
Oxidative Stress Markers and Histological Analysis in Diverse
Organs from Rats Treated with a Hepatotoxic Dose of Cr(VI):
Effect of Curcumin

Wylly Ramsés García-Niño & Zyanya Lucía Zatarain-Barrón &

Rogelio Hernández-Pando & Claudia Cecilia Vega-García &

Edilia Tapia & José Pedraza-Chaverri

Received: 19 January 2015 /Accepted: 24 February 2015 /Published online: 14 March 2015
#

Abstract Hexavalent chromium [Cr(VI)] compounds are ex-
tremely toxic and carcinogenic. Despite the vast quantity of
reports about Cr(VI) toxicity, the information regarding its
effects when it is intraperitoneally (i.p.) administered is still
limited. In contrast, it has been shown that curcumin prevents
hepatotoxicity induced by a single intraperitoneal injection of
15 mg/kg body weight (b.w.) of potassium dichromate
(K2Cr2O7). This study aims to evaluate oxidative stress
markers, the activity of antioxidant enzymes, and the potential
histological injury in brain, heart, lung, kidney, spleen, pan-
creas, stomach, and intestine from rats treated with a hepato-
toxic dose of K2Cr2O7 (15 mg/kg b.w.), and the effect of
curcumin pretreatment. Rats were divided into four groups:
control, curcumin, K2Cr2O7, and curcumin+K2Cr2O7. At the
end of the treatment, plasma and ascites fluid were collected
and target organs were dissected out for biochemical and his-

tological analysis. K2Cr2O7 induced hepatotoxicity but failed
to induce in all the other studied organs either oxidative or
histological injury, since levels of malondialdehyde (MDA),
glutathione (GSH), and the activity of superoxide dismutase
(SOD), catalase (CAT), and related GSH enzymes were un-
changed. As expected, curcumin was safe. Lack of K2Cr2O7-
induced toxicity in those target organs could be due to the
following: (1) route of administration, (2) absorption through
the portal circulation, (3) lower dose than needed, (4) short
time of exposure, or (5) repeated doses are required to produce
damage. Thus, the intraperitoneal injection of 15 mg/kg of
K2Cr2O7, that is able to induce hepatotoxicity, was unable to
induce histological and oxidative damage in other target
organs.
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Introduction

Chromium has been identified as a potential environmental
and occupational poison and hexavalent chromium [Cr(VI)]
compounds were among of the earliest chemicals to be clas-
sified as human carcinogens [1]. Cr(VI) compounds such as
potassium dichromate (K2Cr2O7), sodium chromate, or chro-
mic acid, are widely used in leather, electroplating, welding,
painting, chrome plating, and dye-producing industries [2].
Elevated levels of chromium in blood, urine, and some tissues,
have been found in workers occupationally exposed to Cr(VI)
[3]. Health effects of Cr(VI) compounds may vary with route
of exposure. Respiratory exposure has been associated with
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lung cancer and nasal and sinus cancer [4]. While accidental
or intentional ingestion of extremely high doses of Cr(VI)
compounds produces severe respiratory, cardiovascular, gas-
trointestinal, hematological, hepatic, renal, and neurological
effects that can result in death [5]. Reproductive and develop-
mental effects have been also reported [6].

Experimental evidences suggest that most herbs and spices
possess a wide range of biological and pharmacological activ-
ities including antioxidant properties that may protect tissues
against oxidative stress-induced damage [7]. Curcumin is a
hydrophobic polyphenol derived from the rhizome of the herb
Curcuma longa, which exhibits antioxidant, antimicrobial,
anti-inflammatory, and anticarcinogenic properties, and it
has been characterized as a safe natural product by different
international regulatory agencies [8]. Curcumin may protect
cells from oxidative stress since the presence of the phenolic,
β-diketone, as well as the methoxy groups that contribute to
the free-radical scavenging activity of curcumin by donating
electrons and neutralizing free radicals [9]. Also, curcumin
protects cells indirectly by inducing the nuclear factor (ery-
throid-derived 2)-like 2 (Nrf2), which upregulates the expres-
sion of phase II enzymes, including superoxide dismutase
(SOD), catalase (CAT), glutathione peroxidase (GPx), gluta-
thione reductase (GR), and glutathione-S-transferase (GST),
among others [10].

Several studies have demonstrated the high benefit of
curcumin in the treatment of hepatic disorders, such as
drug-induced hepatotoxicity, alcoholic liver disease,
non-alcoholic liver disease, hepatitis B and C, and
hepatocarcinoma [11]. Recently, it was shown that
curcumin, administered by gavage at a dose of
400 mg/kg body weight (b.w.), successfully prevented
the Cr(VI)-induced liver injury in rats injected intraper-
itoneally (i.p.) with K2Cr2O7 (15 mg/kg b.w.) [12, 13].
In that study, curcumin reduced hepatocyte damage,
ameliorated oxidative stress, maintained the activity of
antioxidant enzymes, and protected against mitochondri-
al dysfunction. However, despite the enormous quantity
of information about Cr(VI) toxicity, the information
regarding the Cr(VI)-induced effects when it is i.p. ad-
ministered is still limited. Thus, this work was designed
to evaluate the effect of a single intraperitoneal injection
of K2Cr2O7 (15 mg/kg b.w.) on the potential histologi-
cal injury, oxidative stress and the activity of antioxi-
dant enzymes in brain, heart, lung, kidney, spleen, pan-
creas, stomach, and intestine of rats as well as the effect
of curcumin pretreatment. Furthermore, liver toxicity
was evaluated in these rats by the measurement of the
following injury markers in plasma: lactate dehydroge-
nase (LDH), aspartate aminotransferase (AST), alanine
aminotransferase (ALT), total proteins and albumin, as
well as by the levels of the oxidative stress marker
malondialdehyde (MDA). In addition, the ascites fluid

accumulation was also determined since it is a conse-
quence of the Cr(VI)-induced hepatotoxicity for this
route of administration [14, 15].

