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Abstract Silkworm (Bombyx mori) is an important economic
insect and the model insect of Lepidoptera. Because of its high
fecundity and short reproduction cycle, it has been widely
used in reproduction and development research. The high
concentrations of titanium dioxide nanoparticles (TiO2 NPs)
show reproductive toxicity, while low concentrations of TiO2

NPs have been used as feed additive and demonstrated signif-
icant biological activities. However, whether the low concen-
trations of TiO2 NPs affect the reproduction of B. mori has not
been reported. In this study, the growth and development of
gonad of B. mori fed with a low concentration of TiO2 NPs
(5 mg/L) were investigated by assessing egg production and
expression of reproduction-related genes. The results showed
that the low concentration of TiO2 NPs resulted in faster
development of the ovaries and testes and more gamete dif-
ferentiation and formation, with an average increase of 51
eggs per insect and 0.34×10−4 g per egg after the feeding.
The expressions of several reproduction-related genes were
upregulated, such as the yolk-development-related genesOvo-
781 and vitellogenin (Vg) were increased by 5.33- and 6.77-
folds, respectively. This study shows that TiO2 NPs feeding at
low concentration can enhance the reproduction of B. mori,
and these results are useful in developing new methods to
improve fecundity in B. mori and providing new clues for its
broad biological applications.
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Introduction

Silkworm (Bombyx mori) belongs to Lepidoptera
(Bombycidae) and is an economically important insect. It
was domesticated from wild B. mori over 5700 years ago
[1]. B. mori is a complete metamorphosis insect with four
stages of development of about 50 days: egg, larva, pupa, and
adult. The adult insect lays about 500 eggs per animal and is
designated as the model insect of Lepidoptera since 2002 [2].
In 2003, the complete genome of the insect was sequenced,
and the sequence information has been widely used in genet-
ics, developmental biology, ecology, toxicology, cell biology,
and biochemistry studies [3].

Titanium dioxide nanoparticles (TiO2 NPs) are widely used
as an additive in the food industry, cosmetics, electronics,
coatings, medical products, and animal husbandry [4–7]. In
animal husbandry, TiO2 NPs are used to promote animal
growth [8] and protein synthesis [9]. Previous studies found
that TiO2 NPs can improve the growth and antioxidation
capacity of plants [10, 11] and enhance carbon and nitrogen
metabolism and increase the resistance of spinach [11]. In
Drosophila melanogaster, ingestion of TiO2 NPs up to a dose
of 200 μg/mL during the larval stage did not affect the
development or survivorship [12]. Zhang et al. found that
feeding B. moriwith 5 mg/L of TiO2 NPs resulted in increased
weight and leaf-silk conversion, improved activity of the
midgut proteases for more efficient nutrient uptake, and in-
creased protein synthesis and metabolism [13]. Previous stud-
ies have shown that more than 90 % of B. mori proteins were
allocated to the silk gland and the ovaries for silking and
oviposition [14]. Increased silking has been observed after
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TiO2 NPs feeding [13]. However, whether the feeding will
affect the reproduction activity of B. mori remains unclear.

In the present study, gonad development, oviposition, and
expression of reproduction-related genes were investigated
after feeding B. mori with a low concentration of TiO2 NPs
(5 mg/L) to understand the effect of TiO2 NPs on fecundity.

Materials and Methods

Insect and Chemicals

The larvae of B. mori strain (Suju, Minghu) maintained in our
laboratory were reared on mulberry leaves under a 12-h light/
12-h dark cycle. TiO2 NPs were prepared via the controlled
hydrolysis of titanium tetrabutoxide. The detailed synthesis
and characterization of TiO2 NPs were described in our pre-
vious reports [15, 16]. The average particle size of the TiO2

NPs powder suspended in 0.5 % (w/v) hydroxypropyl meth-
ylcellulose (HPMC) K4 M solvent after 24-h incubation
ranged from 5 to 6 nm. The mean hydrodynamic diameter of
TiO2 NPs in HPMC solvent ranged between 208 and 330 nm
(mainly 294 nm), and the zeta potential was 9.28 mV [16].

