can be seen, the high dietary doses of Cr3 (100
to 1000 mg Cr·kg−1 diet) did not affect the feed intake, body

mass gain, feeding efficiency ratio and body mass or inner
organs masses (absolute and relative) in the healthy female
rats. No clinical signs of toxicity were observed. Table 3 pre-
sents serum biochemical indices, including glucose, total cho-
lesterol, HDL cholesterol, LDL cholesterol, triglycerides
(TAG), urea, creatinine and total protein serum concentra-
tions, as well as enzyme activities (ALT, AST and AP) in the
treated and control female rats. The blood biochemical indices
were not different in the Cr3-supplemented groups, except for
the serum triglycerides concentration, which decreased by
32 % in the rats which received 500 and 1000 mg Cr kg−1

diet, as opposed to the group treated with 200 mg Cr kg−1 diet.
Tables 4 and 5 show blood morphological and haematolog-

ical indices, including total white blood cell (WBC), red blood
cell (RBC), lymphocytes (LYMPH), granulocytes (GRAN),
platelet count (PLT), mid-cell (MID), mean platelet volume
(MPV), platelet distribution width (PDW), haemoglobin (Hb),
haematocrit (HCT), mean cell volume (MCV), mean cell
haemoglobin (MCH), mean cell haemoglobin concentration
(MCHC) and red cell distribution width (RDW) values in the
treated and control rats. Most of these indices were not signif-
icantly different in the animals treated with Cr3, except the
higher relative LYMPH (% L) (by 3.9 %) and lower MID
values (% M) (by 32.6 %) in the group which received
500 mg Cr·kg−1 diet, as compared with the control rats.
However, these changes did not go beyond the physiological
ranges established for healthy rats.

Discussion

Previous studies indicated that organic forms of Cr(III) were
more bioactive than inorganic forms (e.g., CrCl3), probably
due to the low absorption rate of inorganic chromium(III)
compounds (0.5–2 %) [14–18]. In order to recognise the ther-
apeutic potentials of Cr(III) supplementation, many organic
chromium complexes were synthesised and their bioactivity
was demonstrated.

Clodfelder et al. [27] reported that [Cr3O(O2CCH2

CH3)6(H2O)3]
+ was absorbed with very high efficiency of

40–60 %, better than popular Cr supplements, such as:
CrCl3, Cr(III) nicotinate or CrPic. The biological activity
and safety of Cr3 has been studied on various experimental
models [27, 31, 32, 34, 35, 48].

The ligand of the trivalent chromium compound has been
proved to affect its absorption and toxicity [11, 20, 29]. The
study of Staniek et al. [33] showed that LD50 of Cr3 was
greater than 2,000 mg·kg−1 body mass when administered
orally to rats. Other chromium (III) complexes did not exhibit
acute toxic effects [3, 20–22, 28, 49–51].

It is suggested that supplementation with Cr(III) may have
beneficial effects on the body composition and can be used as an
adjuvant to weight loss [52, 53]. By improving cell sensitivity to

Table 1 Composition of the basic Labofeed H diet used in experiment
(mean±SD)

Component Unit Content of compound

Energy MJ·100 g−1 1.69±0.03

Fat % 3.16±0.07

Protein % 24.10±0.21

Carbohydrates % 54.96

Dry mass % 88.73±0.05

Ash % 6.51±0.11

Ca g·kg−1 13.41±1.61

Mg g·kg−1 2.24±0.06

Fe mg·kg−1 239.49±46.34

Zn mg·kg−1 133.19±42.31

Cu mg·kg−1 20.42±2.91
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insulin, Cr(III) may increase the utilisation of energy compo-
nents and affect proteinmetabolism by stimulating the uptake of
amino acids and thus, it may increase protein synthesis [54]. It is
also proposed that Cr(III) increases the storage of glucose in
muscle glycogen synthesis, thereby helping to reduce
the deposition of fat and preventing obesity [53].