Materials and Methods

Reagents

Curcumin, K2Cr2O7, bovine serum albumin, bromocresol
green, butylated hydroxytoluene (BHT), 1-methyl-2-
phenylindole, tetramethoxypropane, xanthine, xanthine oxi-
dase, nitroblue tetrazolium (NBT), glutathione (GSH), gluta-
thione disulfide (GSSG), GR, GST, 1-chloro-2,4-dinitroben-
zene (CDNB), dimethyl sulfoxide (DMSO), NADPH, N-(2-
hydroxyethyl)piperazine-N ′-(2-ethanesulfonic acid)
(HEPES), nicotinamide adenine dinucleotide (NADH), ethyl-
ene glycol tetraacetic acid (EGTA), 3-(N-morpholino)
propanesulfonic acid (MOPS), and paraformaldehyde were
purchased from Sigma-Aldrich (St. Louis, MO, USA).
Monochlorobimane was purchased from Fluka (Schnelldorf,
Germany). Potassium phosphate monobasic (KH2PO4), sodi-
um phosphate dibasic (Na2HPO4), trichloroacetic acid (TCA),
hydrogen peroxide (H2O2), methanol, high-performance liq-
uid chromatography (HPLC)-grade acetonitrile, and ethyl ac-
etate were acquired from J.T. Baker (Xalostoc Edo. Mex,
México). Commercial kits to measure the plasma activity of
LDH, AST, and ALT were from ELITech Diagnostic (Sées,
France). All other reagents and chemicals used were of the
highest grade of purity commercially available.

Experimental Design

Wistar male rats (150–200 g) housed under standard condi-
tions (12-h light/12-h dark, 22±2 °C) and fed ad libitum were
randomly divided into four groups (n=5/group): (1) Control,
received a single intraperitoneal injection of isotonic saline
solution. (2) Curcumin was suspended in 0.5 % carboxymeth-
ylcellulose and was given by oral gavage at dose of 400mg/kg
b.w. daily for 10 days. (3) K2Cr2O7, rats received a single
intraperitoneal injection of K2Cr2O7 15 mg/kg b.w. on day
10. (4) CUR-K2Cr2O7, curcumin was given daily for 10 days
and K2Cr2O7 was injected on day 10; rats were sacrificed 24 h
later. Animals were weighed daily. At the end of the study,
animals were anesthetized i.p. with sodium pentobarbital
(60 mg/kg b.w.), ascites fluid was collected and measured
with a 3–5-ml syringe from the opened abdominal cavity
and blood was obtained via abdominal aorta for the measure-
ment of the activity of LDH, AST, and ALT, and the levels of
MDA, total protein, and albumin. Brain, heart, lungs, kidneys,
spleen, pancreas, stomach, and intestine were dissected out,
cleaned, and weighed. Tissue samples for histological analy-
ses and for the measurement of both oxidative damage
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markers and activity of antioxidant enzymes were obtained.
All the experimental protocols were approved by the Local
Ethical Committee (FQ/CICUAL/036/12), according to the
Official Mexican Guidelines for the use and care of laboratory
animals (NOM-062-ZOO-1999) and for disposal of biological
residues (NOM-087-SEMARNAT-SSA1-2002).

Hepatic Injury Markers

The activity of LDH, AST, and ALT was measured using
commercial kits according to instructions by themanufacturer.
Total protein concentration wasmeasured in plasma according
to Lowry et al. [16]. Albumin concentration was determined
by the method of Doumas et al. [17].

Histological Analysis

Organ slices of 0.5-cm width were fixed by immersion in 4 %
paraformaldehyde, dehydrated, and embedded in paraffin.
Thin sections of 3–5 μm were stained with hematoxylin and
eosin and were examined under light microscope Leica (Cam-
bridge, UK).

Preparation of Homogenates

Organs were homogenized in a Brinkmann Polytron Model
PT 2000 (Westbury, NY, USA) for 10 s in cold 50-mM potas-
sium phosphate buffer, pH 7.3, and 0.5 M BHT. The homog-
enates were centrifuged at 3000g and 4 °C for 10 min and the
supernatant was separated to measure oxidative stress markers
and the activity of antioxidant enzymes. Protein concentration
was measured according to Lowry et al. [16].

Markers of Oxidative Damage

Markers of oxidative damage were measured as previously
described [18]. MDA, an important toxic byproduct of lipid
peroxidation, was measured by the reaction with 1-methyl-2-
phenylindole. A standard curve of tetramethoxypropane was
used and optical density was measured at 586 nm. GSH con-
tent was evaluated by following the formation of fluorescent
adducts between GSH and monochlorobimane, in a reaction
catalyzed by GST. A standard curve of GSH was used and the
fluorescence measured at excitation and emission wave-
lengths 385 and 478 nm, respectively, using a Synergy HT
multimode microplate reader.

Activity of Antioxidant Enzymes

Activity of antioxidant enzymes was measured as previously
described [19]. SOD activity was evaluated spectrophotomet-
rically at 560 nm by a previously reported method, based on
the NBT reduction to formazan. The amount of protein that

inhibits NBT reduction to 50 % of maximum was defined as
one unit of SOD activity. CATactivity was assayed by a meth-
od based on the decomposition of H2O2 by CAT contained in
the samples at 240 nm. One unit of CAT is defined as the
amount of enzyme that reduces 1 mmol of H2O2 per minute.
GPx activity was evaluated in an assay mixture containing
H2O2, GSH, GR, and NADPH. When GPx reduces H2O2,
GSH is oxidized to GSSG that is additionally reduced to
GSH by GR using NADPH, which is measured at 340 nm.
GR activity was assayed by using GSSG as substrate and
measuring the disappearance of NADPH at 340 nm. One unit
of GPx or GR is defined as the amount of enzyme that oxi-
dizes 1 μmol of NADPH per minute. GST activity was
assayed in a mixture containing GSH and CDNB. One unit
of GSTwas defined as the amount of enzyme that conjugated
1 nmol of CDNB with GSH per minute.