Method for Suspending TiO2 NPs

TiO2 NPs powder was dispersed into 0.5 % (w/v) HPMC, and
the mixture containing TiO2 NPs was treated with
ultrasonication for 30 min and mechanically stirred for
5 min to suspend the compound.

TiO2 NPs Feeding

Mulberry leave were soaked in 5 mg/LTiO2 NPs. The soaked
leaves were dried naturally at room temperature and used to
feed the 5th instar larvae continuously from exuviation till
mounting, three times a day. The control larvae were fed with
the leaves soaked in water. Female and male B. mori in the
TiO2 NPs treatment and control groups were reared separately,
and each treatment was repeated three times with 30 larvae.

Sample Preparation and Total RNA Isolation

The larvae were dissected at mature silkworm after being fed
with TiO2 NPs, and the ovaries and testes were collected and
stored at −80 °C. Total RNAwas extracted from the samples
using TRIzol reagent (Takara Bio Inc., Dalian, China) and
then treated with DNases to remove the potentially contami-
nated genomic DNA. The integrity and quality of the RNA
were assessed by formaldehyde agarose gel electrophoresis,
and the concentration was quantitated spectrophotometrically
at 260 and 280 nm.

Histopathological Evaluation

The ovaries and testes were histopathologically examined
using the standard laboratory procedures. The samples were
embedded in paraffin, sliced to thin sections (5-μm thick), and
mounted onto glass slides. After hematoxylin-eosin staining,
the sections were evaluated by a histopathologist unaware of
the treatments, using a light microscope (Nikon U-III Multi-
point Sensor System, Nikon, Tokyo, Japan).

RT-qPCR Analysis

The primers specific for the twelve genes of interest are listed
in Table 1. Reverse transcription polymerase chain reaction
(RT-qPCR) was performed on a ViiA 7 PCR machine (ABI
Applied Biosystems, Foster City, CA, USA) using the SYBR
Premix Ex Taq kit (Takara Bio Inc., Dalian, China) in a total of
reaction of 20 μL under conditions as follows: denaturation at
95 °C for 1 min, followed by 45 cycles of denaturing at 95 °C
for 5 s, annealing at 55 °C for 10 s, and extension at 72 °C for
10 s.

Statistical Analysis

All the data were averaged from three independent measure-
ments and expressed as mean±SD. One-way analysis of var-
iance (ANOVA) was carried out to compare the differences of
means among the multi-groups. Dunnett’s test was performed
to compare the data with the control group. Statistical signif-
icance for all tests was judged at a probability level of 0.05 and
0.01 (P<0.05; P<0.01).

Results and Analysis

Effect of TiO2 NPs Feeding on Gonad Development

In order to investigate the effect of TiO2 NPs on gonad
development, ovaries and testes of mature silkworm were
dissected and examined under a microscope. As shown in
Fig. 1a, the morphology of the ovaries and testes was normal
in control B. mori and B. mori fed with TiO2 NPs, but the sizes
of the ovaries and testes were larger in TiO2-NPs-fed B. mori.
Histopathological observations showed that the animals in the
control and treatment groups had differentiating sperm and
egg cells with normal morphology and thin wall (Fig. 1b).
After the TiO2 NPs treatment, the ovaries showed denser
oocyte differentiation and formation compared with those of
the control (Fig. 1b). However, no significant difference was
observed in testes (Fig. 1b), indicating that TiO2 NPs exhib-
ited stronger impact on ovaries. Gonad development is also
regulated by endocrine hormones secreted under external
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stimuli. After TiO2 NPs treatment, gonadosomatic indexes
(GSIs) were significantly higher than in the control (Fig. 2)
with a 20.03 % increase in male and 24.89 % increase in
female. These results were consistent with the data in Fig. 1
and showed that TiO2 NPs promote not only the growth of
gonad but also the differentiation and formation of eggs in the
ovary.