Onakpoya et al. [55] reported a clinically small but statisti-
cally significant weight loss in patients treated with Cr(III).
Anton et al. [56] suggested that Cr(pic)3 plays a role in food
intake regulation, which may be mediated by direct effect on
the brain, both in humans and animals. The authors indicate that
by affecting the central nervous systemCr(III) can regulate food

Table 2 The effect high dietary doses of Cr3 on nutritional indices in female rat (mean±SEM)

Index Experimental groups ANOVA

Control
(1 mg·kg−1)

A
(100 mg·kg−1)

B
(200 mg·kg−1)

C
(500 mg·kg−1)

D
(1000 mg·kg−1)

Food intake (g·day−1) 18.3±0.5 18.3±0.4 18.5±0.4 19.2±0.5 20.1±0.2 NS

Body mass gain (g·day−1) 1.46±0.08 1.39±0.09 1.46±0.06 1.46±0.13 1.59±0.12 NS

Relative body mass gain (%) 0.81±0.04 0.76±0.05 0.81±0.03 0.81±0.06 0.88±0.07 NS

Feeding efficiency ratio (g·MJ−1) 4.72±0.24 4.47±0.23 4.68±0.22 4.50±0.33 4.64±0.32 NS

Final body mass (g) 205±10 200±9 202±7 203±6 205±6 NS

Liver mass (g) 5.644±0.148 5.595±0.290 5.730±0.299 5.276±0.204 5.631±0.264 NS

Relative liver mass (% b.w.) 2.76±0.06 2.80±0.10 2.83±0.08 2.60±0.04 2.75±0.08 NS

Kidneys mass (g) 1.431±0.051 1.395±0.050 1.468±0.066 1.411±0.052 1.414±0.033 NS

Relative kidneys mass (% b.w.) 0.70±0.02 0.70±0.02 0.72±0.02 0.70±0.01 0.69±0.02 NS

Spleen mass (g) 0.440±0.016 0.428±0.020 0.459±0.022 0.454±0.022 0.463±0.026 NS

Relative spleen mass (% b.w.) 0.22±0.01 0.21±0.00 0.23±0.01 0.22±0.01 0.22±0.01 NS

Heart mass (g) 0.664±0.029 0.626±0.017 0.658±0.018 0.620±0.020 0.659±0.023 NS

Relative heart mass (% b.w.) 0.32±0.01 0.31±0.01 0.33±0.01 0.31±0.00 0.32±0.00 NS

Pancreas mass (g) 0.630±0.020 0.724±0.066 0.702±0.040 0.657±0.028 0.634±0.045 NS

Relative pancreas mass (%) 0.31±0.02 0.37±0.05 0.35±0.02 0.33±0.02 0.31±0.03 NS

Ovaries mass (g) 0.097±0.005 0.093±0.005 0.093±0.006 0.099±0.006 0.100±0.004 NS

Relative ovaries mass (%) 0.047±0.001 0.047±0.003 0.046±0.004 0.048±0.003 0.049±0.002 NS

K control group, A supplemented group with 100 mg Cr(III)·kg−1 diet, B supplemented group with 200 mg Cr(III)·kg−1 diet, C supplemented group
with 500 mg Cr(III)·kg−1 diet, D supplemented group with 1000 mg Cr(III)·kg−1 diet, NS differences statistically non-significant

Table 3 The effect high dietary doses of Cr3 on blood glucose concentration, lipid profile, hepatic enzymes activity and selected poisoning indices in
female rat (mean±SEM)

Index Experimental groups ANOVA

Control
(1 mg·kg−1)

A
(100 mg·kg−1)

B
(200 mg·kg−1)

C
(500 mg·kg−1)

D
(1000 mg·kg−1)

Glucose concentration (mg·dl−1) 105.7±4.9 98.7±8.6 98.8±4.1 92.5±2.5 94.8±3.9 NS

Total cholesterol concentration (mg·dl−1) 61.5±8.4 72.2±2.8 67.0±5.5 63.3±4.6 64.3±2.6 NS

LDL-cholesterol concentration (mg·dl−1) 4.67±0.49 5.17±0.54 5.17±0.54 5.00±0.26 5.17±0.87 NS

HDL cholesterol concentration (mg·dl−1) 39.8±3.6 41.5±1.3 39.8±1.8 37.2±3.5 38.8±1.0 NS