Statistical Analysis

Results were expressed as means±standard error of the mean
(SEM). Data were analyzed by one-way ANOVA followed by
Bonferroni’s multiple-comparisons test using Prism 5.0 soft-
ware (GraphPad, San Diego, CA, USA). A p value of <0.05
was considered statistically significant.

Results

Effect of K2Cr2O7 and Curcumin Exposure on Body
and Organs Weight as Well as Plasma MDA and Activity
of LDH, AST, ALT, and Ascites Accumulation

The treatment with K2Cr2O7 (15 mg/kg b.w.) and with
curcumin (400 mg/kg b.w.) did not modify the body
weight values (final and gain) in any group studied
(Table 1). Also, the weight of brain, heart, lungs, liver,
kidney, spleen, pancreas, stomach, and intestine was not
affected (Table 1). The treatment with K2Cr2O7 in-
creased plasma MDA levels by ∼88 % in comparison
with control and by ∼42 % versus CUR-K2Cr2O7, al-
though these changes were not significant (p>0.05). In
addition, K2Cr2O7 increased plasma activity of LDH,
AST, and ALT as well as ascites accumulation, while
reduced total protein (∼22 %) and albumin (∼18 %),
though these changes were not significant (p>0.05)
(Table 1). Curcumin prevented the increased activities
of plasma enzymes but it was unable to prevent ascites
accumulation.

Effect of K2Cr2O7 and Curcumin Exposure on Brain Tissue

Our results show that at 24 h, neither the intraperitoneal
acute treatment with K2Cr2O7 nor oral curcumin
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pretreatment induced oxidative stress. The activity of
antioxidant enzymes SOD, CAT, GR, and GST was un-
changed in all groups while GPx showed a non-
significant reduction in its activity of ∼30 % in
K2Cr2O7 group and ∼14 % versus CUR-K2Cr2O7

(Table 2). Consistently, there were no histological alter-
ations found on the cerebral cortex (Fig. 1).

Effect of K2Cr2O7 and Curcumin Exposure on Cardiac Tissue

Animals exposed to K2Cr2O7 and curcumin did not show
oxidative stress (Table 3) or histological injury (Fig. 2) in
the cardiac tissue. The activity of SOD and GPx was slightly
reduced in both K2Cr2O7 and CUR-K2Cr2O7 groups; howev-
er, these differences were not statistically significant (p>0.05).

Table 1 Body and organ weight,
plasma MDA content, LDH,
AST, andALTactivities as well as
the ascites fluid accumulation in
the four groups of rats studied

CUR curcumin, MDA
malondialdehyde, LDH lactate
dehydrogenase, AST aspartate
aminotransferase, ALT alanine
aminotransferase

*The weight of one kidney is
reported. Values are mean ±
SEM, n=5
a p<0.05 versus control
b p<0.05 versus K2Cr2O7

Control CUR K2Cr2O7 CUR+K2Cr2O7

Body weight (g)

Initial 168.8±1.7 169.4±3.6 166.0±1.9 168.2±1.9

Final 227.0±6.5 224.2±3.6 220.0±5.7 228.2±2.7

Gain 58.2±5.9 54.8±2.3 54.0±5.0 60.0±2.0

Organ weight (g)

Brain 2.39±0.08 2.34±0.08 2.23±0.03 2.21±0.08

Heart 1.11±0.02 1.16±0.05 1.08±0.03 1.14±0.02

Lungs 1.29±0.15 1.03±0.03 1.06±0.09 0.96±0.04

Liver 8.87±0.41 9.17±0.34 9.25±0.45 9.15±0.37

Kidney* 1.05±0.03 0.99±0.03 0.97±0.02 1.02±0.03

Spleen 0.81±0.07 0.96±0.07 0.85±0.04 1.01±0.05

Pancreas 0.69±0.04 0.68±0.02 0.88±0.11 0.83±0.06

Stomach 2.17±0.13 2.22±0.05 2.27±0.10 2.30±0.10

Intestine (∼5 cm duodenum) 0.92±0.03 1.07±0.05 0.92±0.09 1.01±0.08

Oxidative stress marker

Plasma MDA (nmol MDA/mg protein) 0.25±0.03 0.23±0.03 0.47±0.10 0.33±0.06

Hepatic injury markers

LDH (U/l) 181.1±14.8 172.9±13.6 335.6±24.7a 224.9±22.8b

AST (U/l) 77.5±3.4 73.1±4.3 269.0±32.4a 143.9±29.9b

ALT (U/l) 46.9±3.8 49.1±5.6 149.0±18.1a 85.1±7.6b

Ascites (ml) 0.2±0.1 0.4±0.1 2.9±0.4a 2.2±0.4a

Total protein (mg/ml) 7.7±0.8 7.0±0.4 6.0±0.6 6.8±0.5

Albumin (mg/ml) 3.3±0.3 3.4±0.2 2.7±0.4 3.1±0.3

Table 2 Oxidative stress markers and activity of antioxidant enzymes in the brain of rats of the four groups studied