Effects of TiO2 NPs Feeding on Fecundity

In order to study the effect of TiO2 NPs feeding on fecundity,
the size of pupae, ovipositor of virgin moth, and oviposition
were compared between the B. mori fed with TiO2 NPs and
those without TiO2 NPs feeding (Fig. 3). As shown in Fig. 3a,
the 3-day-old pupae had normal morphology and color in the
control and treated groups. However, they were slightly larger
after feeding with TiO2 NPs with body weight increases of
0.23 and 0.17 g for female and male pupae, respectively.
These data are consistent with the data in Fig. 1, indicating
that TiO2 NPs treatment increased the absorption and accu-
mulation of nutrients in B. mori. The ovipositors of virgin
moths are shown in Fig. 3b. As shown, there were more
densely distributed eggs in the ovipositors of TiO2-NPs-fed
animals than those of the control, suggesting that TiO2 NPs
feeding is beneficial for egg formation in the adult stage. In
order to determine the cumulative effect of TiO2 NPs feeding
on oviposition, fecundity was investigated (Table 2) and 51
more eggs per insect and 0.34×10−4 g more mass per egg
were found after TiO2 NPs feeding (Table 2). However, fer-
tilization rates were not different between the two groups
(P>0.05). The morphology of the eggs is shown in Fig. 3c.
The density of eggs was higher in insects fed with TiO2 NPs
than in the control. These data suggested that TiO2 NPs not
only increase the nutrient accumulation and transformation
during the reproductive development but also improve the
oviposition ability in B. mori.

Effects of TiO2 NPs Feeding on Expression of Gonad
Development-Related Genes

To investigate the effects of TiO2 NPs on transcription and
expression of gonad development-related genes, the transcript
levels of these genes in the ovaries and testes were determined
by the RT-qPCR method using actin 3 as the housekeeping
gene (Fig. 4). The TiO2-NPs-induced upregulated genes in the
ovaries are shown in Fig. 4a, including vitellogenin (Vg),Ovo,
Ovo-781, Ovo-498, Otu, Sxl-S, and Sxl-L, with 6.77-, 2.00-,
5.33-, 2.99-, 2.43-, 1.73-, and 2.30-folds increase, respective-
ly. Vg, Ovo, Ovo-781, Ovo-498, and Otu are related to nutri-
tion metabolism in ovarian development [17, 18]. The upreg-
ulation of these genes following TiO2 NPs feeding indicates
that the compound can increase nutrient accumulation in the
ovary for the development of eggs. Sxl-S and Sxl-L are the
self-splicing regulatory genes, and their upregulation is an
indication that TiO2 NPs facilitate the self-modification of
female transcription factors. The TiO2-NPs-induced upregu-
lated genes in the testes are shown in Fig. 4b, including Achi-
L, Aly, and Vlg with 3.55-, 5.78-, and 2.36-folds increase,
respectively. The three genes are related to energy metabolism
and gamete differentiation in the testis, and their upregulation
suggests that TiO2 NPs treatment can provide sufficient ener-
gy for better gamete formation [19]. The above results show
that TiO2 NPs can upregulate the transcription of genes related
to reproductive development of gonads and could be respon-
sible for the reproductive ability of B. mori.

Discussion

Effects of TiO2 NPs on the Biological Environment

As a new additive, TiO2 NPs are widely used in bleaching,
food additive, cosmetics, air purification fields, and biological

Table 1 Primers of twelve genes selected for RT-qPCR analysis

Gene name Forward primer Reverse primer Primer size (bp)

Actin 3 CGGCTACTCGTTCACTACC CCGTCGGGAAGTTCGTAAG 147

Ovo GGACCTTGATTCACCGACAG CGAACTTTGTTGGGTCGTC 125

Ovo-781 GTCCTGCAGCTGCTGTAAG CGAGCAAACTCTGCAAACGAAC 137

Ovo-498 GACGAAGGATGTGTGCGTG AGGCATACGTGTGCTGGAC 119

Otu GTGACAGAGGAAACGGACAT ACTTCGGCTTGAGAATTGC 136

Aly GAATGCCCGCTAGGATCAG GTCTTGCATTTGGATGCCTAC 148

Vlg GACCATGATGATAGGGGTCG CGATAGGTCTCGGAGGATTC 133

Achi-L GACCACAGGTACAACGCGTAC CATCAGCTCCGTCCCAAGAAGC 121

Sxl-S GAGGAACATGGCAAGCAGAAG CGGAGGTCTGTTACAAACGCC 144

Sxl-L CACTCCTGTCAGTAGCTGG GGTAACGAACATCGCGTAAAG 132

Vg GTCGATATTGCATCCCCATC CTTGTGCCATCGATAGAACAG 125
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TiO2 NPs ovaryTiO2 NPs testis

