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Abstract To investigate whether grape seed proanthocyanidin
extract (GSPE) antagonizes fluoride-induced oxidative injury
by regulating iron metabolism, human embryo hepatic cells
(L-02) were incubated with sodium fluoride (NaF, 80 mg/L)
and/or GSPE (100 μmol/L) for 24 h. Results showed the glu-
tathione peroxidase (GSH-Px) content, superoxide dismutase
(SOD) activity, and total antioxidant capacity (T-AOC) level of
the NaF group were significantly lower than that of the control
group (P < 0.05), while malondialdehyde (MDA) content in-
creased in the NaF group compared with the control group
(P < 0.05). Moreover, the indexes mentioned above showed
opposite changes in the NaF + GSPE group. In addition, iron
content significantly increased in the NaF group compared to
the control group(P < 0.05) and significantly decreased in the
NaF + GSPE group compared to the NaF group (P < 0.05).
Furthermore, hepcidin (coded by HAMP) messenger RNA
(mRNA) expression significantly increased in the NaF group
compared to the control group(P < 0.05) and significantly
decreased in the NaF + GSPE group compared to the NaF
group (P < 0.05). Ferroportin 1 (coded by FPN1) mRNA ex-
pression significantly decreased in the NaF group compared to
the control group (P < 0.05) and significantly increased in the
NaF + GSPE group compared to the NaF group (P < 0.05).
These results indicate that GSPE provides significant cellular

protection against oxidative stress induced by excessive fluo-
ride via the iron metabolism regulation.
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Introduction

Endemic fluorosis, a disease due to ingestion of excessive
amounts of fluorine, is prevalent in many parts of the world,
including China, India, Sri Lanka, Senegal, Ghana, South
Africa, etc. [1]. Fluorosis can cause damage not only to skel-
etal tissue and teeth but also to soft tissues, such as the brain,
liver, kidney, and spinal cord. Previous studies revealed that
continuous intake of excessive fluoride may cause liver oxi-
dative damage [2, 3]. Some researchers believe that fluorine
can directly attack antioxidant enzymes, weakening their ac-
tivities and increasing free radical abundance [4]. Other
scholars hold that fluorine can activate the NADH oxidation
system, transfer electrons to oxygen, and produce oxygen free
radicals [5]. These theories greatly enrich and expand the
knowledge regarding oxidative damage induced by fluoride;
however, the detailed mechanisms underlying these effects
remain to be explored.

Along with understanding Alzheimer’s disease and
Parkinson’s disease, oxidative damage caused by iron metab-
olism disorder is a subject of research attention. Iron is an
essential factor for several important biological activities and
biochemical reactions, including oxygen transport, electron
transport, and xenobiotic metabolism [6]. However, accumu-
lation of iron within tissues may induce generation of reactive
oxygen species (ROS) and thus produce a toxic impact [7].
Therefore, the normal physical level of iron is ensured by rigid
regulation of iron metabolism. Iron levels are tightly regulated
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by hepcidin (encoded by HAMP), which is a key regulator of
iron metabolism produced by hepatocytes [8]. Hepcidin binds
to ferroportin 1 (FPN1), the only known iron efflux transporter
found in the cell membranes of hepatocytes and macrophages,
where it induces internalization and eventual degradation [9].
Thereby, FPN1 decreases further cellular iron export.

A variety of pharmacological strategies have been
employed to counter oxidative stress resulting from iron over-
load. An alternative measure is phytochemical treatment,
which is believed to be safer, healthier, and less prone than
their synthetic counterparts to produce adverse effects. Grape
seed proanthocyanidin extract (GSPE) is a combination of
biologically active polyphenolic flavonoids, including oligo-
meric proanthocyanidins [10]. GSPE has demonstrated a wide
spectrum of biological, pharmacological, therapeutic, and
chemoprotective properties against free radicals and oxidative
stress [11, 12]. The remarkable spectrum of biochemical and
cellular functions of GSPE holds promise for the prevention
and treatment of various disorders caused by oxidative stress.
Recently, some studies have shown that the antioxidant capac-
ity of GSPE is closely related to its iron-chelating function
[13]. It is of importance to rationally utilize antioxidant addi-
tives to investigate the specific antioxidant mechanisms of
GSPE.

There are few studies focused on the capacity of GSPE to
antagonize fluoride-induced oxidative injury by regulating
iron metabolism. Therefore, in this study, we used human
embryo hepatocytes (L-02) to explore the effects of sodium
fluoride (NaF) alone, GSPE alone, and NaF in combination
with GSPE on oxidative stress, iron content, and messenger
RNA (mRNA) expression levels of HAMP and FPN1, with
the goal of providing preliminary, but important information
that could lead to the development of new strategies to inhibit
or alleviate oxidative damage attributed to fluorosis.