Control CUR K2Cr2O7 CUR+K2Cr2O7

Oxidative stress markers

MDA (nmol MDA/mg protein) 1.21±0.03 1.26±0.24 1.16±0.18 1.19±0.19

GSH (mmol GSH/mg protein) 0.176±0.017 0.144±0.017 0.155±0.027 0.194±0.023

Antioxidant enzymes

SOD (U/mg protein) 206.9±18.3 243.7±43.7 241.8±24.6 252.4±26.0

CAT (U/mg protein) 12.1±0.7 14.3±3.3 14.9±2.3 13.9±2.5

GPx (U/mg protein) 63.2±5.6 67.2±8.8 44.0±11.5 51.0±4.9

GR (U/mg protein) 30.2±3.7 26.6±1.9 23.0±2.7 32.6±4.3

GST (U/mg protein) 31.1±2.4 44.4±2.4 37.6±2.2 40.6±5.6

Values are mean±SEM, n=4–5, p<0.05

CUR curcumin, MDA malondialdehyde, GSH glutathione, SOD superoxide dismutase, CAT catalase, GPx glutathione peroxidase, GR glutathione
reductase, GST glutathione-S-transferase
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Effect of K2Cr2O7 and Curcumin Exposure on Pulmonary
Tissue

We identified that rats administered with K2Cr2O7 or curcumin
did not present important alterations in the oxidative stress
markers, though the K2Cr2O7 group showed a non-significant
increase of ∼40 % in MDA content compared with control and
of∼65%versus CUR-K2Cr2O7 (Table 4).Moreover, the activity
of antioxidant enzymes was not altered by the exposure to those

agents (Table 4). Consistently with the above findings, pulmo-
nary tissue did not present histological alterations (Fig. 3).

Effects of K2Cr2O7 and Curcumin Exposure on Renal Tissue

In our rats, the results showed that intraperitoneal administra-
tion of K2Cr2O7 (15 mg/kg b.w.) or orally with curcumin
(400 mg/kg b.w.) did not induce alterations in the oxidative

A B 

C D 

Bv 

Fig. 1 Representative
histological figures of cerebral
cortex showing normal
architecture in the groups studied.
a Control. b Curcumin. c
K2Cr2O7. d Curcumin+K2Cr2O7.
Neurons (arrowheads), glial cells
(arrow), and blood vessels (Bv).
H&E stain, ×400

Table 3 Oxidative stress markers and activity of antioxidant enzymes in the heart of rats of the four groups studied

Control CUR K2Cr2O7 CUR+K2Cr2O7

Oxidative stress markers

MDA (nmol MDA/mg protein) 0.33±0.02 0.25±0.03 0.33±0.09 0.38±0.07

GSH (mmol GSH/mg protein) 0.091±0.007 0.099±0.021 0.110±0.011 0.105±0.007

Antioxidant enzymes

SOD (U/mg protein) 121.5±7.7 117.3±14.4 94.0±8.3 97.7±6.7

CAT (U/mg protein) 13.1±1.5 10.6±0.9 10.2±1.3 10.0±1.0

GPx (U/mg protein) 389.5±18.8 331.3±35.9 284.2±41.0 270.8±18.2

GR (U/mg protein) 5.2±0.2 4.8±0.5 4.1±0.4 4.7±0.5

GST (U/mg protein) 17.0±1.4 16.0±1.6 16.0±1.3 14.6±0.7

Values are mean±SEM, n=4–5, p<0.05

CUR curcumin, MDA malondialdehyde, GSH glutathione, SOD superoxide dismutase, CAT catalase, GPx glutathione peroxidase, GR glutathione
reductase, GST glutathione-S-transferase
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stress markers at 24 h (Table 5). In consequence, there was no
evident histological damage on renal cortex (Fig. 4). On the
other hand, it was found that coadministration of K2Cr2O7 and
curcumin increased significantly the GSH content and GPx,
GR, and GST activities in relation to control or K2Cr2O7

groups (Table 5). Activity of CAT and GR was slightly re-
duced in a non-significant way in K2Cr2O7 group (32 and
23 %, respectively, Table 5).

Effects of K2Cr2O7 and Curcumin Exposure on Splenic
Tissue

The treatments did not induce any effect on oxidative stress
markers (Table 6) or splenic histological architecture (Fig. 5).
The activity of CAT was reduced by ∼25 % in the K2Cr2O7

group (p>0.05) and the activity of SOD, GPx, GR, and GST
was unchanged (Table 6).

A B

C D

Cp 

Fig. 2 Representative
micrographs showing transverse
sections of striated muscle tissue
of heart from the groups studied. a
Control. b Curcumin. c K2Cr2O7.
d Curcumin+K2Cr2O7. There are
not histological abnormalities in
any of the studied groups.
Cardiomyocytes(arrowheads),
fibroblasts (arrow), and capillary
(Cp). H&E stain, ×400

Table 4 Oxidative stress markers and activity of antioxidant enzymes in the lung of rats of the four groups studied

Control CUR K2Cr2O7 CUR+K2Cr2O7

Oxidative stress markers

MDA (nmol MDA/mg protein) 0.27±0.04 0.28±0.06 0.38±0.07 0.23±0.04

GSH (mmol GSH/mg protein) 0.097±0.014 0.108±0.017 0.091±0.013 0.111±0.014

Antioxidant enzymes

SOD (U/mg protein) 126.8±6.8 113.4±16.8 115.7±5.7 110.5±3.8

CAT (U/mg protein) 117.6±13.0 105.8±4.8 93.8±7.8 128.9±12.0

GPx (U/mg protein) 54.5±3.0 56.0±8.7 43.8±6.7 66.7±9.6

GR (U/mg protein) 3.6±0.4 3.2±0.4 2.9±0.3 3.2±0.1

GST (U/mg protein) 14.3±1.0 12.8±2.3 15.0±1.3 14.5±1.3

Values are mean±SEM, n=4–5, p<0.05

CUR curcumin, MDA malondialdehyde, GSH glutathione, SOD superoxide dismutase, CAT catalase, GPx glutathione peroxidase, GR glutathione
reductase, GST glutathione-S-transferase
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Effects of K2Cr2O7 and Curcumin Exposure on Pancreatic
Tissue

The intraperitoneal administration of K2Cr2O7 did not
induce alterations in the oxidative stress markers or in
the activity of antioxidant enzymes (Table 7). Consis-
tently, there were no histological alterations in pancreas
(Fig. 6). In addition, curcumin had no deleterious effects
on pancreas.