TAG - triglycerides concentration (mg·dl−1) 30.7±1.9ab 32.2±2.8ab 37.0±3.0b 25.2±2.4a 25.3±2.6a p<0.05

ALT (U·dm−3) 54.3±8.4 40.5±5.2 38.2±4.0 36.5±1.5 37.0±4.5 NS

AST (U·dm−3) 133.5±14.5 118.0±8.3 149.0±9.8 138.0±8.2 132.7±8.9 NS

Total protein concentration (g·dl−1) 5.10±0.08 5.10±0.15 5.15±0.13 5.15±0.13 4.92±0.06 NS

Creatinine concentration (mg·dl−1) 0.383±0.017 0.417±0.017 0.433±0.033 0.383±0.017 0.417±0.040 NS

Urea concentration (mg·dl−1) 45.8±2.0 49.3±2.1 57.5±5.3 50.2±1.3 47.7±7.2 NS

Different letter superscripts indicate a statistically significant difference at p<0.05

NS differences statistically non-significant
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intake. They found that 8-week-Cr(pic)3 supplementation at a
dose of 1,000 μg·day−1 significantly reduced the food intake
and satiety and tended to decrease the body weight in healthy,
overweight women. In addition, the group supplemented with
Cr(pic)3 were less hungry, as subjectively assessed with visual
analogue scales (VAS), and rarely consumed high-fat products.
Further study indicated that the direct injection of Cr(pic)3 at
0.4, 4 and 40 ng into the Sprague-Dawley rats’ cerebral ventri-
cle decreased the dietary intake, as compared with the control
group [56]. There have been suggestions that Cr(pic)3 has im-
pact on neurotransmitters involved in the regulation of eating
behaviour, mood and food cravings [57].

However, the role of Cr(III) in the regulation of appetite
and body composition remains a matter of controversy, be-
cause the mechanism responsible for that is still unknown
[53, 54, 58–60].

Several studies conducted on humans showed that supple-
mentation with Cr(III), also combined with exercise, did not
cause significant changes in body composition among stu-
dents [59] and women with moderate obesity [53].

In this study, dietary supplementationwithCr3 at doses of 100
to1000 mg Cr(III)·kg−1 for 4 weeks did not influence the food
intake, body mass gain, feeding efficiency ratio and internal or-
gan masses in healthy female rats. Thus, the results of this study
are consistent with the results of previous experiments, where
rats were treated with Cr3 [26, 27, 33, 58, 61], as well as the
results from the other Cr(III) compounds [5, 17, 20, 28, 33, 62].

There were no differences observed in the body mass after
daily gavage administration of Cr(pic)3 (1 mg Cr·kg-1 body
mass), CrCl3 (1 mg·kg−1 body mass), and Cr3 (33 μg and
1 mg Cr·kg−1 body mass) in Zucker lean, Zucker obese or
ZDF rats [63]. Also, Stout et al. [64] conducted an experiment
on male and female F344/N rats and B6C3F1 mice, which for
2 years, had been exposed to Cr(pic)3 at up to 5 % of their diet
in feed. The experiment revealed that Cr(pic)3 had no influence
on the animals’ body mass. Similarly, there were no effects on
bodymass noted in another study after 13-week supplementation
with niacin-bound chromium(III) complex at doses of 5 to
125 mg·kg−1 diet in male and female rats [21]. However,
52-week supplementation with this compound at a dose of

Table 4 The effect high dietary doses of Cr3 on blood morphological and hematological indices in female rat (mean±SEM)

Index Experimental groups ANOVA

Control
(1 mg·kg−1)

A
(100 mg·kg−1)

B
(200 mg·kg−1)

C
(500 mg·kg−1)

D
(1000 mg·kg−1)