Control ovaryControl testis

TiO2 NPs ovaryTiO2 NPs testis

Control ovaryControl testis

(a) 

(b) 

Fig. 1 Effects of TiO2 NPs on the
gonadal development (a) and
histophysiological examination of
the gonad of mature silkworm (b)

Fig. 2 Effect of TiO2 NPs on the
gonadosomatic index of mature
silkworm. Gonadosomatic index
(GSI=gonad wet weight (g)/total
body wet weight (g)×100) of
mature silkworm (n=10). Each
group was analyzed in triplicate,
and the results are shown as mean
±standard error. Significant
differences between groups were
analyzed using one-way ANOVA
and Tukey’s multiple comparison
test. Asterisks (**) indicate
significant differences compared
to the control values (p<0.01)
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research [20–24]. The safety and efficacy of TiO2 NPs in
various biological environments have been extensively stud-
ied. In recent years, TiO2 NPs have been investigated through
whole body exposure, dermal exposure, gastric lavage, inha-
lation, and feeding using animal models in efforts to define
their impacts on various biological and physiological metab-
olisms for potential biological applications [25–27]. In fact,
the different impacts of the compound are resulted from
different organ concentration of TiO2 NPs and different effects
on the biological processes. High concentration of TiO2 NPs is
toxic to the reproductivity of CD-1 mice and the fruit fly,
Drosophila [28]. Low concentration of TiO2 NPs is not bio-
logically toxic, and instead, it can promote the growth and
differentiation of vertebrate cells. Fabian et al. found that TiO2

NPs at the dose of 5 mg/kg body weight is not toxic to tissue
of male Wistar rats [29], which is consistent with what was
reported by Umbreit et al. [30]. In addition, a trace amount of
TiO2 NPs incorporated into orthopedic materials is shown to
promote the self-repair and regeneration of bones [31]. In cell
engineering, a TiO2-doped glass-microsphere-fortified surface
is found to be a suitable surface for cell adhesion and growth
[32].

Feeding of B. mori with TiO2 NPs is found to increase the
metabolism of proteins and carbohydrates to meet the energy
demand for growth and development. It also increases the
antioxidation capacity and resistance to pesticide and virus
damage [13, 33, 34]. Previous reports have demonstrated that

TiO2 NPs feeding can increase the amount of silk production
and improve the silk quality. In this study, for the first time, we
found that TiO2 NPs feeding can promote the growth and
development of the gonad (Figs. 1 and 2), increase differen-
tiation and formation of eggs (Fig. 1b), and improve the ability
to oviposition (Fig. 3 and Table 2). These findings provide a
new clue for the use of low concentration of TiO2 NPs to
improve the reproductive capacity of organisms.

Possible Mechanism Underlying the Effect on Reproductive
Ability

Vitellogenin (Vg) is a complex precursor of yolk protein. It is
involved in energy reserves in embryonic development and is
synthesized in the liver of vertebrates, which is an equivalent
of fat body in insects [35, 36]. The Vg gene is an excellent
biomarker for reproductivity and is widely used in determina-
tion of the reproductive ability in insects with rich yolk pro-
teins in egg [37]. Previous reports have indicated that the
development of B. mori ovary is regulated by nutrient accu-
mulation and energy metabolism [37]. Xu et al. pointed out
that the development of B. mori ovary is associated with the
transfer of yolk proteins from the fat body to the ovary. 4-NP
(4-nonylphenol) a known endocrine-disrupting chemical is a
persistent environmental contaminant. When exposed to 4-
NP, the expression of the Vg gene was downregulated, leading
to the reduced translocation of yolk proteins and abnormal

(c)

(a) 

TiO2 NPs Control 

TiO2 NPs Control 

TiO2 NPs Control 

Control TiO2 NPs 

(b)Fig. 3 Effects of TiO2 NPs on the
growth of 3-day-old pupae (a),
the ovipositor of virgin moth (b),
and the oviposition of B. mori (c)