Effects of K2Cr2O7 and Curcumin Exposure on Gastric Tissue

K2Cr2O7 (15 mg/kg b.w.) injected i.p. to rats produced a non-
significant increase ∼21 % in the MDA content compared
with control group and of ∼44 % versus CUR-K2Cr2O7

(Table 8). SOD activity was slightly reduced in K2Cr2O7

group (22 % compared with control, p>0.05, Table 8). More-
over, there were no histological abnormalities in gastric
mucosa (Fig. 7).

A B

C D

Al 

Lf 

Br 

Fig. 3 Representative lung
sections showing normal
histology in the groups: a control,
b curcumin, c K2Cr2O7, and d
Curcumin+K2Cr2O7. Alveolus
(Al), bronchioli (Br), and
bronchial-associated lymphoid
tissue (Lf). H&E stain, ×200

Table 5 Oxidative stress markers and activity of antioxidant enzymes in the kidney of rats of the four groups studied

Control CUR K2Cr2O7 CUR+K2Cr2O7

Oxidative stress markers

MDA (nmol MDA/mg protein) 0.39±0.04 0.34±0.04 0.46±0.03 0.35±0.02

GSH (mmol GSH/mg protein) 0.122±0.015 0.128±0.016 0.112±0.012 0.174±0.010b

Antioxidant enzymes

SOD (U/mg protein) 233.5±17.2 227.8±31.2 196.2±17.4 242.7±20.8

CAT (U/mg protein) 358.8±38.7 381.1±30.3 244.9±31.7 346.5±49.3

GPx (U/mg protein) 341.8±46.4 340.3±31.6 364.8±40.7 553.0±63.2a,b

GR (U/mg protein) 173.0±19.3 159.0±11.5 132.6±16.8 240.3±18.6b

GST (U/mg protein) 50.5±4.6 51.8±2.5 61.4±4.3 78.8±6.3a

Values are mean±SEM, n=4–5

CUR curcumin, MDA malondialdehyde, GSH glutathione, SOD superoxide dismutase, CAT catalase, GPx glutathione peroxidase, GR glutathione
reductase, GST glutathione-S-transferase
a p<0.05 versus control
b p<0.05 versus K2Cr2O7
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Effects of K2Cr2O7 and Curcumin Exposure on Intestinal
Tissue

The intraperitoneal injection of K2Cr2O7 did not induce oxi-
dative stress, alterations in the activity of antioxidant enzymes
(Table 9) or histological damage to duodenal mucosa (Fig. 8).

Discussion

In this work, the effect of a single dose of K2Cr2O7 (15 mg/kg
b.w.) administered i.p. to rats on the potential damage induced

in brain, heart, lungs, kidneys, spleen, pancreas, stomach, and
intestine that are targets of Cr(VI) toxicity as well as the
curcumin pretreatment (400 mg/kg b.w.) was evaluated.
K2Cr2O7 i.p. administered leads to liver dysfunction [15, 20]
since the hepatic portal vein carries Cr(VI) to the liver making
it susceptible to the first and persistent exposition [21]. More-
over, Bosgelmez et al. [20] revealed that a single intraperito-
neal Cr(VI) administration caused a significant chromium ac-
cumulation in liver tissue.

Once Cr(VI) enters the body, it can efficiently penetrate
cellular membranes through channels for isoelectric and
isostructural anions, such as SO4

2− and HPO4
2− [22]. Inside

A B

C D

Fig. 4 Representative
micrographs of renal tissue
showing normal histology of the
kidney cortex from the studied
groups. a Control. b curcumin. c
K2Cr2O7. d Curcumin+K2Cr2O7.
Glomeruli (arrowhead),
convoluted tubules (arrows).
H&E stain, ×400

Table 6 Oxidative stress markers and activity of antioxidant enzymes in the spleen of rats of the four groups studied

Control CUR K2Cr2O7 CUR+K2Cr2O7

Oxidative stress markers

MDA (nmol MDA/mg protein) 0.033±0.009 0.033±0.006 0.032±0.006 0.038±0.008

GSH (mmol GSH/mg protein) 0.013±0.001 0.018±0.002 0.015±0.002 0.015±0.001

Antioxidant enzymes

SOD (U/mg protein) 101.6±8.7 103.9±6.5 92. 7±9.4 117.1±5.8

CAT (U/mg protein) 121.3±5.3 112.6±11.2 90.3±7.2 108.5±8.6

GPx (U/mg protein) 148.3±13.5 154.8±13.0 128.8±8.2 135.0±4.1

GR (U/mg protein) 59.0±5.4 58.9±4.0 57.1±1.4 54.8±2.4

GST (U/mg protein) 11.8±0.7 11.9±0.7 10.3±0.5 10.5±0.4

Values are mean±SEM, n=4–5, p<0.05

CUR curcumin, MDA malondialdehyde, GSH glutathione, SOD superoxide dismutase, CAT catalase, GPx glutathione peroxidase, GR glutathione
reductase, GST glutathione-S-transferase
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cells, Cr(VI) is reduced through reactive intermediates Cr(V),
Cr(IV) to the more stable Cr(III) by cellular reductants such as
GSH, cysteine, ascorbic acid, riboflavin, and NADPH-
dependent flavoenzymes [23]. In fact, the Cr(VI)/(V), Cr(V)/
(IV), and Cr(III)/(II) redox couples have been shown to serve
as cyclical electron donors in a Fenton-like reaction, which
generates reactive oxygen species (ROS) such as hydroxyl
radical (HO•), superoxide radical (O2

•−), or H2O2 [24, 25].
The resulting excessive production of ROS may lead to oxi-
dative damage to deoxyribonucleic acid (DNA), lipids, and
proteins. It has been reported that Cr(VI) compounds may
induce injury to brain [26], heart [27], lungs [28], kidneys

[29, 30], spleen [31], pancreas [32], gastrointestinal system
[33], and other vital organs [34] depending on dose level,
schemes of treatment, and route of administration [35, 36].