Materials and Methods

Chemicals

Fetal bovine serum (FBS) and Roswell Park Memorial
Institute (RPMI) 1640 medium culture media were obtained
from Gibco CRL (Paisley, UK). Taq DNA polymerase, dNTP
mix, and SYBR PrimeScript RT-PCR kits were purchased
from Takara Bio (Dalian, China). The primers for HAMP,
FPN1, and β-actin were synthesized and purified by
Invitrogen Corp. (Shanghai, China). NaF was obtained from
Shanghai Chemical Reagent Corp. (Shanghai, China). The
assay kits for glutathione peroxidase (GSH-Px), superoxide
dismutase (SOD), total antioxidant capacity (T-AOC), and
malondialdehyde (MDA) were obtained from the Nanking
Jiancheng Bioengineering Research Institute (Nanjing,
China). The Olympus-Ckx61 fluorescence microscope was

supplied by Olympus (Japan), and fluorescence quantity
PCR (7900-HT) was purchased from Applied Biosystems
(Foster City, USA). All other chemicals were of analytical
grade and obtained commercially.

Cell Culture and Treatment with NaF and/or GSPE

L-02 cells were cultured in RPMI 1640 medium with 110 mg/
L sodium pyruvate at 37 °C in a humidified atmosphere with
5 % CO2. The media were supplemented with 2 mM L-gluta-
mine, 100 U/mL penicillin, 100 U/mL streptomycin, and 10%
FBS.

Exponentially growing cells were divided into four groups:
control group (FBS), NaF group (80 mg/L), GSPE group
(100 μmol/L), and NaF (80 mg/L) + GSPE (100 μmol/L)
group. The doses of NaF and GSPE were selected based on
previous studies conducted in our laboratory [14, 15].

Cells were rinsed twice with PBS, trypsinized, centrifuged
at 1000×g for 5 min, and kept on ice until assays were
performed.

GSH-Px, SOD, T-AOC, and MDA Assays

GSH-Px, SOD, T-AOC, and MDA levels were determined
using commercially available kits according to the manufac-
turer ’s ins t ruc t ions s t r ic t ly (Nanj ing J iancheng
Bioengineering Institute, China). The results of the assays
were normalized to the total amount of protein as measured
by the bicinchoninic acid (BCA) method.

Determination of Iron Content

The cell suspension was centrifuged at 500×g for 5 min at
4 °C and the resulting cell pellet was dissolved in 0.5 mL of
cell lysis solution (containing 1 mM Na2EDTA, 150 mM
NaCl, 10 mM PMSF, 10 mM Tris, and 1 mM aprotinin).
Cellular iron content was determined using a kit by following
the manufacturer’s instructions (Nanjing Jiancheng
Bioengineering Institute, China). Briefly, in acidic buffer so-
lution, the Fe3+ of ferritin was reduced to Fe2+, after which
Ferene S reacted with Fe2+ to produce blue compounds that
were measured by colorimetry at 593 nm.

Analysis of mRNA Expression Levels ofHAMP and FPN1

RNAwas extracted from cultured L-02 cells using the TRIzol
method. The A260/280 ratio was in the range of 1.8–2.0.
Real-time PCR (qPCR) was conducted using the SYBR
PrimeScript RT-PCR Kit with the manufacturer’s protocol.
qPCR was performed with SYBR Green using the ABI
Prism 7900 Sequence Detection System. To obtain the relative
quantitative gene expression values, β-actin was used as an
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endogenous control. The primer sequences are listed in
Table 1.

Statistical Analysis

Results are expressed as mean ± SD for at least three
experiments, performed in triplicate. Data were evaluated
statistically using one-way analysis of variance (ANOVA)
followed by the Student–Newman–Keuls test for indepen-
dent mean comparisons. The level of significance was set
at P < 0.05.

Results

IronContent in L-02Cells Treated with NaF and/or GSPE

As shown in Fig. 1, the iron content of the NaF group was
significantly higher than that of the control group (P < 0.05).
Furthermore, the iron content of the GSPE group was signif-
icantly reduced in comparison with that of the NaF group
(P < 0.05). In addition, the iron content of the NaF + GSPE
group was significantly reduced in comparison with that of the
NaF group (P < 0.05), but greater than that of the GSPE group
(P < 0.05).