WBC (109·dm−3) 2.58±0.56 2.17±0.19 2.23±0.16 2.85±0.32 2.06±0.17 NS

RBC (1012·dm−3) 7.34±0.22 7.88±0.38 7.62±0.07 7.63±0.15 7.47±0.30 NS

LYMPH (109·dm−3) 2.27±0.48 1.96±0.20 2.06±0.16 2.64±0.32 1.83±0.16 NS

LYMPH (% L) 88.4±0.5a 90.6±1.0ab 90.6±0.8ab 91.9±0.7b 89.1±0.6ab p<0.05

MID (109·dm−3) 0.183±0.044 0.140±0.019 0.125±0.011 0.140±0.010 0.128±0.012 NS

MID (% M) 5.58±0.30b 4.35±0.40ab 4.25±0.42ab 3.76±0.36a 4.93±0.28ab p<0.05

GRAN (109·dm−3) 0.175±0.036 0.150±0.000 0.150±0.000 0.160±0.010 0.160±0.010 NS

GRAN (% G) 5.98±0.47 5.01±0.56 5.12±0.52 4.34±0.44 5.98±0.52 NS

PLT (109·dm−3) 1006±33 1042±32 1057±19 1124±33 1040±20 NS

MPV (fl) 5.62±0.18 5.72±0.32 5.82±0.14 5.36±0.11 5.30±0.00 NS

Different letter superscripts indicate a statistically significant difference at p<0.05

NS differences statistically non-significant

Table 5 The effect high dietary doses of Cr3 blood hematological in female rat (mean±SEM)

Index Experimental groups ANOVA

Control
(1 mg·kg−1)

A
(100 mg·kg−1)

B
(200 mg·kg−1)

C
(500 mg·kg−1)

D
(1000 mg·kg−1)

Hb (mmol·dm−3) 8.85±0.16 9.03±0.31 9.03±0.07 9.19±0.10 8.90±0.14 NS

HCT (%) 18.37±0.44 19.78±0.95 19.23±0.23 19.24±0.40 18.54±0.74 NS

MCV (fl) 50.65±0.48 50.65±0.92 50.78±0.76 50.82±0.39 50.10±0.29 NS

MCH (pg) 19.22±0.12 18.72±0.42 19.07±0.18 19.58±0.29 19.44±0.27 NS

MCHC (g·dl−1) 76.70±0.56 74.44±1.36 75.43±0.84 76.60±0.91 78.32±1.22 NS

RDW (%) 14.40±0.16 14.53±0.29 14.12±0.30 14.53±0.26 15.17±0.36 NS
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25 mg Cr(III)·kg−1 diet decreased the body mass gain, without
causing significant changes in organ masses of male and female
Sprague-Dawley rats at a similar level of dietary intake [22].

Yoshida et al. [18] observed no change in the body mass.
However, dietary supplementation with Cr(pic)3 and CrCl3 at
100 μg·g−1 for 28 days decreased the liver mass. In contrast,
Zha et al. [65] found that dietary supplementation with CrNano
at doses of 75 to 450 μg·kg−1 diet increased the body mass
gain and feeding efficiency in male Sprague-Dawley rats.

In this study, we observed no effect of Cr3 on serum glu-
cose, total cholesterol, LDL cholesterol and HDL cholesterol
concentration except serum triglycerides concentration. The
dietary supplementation with Cr3 at doses of 500 and
1000 mg Cr·kg−1 diet decreased serum triglycerides concen-
tration, as compared with the rats receiving 200 mg Cr·kg−1

diet.
Herring et al. [6] demonstrated that long-term 15-month ex-

posure to Cr3 did not have significant effect on glucose levels in
male Wistar rats on traditional and cafeteria-style diets.
However, Sun et al. [26, 61] reported that plasma insulin, total
cholesterol, LDL cholesterol, HDL cholesterol and triglycer-
ides, but not glucose, were lowered after 12 and 24 weeks of
intravenous treatment with 20 μg Cr·kg−1 body mass as Cr3 in
healthy and type 2 diabetic Sprague-Dawley rats.

The oral administration of Cr3 at levels of 250, 500 or
1000 μg·kg−1 body mass lowered fasting plasma insulin, tri-
glycerides, total cholesterol and LDL-cholesterol levels in
healthy Sprague-Dawley rats, but it had no effect on plasma
glucose and HDL cholesterol [27].