Elevations in serum enzyme levels are taken as relevant
indicators of cell damage or cell death [37]. LDH is found
within the cytoplasm of essentially all cells; it is a highly
sensitive but nonspecific biomarker [38]. AST is widely dis-
tributed in cells throughout the body and is found in the liver,
heart, skeletal muscle, kidneys, brain, and pancreas [39]. ALT
is widely distributed but the largest pool of ALT is in the
cytosol of hepatic parenchymal cells. AST and ALT are very
important markers of hepatic injury [40]. Thus, the increase in
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Fig. 5 Representative
micrographs showing normal
spleen histology from the studied
groups. a Control. b Curcumin. c
K2Cr2O7. d Curcumin+K2Cr2O7.
Lymphocytes (arrowheads)
conforming the white pulp (Wp)
delimited by a dotted line,
follicular artery (Ca), and red pulp
(Rp). H&E stain, ×400

Table 7 Oxidative stress markers and activity of antioxidant enzymes in the pancreas of rats of the four groups studied

Control CUR K2Cr2O7 CUR+K2Cr2O7

Oxidative stress markers

MDA (nmol MDA/mg protein) 0.018±0.005 0.020±0.004 0.014±0.002 0.015±0.003

GSH (mmol GSH/mg protein) 0.057±0.002 0.056±0.010 0.054±0.003 0.065±0.007

Antioxidant enzymes

SOD (U/mg protein) 92.8±18.3 87.7±12.4 89.4±8.3 86.7±14.2

CAT (U/mg protein) 50.2±7.4 47.1±7.6 40.0±3.9 50.5±12.0

GPx (U/mg protein) 118.8±12.5 125.0±14.7 90.6±5.4 89.7±3.1

GR (U/mg protein) 50.2±5. 6 58.2±9.5 45.7±4.2 53.6±4.8

GST (U/mg protein) 11.7±0.9 10.8±1.1 10.3±1.1 10.6±1.4

Values are mean±SEM, n=4–5, p<0.05

CUR curcumin, MDA malondialdehyde, GSH glutathione, SOD superoxide dismutase, CAT catalase, GPx glutathione peroxidase, GR glutathione
reductase, GST glutathione-S-transferase
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the activity of ALT, AST, and LDH in rats treated with Cr(VI)
at the dose of 15 mg/kg was associated with hepatotoxicity. In
comparison with previously published data [12], the activity
ALTwas similar while those of ASTand LDHwere higher by
50 and 37 %, respectively. However, as it has been shown,
curcumin is able to prevent this damage. In this regard, it is
worth mentioning that in order to get a significant increase in
AST and ALT markers when K2Cr2O7 is subcutaneously
injected is necessary a dose higher than 30 mg/kg [41]. More-
over, one of the most serious outcomes of liver injury induced

by Cr(VI) is ascites, the pathological accumulation of fluid in
the peritoneal cavity that associated with a postsinusoidal
block of hepatic blood flow [14]. In contrast, the increase in
Cr(VI)-induced ascites fluid accumulation was not attenuated
by curcumin and it is probable that this antioxidant was unable
to resolve the postsinusoidal block associated with the Cr(VI)-
induced congestion and hemorrhage in the hepatic sinusoids at
this exposure time. Although in a previous work, it was dem-
onstrated that curcumin ameliorates the ascites production in-
duced by this poison at 48 h [13]. On the other hand, serum
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Fig. 6 Representative
histological sections of exocrine
pancreas showing normal
architecture in the groups studied.
a Control. b Curcumin. c
K2Cr2O7. d Curcumin+K2Cr2O7.
Pancreatic acinus (Pa), acinar
cells (arrowheads), secretory
granules (arrow), H&E stain,
×400

Table 8 Oxidative stress markers and activity of antioxidant enzymes in the stomach of rats of the four groups studied

Control CUR K2Cr2O7 CUR+K2Cr2O7

Oxidative stress markers

MDA (nmol MDA/mg protein) 0.110±0.030 0.105±0.022 0.134±0.026 0.093±0.014

GSH (mmol GSH/mg protein) 0.048±0.014 0.072±0.012 0.049±0.013 0.055±0.015

Antioxidant enzymes

SOD (U/mg protein) 189.1±23.4 197.1±7.2 148.0±11.1 158.7±29.0

CAT (U/mg protein) 14.2±1.8 12.7±2.7 13.5±1.9 14.0±1.4

GPx (U/mg protein) 46.3±5.2 52.7±1.9 43.0±5.8 44.0±7.9

GR (U/mg protein) 14.7±1.6 18.6±1.1 16.0±1.5 14.8±1.5

GST (U/mg protein) 2.3±0.3 2.1±0.1 2.2±0.3 2.8±0.3

Values are mean±SEM, n=4–5, p<0.05

CUR curcumin, MDA malondialdehyde, GSH glutathione, SOD superoxide dismutase, CAT catalase, GPx glutathione peroxidase, GR glutathione
reductase, GST glutathione-S-transferase

Lack of Systemic Toxicity of K2Cr2O7 Given i.p. 139



protein content is helpful in identifying hepatotoxicity since
the majority of plasma proteins like albumin are produced in
the liver, and when this organ is injured, its protein synthetic
capacity decreased [37]. Thus, in our experiment, Cr(VI) in-
duced a slight reduction in total protein and albumin concen-
trations that it was not different from control groups at 24 h.
Recently, Balakrishnan et al. [42] found in female rats that
Cr(VI) affects liver function and diminishes serum total pro-
teins after 14 days of a single subcutaneous injection of
K2Cr2O7 (10 mg/kg).