GSH-Px, SOD, T-AOC, and MDA in L-02 Cells Treated
with NaF and/or GSPE

As shown in Table 2, significant decreases in GSH-Px
content, SOD activity, and T-AOC level in L-02 cells
treated with NaF were observed in comparison with those
of the control group (P < 0.05), but MDA content was
increased significantly in the NaF group in comparison
with that of the control group (P < 0.05). Furthermore,
GSH-Px content, SOD activity, and T-AOC level in L-02
cells treated with GSPE were significantly elevated in
comparison with those of the NaF group (P < 0.05), while
MDA content was decreased significantly in the GSPE
group in comparison with that of the NaF group
(P < 0.05). In addition, GSH-Px content, SOD activity,
and T-AOC level in L-02 cells treated with NaF + GSPE

were reduced in comparison with those of the NaF group
(P < 0.05), but MDA content was decreased significantly
in the NaF + GSPE group in comparison with that of the
NaF group (P < 0.05).

mRNA Expression of HAMP and FPN1 in L-02 Cells
Treated with NaF and/or GSPE

As shown in Fig. 2, the HAMP mRNA expression level of
the NaF group was significantly higher than that of the
control group (P < 0.05). The HAMP mRNA expression
level of the GSPE group was lower than that of the NaF
group (P < 0.05). The HAMP mRNA expression level of
the NaF + GSPE group was lower than that of the NaF
group (P < 0.05), but higher than that of the GSPE group
(P < 0.05).

In addition, the FPN1 mRNA expression level of the
NaF group was significantly lower than that of the control
group (P < 0.05). The FPN1 mRNA expression level of
the GSPE group was higher than that of the NaF group
(P < 0.05). The FPN1 mRNA expression level of the
NaF + GSPE group was lower than that of the GSPE
group (P < 0.05), but higher than that of the NaF group
(P < 0.05).

Table 1 List of primers used for
real-time RT-PCR Accession number Gene Oligonucleotide primer 5′-3′ Product size (bp)

NM_021175 HAMP (F) 5′- ACCAGTGGCTCTGTTTTCCC-3 154

(R) 5′-AGCAGCCGCAGCAGAAAATG-3

NM_014585 FPN 1 (F) 5′- GCAGGAGAAGACAGAAGCAAACT-3′ 148

(R) 5′-TCCATCCCGAAATAAAGCCACA-3′

NM_001101 β-actin (F) 5′-AGCGAGCATCCCCCAAAGTT-3′ 284

(R) 5′-GGGCACGAAGGCTCATCATT-3′

Fig. 1 Effects of NaF and/or GSPE on iron contents. Values are
represented as mean ± SD of three independent determinations, assayed
in triplicate. The different lowercase letters denote significant treatment-
related effects (P < 0.05), as determined by one-way ANOVA followed
by LSD test. a P < 0.05 vs. control group; b P < 0.05 vs. NaF group; c
P < 0.05 vs. GSPE group
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Table 2 Effect of NaF and/or
GSPE on GSH-Px, MDA, SOD
and T-AOC in L-02 cells
(x� S, n = 6)

Group GSH-Px

(mol/g prot)

MDA

(nmol/mg prot)

SOD

(U/g prot)

T-AOC

(U/g prot)

Control 164.05 ± 7.51 0.03 ± 0.01 11.83 ± 1.12 1.15 ± 0.18

NaF 46.28 ± 8.59* 0.12 ± 0.02* 6.28 ± 0.74* 0.12 ± 0.01*

GSPE 151.76 ± 5.22** 0.04 ± 0.03** 11.96 ± 0.55** 1.48 ± 0.09**

NaF + GSPE 116.84 ± 5.16**, *** 0.05 ± 0.01** 11.57 ± 0.56** 1.13 ± 0.17**, ***

Data are presented as the mean ± SD of three independent determinations in triplicate; *P < 0.05, significantly
different from control group; **P < 0.05, significantly different from NaF group; ***P < 0.05, significantly
different from GSPE group

(A)

(B)

(1)control (2)NaF

(3)GSPE (4)NaF+GSPE

Fig. 2 Effects of NaF and/or
GSPE on mRNA expression
levels of HAMP and FPN 1 in
L-02 cells analyzed by real-time
PCR. a Results of representative
RT-PCR are shown. b Values are
represented as mean ± SD of three
independent determinations,
assayed in triplicate. The different
lowercase letters and numbers
denote significant treatment-
related effects (P < 0.05),
determined by one-way ANOVA
followed by LSD test. The
lowercase letters represent the
comparison of mRNA expression
levels of HAMP among the
groups: a P < 0.05 vs. control
group; b P < 0.05 vs. NaF group;
c P < 0.05 vs. GSPE group. The
Arabic numerals represent the
comparison of the mRNA
expression levels of FPN 1 among
the groups: 1 P < 0.05 vs. control
group; 2 P < 0.05 vs. NaF group;
3 P < 0.05 vs. GSPE group
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Discussion

Since ROSwere implicated as important pathologic mediators
in many disorders, various studies have investigated whether
oxidative stress and lipid peroxidation are involved in the
pathogenesis of chronic fluorosis. In this study, we observed
a significant decrease in T-AOC level, SOD activity, and
GSH-Px content, but increased MDA content, in the NaF
group. These results indicated that the equilibrium between
the oxidative system and antioxidant system in the cells was
destroyed by fluoride exposure. Our findings are similar to
earlier observations [16, 17]. These findings indicate that ox-
idative stress plays a vital role in hepatotoxicity induced by
excessive fluoride.