Table 2 Effects of TiO2 NPs on
the oviposition of B. mori Egg number (grain) Egg weight (g) Unfertilized egg (grain)

Control 569±8 % 6.35×10−4±0.01 % 7±1 %

TiO2 NPs 620±7 % 6.49×10−4±0.01 % 5±0 %
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development of egg and sperm cells in gonad and subsequent-
ly reduced gonadosomatic index, fecundity, and hatching rate
[37]. The expression level of the Vg gene in the ovary was
6.77-fold more in the TiO2-NPs-fed animals than in the con-
trol (Fig. 4a), suggesting that the compound may promote the
development and growth of reproductive gland and improve
the fecundity in B. mori.

The Ovo and Otu genes are closely associated with
ovarian development. As a transcriptional factor, Ovo is
involved in energy metabolism. Depletion of Ovo expres-
sion by RNA interference did not change the fertilization
rate greatly in B. mori eggs with a slight reduction in the

hatching rate and remarkable reduction in egg production
by about 15 % [17, 18]. Data in Fig. 4a show that the
expressions of Ovo, Ovo-781, Ovo-498, and Otu in the
ovary of TiO2-NPs-fed animals were 2.00-, 5.33-, 2.99-,
and 2.43-folds that of the control, respectively, indicating
that these genes work together with Vg to regulate nutrient
accumulation in the ovary to provide adequate nutrition
for the development of the egg. Sxl has an important role
in the regulation of sex differentiation in B. mori. The
female-specific Sxl+ mRNA encodes a full-length Sxl+

protein that functions to autoregulate the splicing of its
own pre-mRNA, as well as the pre-mRNA of the tra+

Fig. 4 Analysis of transcriptional
levels of the gonad development
genes in the ovary (a) and testis
(b) of mature silkworm after TiO2

NPs feeding. All gene
expressions were normalized with
actin 3. Each test sample
contained five individuals and
each sample was run in triplicate.
Asterisks indicate significant
differences compared to the
control values (*p<0.05,
**p<0.01)
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gene. The alternative slicing of the Sxl gene is important
in regulating the development of the ovary [38]. Data in
Fig. 4a show that the expressions of two subtypes of Sxl-S
and Sxl-L of the Sxl gene in the ovary of TiO2-NPs-fed
animals increased by 1.73- and 2.30-folds, respectively,
comparing with those in the control. These data and
results in Fig. 1b all show that upregulation of the Sxl
gene after TiO2 NPs feeding promotes the alternative
splicing and is conducive to the differentiation and for-
mation of eggs.

In the testes of TiO2-NPs-fed B. mori, Achi-L, Aly,
and Vlg were 3.55-, 5.78-, and 2.36-folds higher than
those of the control, respectively (Fig. 4b), while the
differentiation and formation of sperm cells were not
different between the two treatments (Fig. 1b), nor the
fertilization rate (Table 2), although the testis GSI was
higher in TiO2-NPs-fed B. mori than in the control
(Fig. 2). These results indicate that increased expressions
of Achi-L, Aly, and Vlg following TiO2 NPs are related to
the growth of the testis, but not related to the differen-
tiation and formation of germ cells. More studies are
needed to define the sensitivity of ovary and testis to
TiO2 NPs.

The Significance to Improve the Reproductivity of B. mori

B. mori is an important social insect. The number and quality
of the eggs are important for the silk industry [3, 37]. Our
work shows that TiO2 NPs can increase the amount of eggs
and improve the reproductivity of the B. mori. This suggests
that as a B. mori feed additive, TiO2 NPs can increase the raw
cocoon production [14] and also the parent silkworm rearing.
These findings broaden the application of TiO2 NPs as addi-
tive in silk production.

In summary, our work has demonstrated that TiO2 NPs
feeding upregulate the expression of genes related to
reproductive systems and promote the development and
growth of the reproductive gland in B. mori. It conse-
quently facilitates the differentiation and formation of
gametes in the ovary and increases the amount of pro-
duced eggs and fecundity in the insect.
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