In addition, it has been reported that Cr(VI) compounds
may induce damage to brain, heart, lungs, kidneys, spleen,
pancreas, stomach, and intestine using several doses and
schemes of treatment. Other previous in vivo or in vitro stud-
ies have shown the protective effects of curcumin against ox-
idative damage in brain [43], heart [44], lungs [45], kidneys
[46], spleen [47], pancreas [48], stomach [49], and intestine
[50].

In this regard, our study suggests that, at 24 h of treatment,
the single i.p. K2Cr2O7 (15 mg/kg) administration did not alter
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Fig. 7 Representative gastric
tissue showing normal histology
of mucosa from the studied
groups. a Control. b Curcumin. c
K2Cr2O7. d Curcumin+K2Cr2O7.
Gastric glands (GI), chief cells
(arrowheads), and parietal cells
(arrows). H&E stain, ×400

Table 9 Oxidative stress markers and activity of antioxidant enzymes in the intestine of rats of the four groups studied

Control CUR K2Cr2O7 CUR+K2Cr2O7

Oxidative stress markers

MDA (nmol MDA/mg protein) 0.40±0.05 0.43±0.03 0.45±0.07 0.35±0.04

GSH (mmol GSH/mg protein) 0.029±0.007 0.034±0.009 0.023±0.005 0.032±0.010

Antioxidant enzymes

SOD (U/mg protein) 134.9±10.6 116.4±14.7 105.9±12.0 118.7±5.5

CAT (U/mg protein) 17.3±3.7 18.7±1.1 19.0±2.7 17.9±3.5

GPx (U/mg protein) 44.8±6.1 52.3±8.4 43.8±7.2 55.0±5.0

GR (U/mg protein) 4.3±0.4 3.9±0.7 4.1±0.8 4.2±0.8

GST (U/mg protein) 8.5±1.2 10.3±0.9 11.0±1.1 11.2±2.3

Values are mean±SEM, n=4–5, p<0.05

CUR curcumin, MDA malondialdehyde, GSH glutathione, SOD superoxide dismutase, CAT catalase, GPx glutathione peroxidase, GR glutathione
reductase, GST glutathione-S-transferase
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body weight, organs weight, oxidative status, or the tissue
architecture of brain, heart, lungs, kidneys, spleen, pancreas,
stomach, and intestine of rats exposed to this agent, at least at
24 h. In some organs, a slight but not significant increase in
oxidative stress parameters and a reduction in the activity of
antioxidant enzyme were found. These findings may be ex-
plained, in all probability, to the fact that the dose and/or the
time of exposure were not enough to cause further damage to
these organs. Another possibility is that endogenous antioxi-
dant systems (enzymatic and nonenzymatic) act synergistical-
ly for protecting cells against the potential oxidative injury
induced by Cr(VI). This may be achieved by reducing ROS
levels in several ways: SOD dismutates O2

•− to H2O2, CAT
transforms H2O2 to H2O, GR regenerates GSH and GPx,
using GSH, detoxifies H2O2 and peroxyl radicals. Also,
GSH may scavenge HO• and regenerate ascorbic acid and
α-tocopherol to their active forms. In kidney, curcumin in-
creased the GSH content and the activity of related GSH en-
zymes as a response to the Cr(VI)-induced lipid peroxidation.
In particular, peroxyl radicals seem to have been the predom-
inant ROS, because the activity of GPx increased and that of
CAT remains essentially unchanged. On the other hand,
curcumin pretreatment alone or in combination with Cr(VI)
has no harmful consequences on these tissues.

Diaz-Mayans et al. [51] observed neurotoxicity in rats
injected i.p. with sodium chromate at 2 mg/kg b.w. during
14 days. Bagchi et al. [52] identified oxidative stress and
DNA single-strand breaks in brain of rats treated with a daily

dose of sodium dichromate (2.5 mg/kg b.w. orally) in water
for 120 days, while Soudani et al. [53] recognized oxidative
stress in brain and cerebellum in animals administered with
K2Cr2O7 (700 ppm) during 21 days. In an epidemiologic
study of boilermakers, Magari et al. [54] suggested an associ-
ation between exposure to chromium and significant alter-
ations in cardiac autonomic function. Soudani et al. [55]
showed that K2Cr2O7 treatment induce oxidative stress and
abnormal ultrastructural changes such as myonecrosis,
vacuolization, hemorrhage, and fibrosis in the cardiac tissue
of rats that received 700 ppm in drinkingwater during 21 days.
Tsapakos et al. [56] observed low levels of strand break in rat
lung after intraperitoneal injection of sodium dichromate
(20 mg/kg b.w.) 1 h after injection; however, no strand breaks
remained by 24 or 36 h. Moreover, animals exposed
intranasallly [28] or intratracheally [57] to particulate Cr(VI),
presented injury, inflammation, and a significant elevation of
the mutation frequency in the lung. Chorvatovicova et al. [58]
injected K2Cr2O7 (12 mg/kg b.w.) i.p to rats six times over
2 weeks and they found a reduction on ascorbic acid levels in
lungs and kidneys, and an increase in hepatic MDA.