For decades, efforts have been made to elucidate the
mechanism of oxidative stress caused by fluorosis,
achieving substantial progress. Recently, iron overload
has aroused researcher interest, as it might be an explana-
tion for oxidative stress resulting from fluorosis. The pres-
ent results showed that the concentration of hepatic iron
was increased significantly in the fluoride-treated group in
comparison with that of the control group, demonstrating
that iron homeostasis of L-02 cells was disturbed by ex-
cessive fluoride. Such an increase in free iron by fluoride
could catalyze the Fenton reaction, produce hydroxyl rad-
icals, and subsequently cause oxidative injury. Hepcidin
(encoded by HAMP) is a liver-derived regulatory hormone
that plays a pivotal role in systemic iron homeostasis. The
hepcidin peptide regulates systemic iron homeostasis by
controlling iron flux into the plasma by binding to its
receptor, the iron transporter FPN1 [18, 19]. In the present
study, we showed that HAMP mRNA expression was sig-
nificantly upregulated in the fluoride-treated group, while
FPN1 mRNA expression was significantly downregulat-
ed. In the fluoride-treated group, hepcidin would be ex-
pected to ultimately bind to the iron transporter FPN1 and
cause its internalization and degradation. By inhibiting
FPN1, hepcidin inhibits iron release into the hepatic por-
tal system, thereby leading to iron overload in L-02 cells.

Fluorosis is irreversible, but preventable by appropriate
intervention. One of the best ways to delay or prevent the
onset of fluorosis is improve the antioxidant capacity of the
body by providing additional radical scavengers [20–22].
GSPE contains several polyphenolic bioflavonoids and has
been reported to exhibit a wide range of inhibitory effects
against oxygen free radicals. Previous studies revealed that
the antioxidant capacity of GSPE is higher than that of
vitamin E and C [23, 24]. It is believed GSPE induces
antioxidant effects through several mechanisms, including
neutralization of free radicals, reduction of peroxide con-
centrations, and repair of oxidized membranes, all of which
alleviate oxidative damage [25–27]. Besides, GSPE shows
little toxicity. The LD50 value of GSPE is approximately

4 g/kg in male and female rats [28]. Actually, GSPE has
been used in Europe and the USA for decades without
reported adverse effects. The present study showed that
T-AOC level, SOD activity, and GSH-Px content were el-
evated in the NaF + GSPE group in comparison with those
of the NaF group, while MDA content was decreased; the-
se results were similar to those of previous studies.
Furthermore, the hepatic iron content of the NaF + GSPE
group was significantly lower than that of the NaF group,
perhaps because of the antioxidant capacity of GSPE con-
ferred by its iron-chelating abilities. The catechol and di-
hydroxy phenols of GSPE can chelate iron ions formed
during the Fenton reaction to form inert compounds, thus
preventing production of free radicals normally caused by
iron overload. In addition to its free radical scavenging
property, GSPE regulates the expression of a number of
genes and regulatory signaling pathways and may thereby
prevent cell death. Excitingly, the group coincubated with
NaF and GSPE showed significantly upregulated FPN1
mRNA expression in comparison with that of the NaF
group, along with downregulated HAMP mRNA expres-
sion. These results indicate that GSPE exerts its beneficial
effects through its ability to chelate free iron and scavenge
H2O2 generated by the Fenton reaction, thus triggering
HAMP reduction and FPN1 elevation, activating iron ef-
flux channels and leading to the release of iron ions from
L-02 cells, thereby effectively relieving oxidative stress
due to fluorosis-induced iron overload.

The present results are the first report that NaF-induced
oxidative damage in L-02 cells is at least partially caused
by abnormal iron homeostasis. More importantly, the find-
ings reported herein demonstrate that GSPE provides sig-
nificant cellular protection against oxidative stress induced
by excessive fluoride via regulation of iron metabolism.
Thus, the present study provides preliminary but important
data that will facilitate further study of the antioxidant
mechanisms of GSPE, while providing valuable evidence
and ideas that could improve strategies for preventing and
treating fluorosis. Further investigation is required to iden-
tify the detailed antioxidative mechanisms underlying the
therapeutic effects of GSPE against oxidative stress caused
by fluorosis.
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