In another study, Bennett et al. [58] found that Cr3 at doses
of 1, 5 and 10 mg Cr·kg-1 lowered plasma insulin, leptin and
triglycerides concentrations, but had no effect on plasma
HDL, LDL and total cholesterol after 10 weeks of treatment
in male Sprague-Dawley rats.

Previous studies by Sun et al. [61] indicated that Cr3
lowered total cholesterol, LDL and HDL cholesterol and tri-
glycerides levels, but did not affect the levels of insulin and
glucose in the blood after 12 weeks of intravenous administra-
tion of Cr3 at a dose of 20 mg·kg−1 b.w. in normal male rats.

Clodfelder et al. [27] and Sun et al. [26] showed that
24-week supplementation with Cr3 at doses of 250 to
1000 mg·kg−1 and a dose of 5 to 20 mg·kg−1 b.w., respec-
tively, significantly reduced fasting insulin levels, total cho-
lesterol, LDL, HDL and triglycerides in the blood serum,
and after a 2-h glucose tolerance test, it reduced insulin and
glucose levels in healthy and diabetic type 1 and 2 rats. This
was in agreement with the results obtained by Sahin et al.
[66], who demonstrated that CrPic reduced the blood glu-
cose and total cholesterol levels as well as free fatty acid
concentration and it increased the serum insulin level and
the composite insulin sensitivity index in rats.

Significantly lower blood glucose, total cholesterol and
HDL cholesterol in the blood were also reported by Yang

et al. [25]. In contrast to previous reports, they indicated in-
creased concentration of triglycerides in obese mice, which
had been supplemented with complex Cr(III) with phenylala-
nine Cr(D-Phe)3 at an amount of 150 mg Cr·kg−1 dose·day−1

for 6 weeks. These authors also demonstrated the inhibitory
effect of Cr(D-Phe)3 on lipid peroxidation in a dose-dependent
manner.

In this study, there were no significant changes in the con-
centration of total protein, urea, creatinine and ALT and AST
in the serum, suggesting the absence of abnormalities in the
liver and kidney function in female rats supplemented with
Cr3 at doses of 100 to 1000 mg Cr(III) · kg−1 of diet.
Anderson et al. [67] obtained similar results and showed that
supplementation with CrCl3 and Cr(pic)3 up to 100 mg·kg−1

diet (9 mg Cr·kg−1·day−1) for 20 weeks did not cause changes
in the concentration of creatinine, total protein and ALT and
AST in male Harlan Sprague-Dawley rats.

According to reports, Cr(III) compounds are of low toxicity
to animals [68]. This lack of toxicity was also confirmed in
many previous studies with different Cr(III) compounds fol-
lowing oral administration [21, 22, 28, 33, 34]. The daily oral
administration of the chromium rutin complex (CrRC), chro-
mium folate complex (CrFC) and chromium stachyose com-
plex at a dose of 3.0 mg Cr·kg−1 for 2 weeks did not affect the
AST, ALT and ALP activities in normal mice, but decreased
the activities of serum AST, ALT and ALP in diabetic mice
[20]. However, Yoshida et al. [18] observed that there were
increased activities of serum ASTand ALT in maleWistar rats
supplemented with CrPic at a dose of 100 μg Cr·g−1. On the
other hand, Michaliński et al. [69] showed a decrease in the
ALT, AST and creatine kinase (CK) activity after 3 weeks of
supplementation with CRC454 and CrPic at a dose of
42 μg Cr(III)·kg−1 b.w. in rats with type 1 diabetes. Wang
et al. [70] reported an increase in urea, immunoglobulin M
and G concentrations and a decrease in total protein in the
serum of pigs on a diet supplemented with 200 μg Cr·kg−1

diet, given as CrNano.
Latest studies on animals, cell cultures and humans

(patients) seem to demonstrate the same kind of beneficial
effects or clear cellular effects of Cr supplements [11, 17,
20, 24, 71–74].

Conclusions

The results of this experiment suggest that even high doses of
Cr3 (100–1000 mg Cr·kg−1 diet) do not significantly affect
overall nutritional indices and most biochemical, morpholog-
ical and haematological indices in the blood of healthy female
Wistar rats.
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