Nephrotoxicity has been reported in humans and experi-
mental animals following exposure to Cr(VI) [59]. However,
Kim and Na [36] have shown that nephrotoxicity and hepato-
toxicity of Cr(VI) depends on the route of administration.
Thus, the subcutaneous injection of Cr(VI) produces renal
damage and affect some other organs than liver because of
the compound-availability in the systemic circulation. In
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Fig. 8 Representative
histological sections of intestinal
mucosa showing normal
architecture in the studied groups.
a Control. b Curcumin. c
K2Cr2O7. d Curcumin+K2Cr2O7.
Intestinal gland (Ig), absorptive
cells (arrowheads), goblet cells
(arrow), and muscularis mucosae
(Mm). H&E stain, ×400
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contrast, intraperitoneal injection generates liver injury since
Cr(VI) is directly acquired through portal vein and accumu-
lated in liver. Additionally, Dartsch et al. [60] showed
that proximal tubule OK cells were 10 times more sus-
ceptible than human hepatocellular carcinoma HepG2
cells to the toxicity induced by Cr(VI) on 24 h. This
fact could be useful to understand why it is necessary to
administer higher doses of Cr(VI)-compounds subcuta-
neously for inducing hepatic damage.

The subcutaneous injection of sodium dichromate pro-
duces a higher degree of nephrotoxicity than when it is
administered i.p. to rats [36]. Compelling evidence have
shown that a single subcutaneous injection of K2Cr2O7

(15 mg/kg b.w.) to rats induced tubule interstitial damage
[61–63]. In the study by Fatima and Mahmood [64], a single
intraperitoneal dose of K2Cr2O7 (15 mg/kg b.w.) induced an
impairment of renal function and a decrease in the activities
of brush border membranes, antioxidant enzymes, and phos-
phate transporter in rats at 48 h. Patlolla et al. [15] admin-
istered K2Cr2O7 i.p. to rats at the doses of 2.5, 5, 7.5, and
10 mg/kg b.w. at 24-h intervals, and they showed that liver
and kidney could be damaged by Cr(VI)-induced oxidative
stress. das Neves et al. [65] found that the injection of po-
tassium chromate (30 mg/kg b.w.) induced the enlargement
of the capsule and depletion of the red pulp cells in the
spleen, accompanied by an increase in macrophages. Dey
and Roy [31] injected rats i.p. with Cr(VI) as chromium
trioxide at a dose of 0.8 mg/100 g b.w. per day during
28 days, and they found an increase on GSH levels and
CAT activity as a compensatory mechanism against ROS.
Tarasub et al. [66] observed in rats administered with
K2Cr2O7 (5, 10, and 20 mg/kg b.w.) by the oral route that
the histology of spleen remains unchanged, but there was a
significant increase in percentage of chromosome aberra-
tions in a dose-dependent manner. The acute administration
of Cr(VI) induces pancreatic injury and extensive oxidative
damage [32] in rats administered subcutaneously a single
dose of K2Cr2O7 (50 mg/kg b.w.). Solis-Heredia et al. [41]
observed in rats injected subcutaneously with K2Cr2O7 (20–
50 mg/kg b.w.) that the endocrine cells were more resistant
to K2Cr2O7 toxicity than exocrine cells apparently because
of Cr(VI)-mediated metallothionein induction protect them
against Cr(VI)-induced toxicity.

Cr(VI) compounds, which may be found in the diet,
can interact directly with DNA of gastric mucosa [67]
and modify the expression of genes involved in cancer
induction [68], but its carcinogenic potential when orally
ingested remains controversial [69, 70]. De Flora et al.
[71] administered sodium dichromate to mice for 9 con-
secutive months, at doses corresponding to 5 and 20 mg
Cr(VI)/l. Under these conditions, Cr(VI) failed to enhance
the frequency of DNA–protein crosslinks and did not
cause oxidative DNA damage in the stomach and

duodenum. The extracellular reduction of Cr(VI) to Cr(III),
which occurs primarily in the stomach, is considered a
mechanism of detoxification [72]. Acute oral administra-
tion of Cr(VI) resulted in epithelial cell injury and the
decrease in antioxidant activities associated with oxidative
stress in the intestine [73–75]. Upreti et al. [76] and
Shrivastava et al. [77] showed that the resident intestinal
microflora have a significant role in detoxification and
elimination of the harmful chromium from the body by
converting toxic Cr(VI) to a less toxic Cr(III).

According to the evidence, the lack of systemic toxicity
after intraperitoneal poisoning with Cr(VI) could be explained
by the following: (1) toxicity depending on the route of ad-
ministration; (2) compounds administered i.p. are absorbed
primarily through the portal circulation and, therefore, it must
pass through the liver where it is accumulated before reaching
other organs; (3) the dose we used in this experiment was too
low in order to induce oxidative stress and injury in the eval-
uated organs; (4) the time of exposure was not enough to
detect an increase in oxidative stress markers, alterations on
the activity of antioxidant enzyme, or histopathological
changes; or (5) a single intraperitoneal injection was not
enough so that repeated doses are required to produce system-
ic damage.

As it was shown, the intraperitoneal administration of
Cr(VI) could be an excellent tool for developing models
to understand in a better way the mechanisms by which
this kind of agents can cause toxicity if the necessary
conditions are fulfilled. We suggest in future studies to
deepen in the mechanisms associated with ascites fluid
accumulation induced by Cr(VI) since the information is
scarce. On the other hand, the security and efficacy of
curcumin, as well as their antioxidant properties, bring
this promising natural product to the forefront of thera-
peutic agents for environmental and occupational toxins.
Despite the protective effects of curcumin against
Cr(VI)-induced nephrotoxicity [46], hepatotoxicity [12],
and toxicity in male reproductive system [78, 79], the
number of studies is limited so that further investigation
is necessary in order to propose it as a potential thera-
peutic agent against oxidative damage generated by
Cr(VI) exposure. In conclusion, the intraperitoneal injec-
tion of 15 mg/kg of K2Cr2O7, that is able to induce
hepatotoxicity, was unable to induce histological and
oxidative damage in diverse target organs because, in
all probability, is preferably accumulated in liver.
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