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Abstract Fluoride and lead are two common pollutants in the
environment. Previous investigations have found that high
fluoride exposure can increase the lead burden. In this exper-
iment, in order to study on the molecular mechanisms of
central neural system injury induced by the above two ele-
ments, differently expressed protein spots in hippocampus of
male mice treated with 150 mg sodium fluoride/L and/or
300 mg lead acetate/L in their drinking water were detected
by two-dimensional electrophoresis (2-DE) and mass spec-
trometry (MS). The behavior tests showed that 56 days of
fluoride and lead administration significantly reduced the
vertical activity and lowered the memory ability of mice. In
addition, results of 2-DE and MS revealed that nine spots
demonstrated above a twofold change in the same trend in
all treatment groups, which were mainly related with (1)
energy metabolism, (2) cell stress response/chaperones, (3)
cytoskeleton development, (4) protein metabolism, and (5)
cell surface signal transduction. The findings could provide
potential biomarkers for lesion in nervous system induced by
fluoride and lead exposure.
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Introduction

Excessive fluoride exposure presents a severe hazard to diverse
soft organs such as the brain [1–3], thyroid [4], kidney [5], and
testis [6]. Fluoride has been documented to easily distribute in
the body through the circulatory system and penetrate the
cellular membrane, inducing cellular damage [7]. Dysfunction
of central nervous system occurs when fluoride passes the
blood–brain barrier (BBB) and accumulates in different parts
of the brain. It was reported by a number of epidemiological
investigations from China [8, 9], India [10–13], Iran [14, 15],
and Mexico that Children who lived in high-fluoride areas
presented lower intelligence quotient (IQ) [16].

The behavior is the product of what occurs in the nervous
system; therefore, behavioral analysis is considered to be an
essential assay of neural function [17]. Experiments by Y-
maze test [18], open field test [19], and forced swim test
[20] from our and other lab showed that animals with adverse-
ly affected behavior had high fluoride concentration in the
brain or blood. Previous studies showed that fluoride signifi-
cantly changed the expressions of several functional proteins
in animal brain like metabotropic glutamate receptor 5
(mGluR5) [21], N-methyl-D-aspartate receptor 1
(NMDAR1) [22], neuronal nicotinic acetylcholine receptors
(nAChRs) [23], and nuclear transcription factor kappa-B r65
(NF-κB r65) [2], which closely related to the cognitive ability.
However, the specific mechanisms still remain largely
unknown.

Actually in the normal environment, humans and animals
are exposed to more than one chemical. The interaction of
multiple exposures may enhance or reduce the toxic effect of
individual toxicants [24]. Coplan et al. [25] and Masters et al.
[26] reported that in communities treated with silicofluoride in
drinking water, the prevalence of children with elevated blood
lead was nearly double than that in non-fluoridated areas. In
China, Zhai et al. also found the elevated lead level in children
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who live in high fluoride area [27]. The findings of epidemi-
ological investigations are supported by experimental studies
which found that fluoride increased the blood lead concentra-
tions in rats [28]. Our earlier behavioral experiment showed
that lead and fluoride together significantly decreased the
learning ability of rats [18]. But the toxicological similarity
shared by both fluoride and lead lacks further study. There-
fore, in the present study, to identify the specific proteins
related to fluoride–lead-induced neurotoxicity, two-
dimensional gel electrophoresis (2-DE) combined with mass
spectrometric (MS) technologies were applied to explore the
differentially expressed proteins in mouse hippocampus.

Materials and Methods

Animals and Treatment

Sixty healthy Kunming mice (female/male=2:1), about 20 g in
weight, were supplied by the experimental animal center of
Shanxi Medical University. Animals were kept in plastic cages
and allowed to acclimate for 1 week in our laboratory with their
standard diets. Then each pair of two female and one male was
placed together for mating. When the vaginal plug was ob-
served, the females were separated from the male and kept
individually. To produce fluoride and/or lead exposure pups,
pregnant mice were divided into control and experimental
groups as follows: (1) control group: received double-distilled
water; (2) high fluoride (HiF) group: received sodium fluoride
(150 mg/L); (3) high lead (HiPb) group: received lead acetate
(300 mg/L); and (4) high fluoride plus high lead (HiF+HiPb)
group: received sodium fluoride (150 mg/L) and lead acetate
(300 mg/L). Before postnatal day 14, the pups derived their
nutrients only frommaternal milk. After day 14, they gradually
began to eat feed and drink water, concomitantly with suckling
maternal milk. At the age of postnatal day 21, the pups ate and
drank entirely by themselves and given the same treatment as
their parental generation until the postnatal day 56. The doses
of sodium fluoride and lead acetate were selected according to
our previous study [18]. To avoid the gender difference, only
the male offspring mice were used in this experiment. Animals
had free access to food and water under standard temperature
(22–25 °C), 12/12-h light/dark cycle, ventilation, and hygienic
conditions. The study design was approved by the Institutional
Animal Care and Use Committee of China.

Spontaneous Activity Test

The spontaneous ability of male mice was detected in an activity
chamber as previously described with minor modifications [18].
Briefly, the chamber consists of a clear glass box with two video
cameras fixed on the top and one side of the chamber to monitor
the mice behavior over 6 min. The floor of the chamber was

divided into 25 checks. The frequency of walking across more
than one check and the frequency of standing on two feet were
recorded as the horizontal and vertical activities.

Novel Object Recognition Test

The novel object recognition (OR) test proceeded in three
phases [29]: (1) adaptation period (AP): two novel objects
(A and B) were placed equidistantly into the glass chamber,
and the mice were allowed to investigate for 10 min and
explore the objects. The exploring time was recorded; (2)
short-term memory (STM): 90 min later, object B was re-
placed with the object C, and the time spent on exploring A
and C was recorded; (3) long-term memory (LTM): 24 h later,
object C was replaced with the novel D. The time spent on
exploring A and D was recorded. Exploration was defined as
sniffing and/or touching the objects. Finally, memory index
(MI) was applied to reflect memory ability, which was calcu-
lated by the ratio of the exploring time on A to the total
exploring time on two objects in the each phase.

Sample Preparation

After a 24-h food-and-water fast, mouse pups were anesthe-
tized with 20 % urethane (ethyl carbamate, NH2COOC2H5)
solution at the age of postnatal day 56. The hippocampus were
quickly removed and stored at −80 °C until use. The frozen
samples were suspended and homogenized in 1 mL ice-cold
lysis buffer consisting of 30 mM Tris–HCl, 7 M urea, 2 M
thiourea, 4 %w/v CHAPS, and a protease inhibitor mixture.
The homogenate was centrifuged for 10 min at 3,000 rpm,
incubated for 1 h at room temperature, and centrifuged again
at 20,000g for 1 h at 4 °C. The supernatant was collected.
Protein concentration was determined by the Bradford Protein
Assay Kit following the manufacturer’s protocols (Beyotime
Institute of Biotechnology, China).

2-DE Gel Electrophoresis

Proteins were first separated with isoelectric focusing (IEF),
according to our previous report [30]. Each sample with
350 μL was pipetted into a rehydrating tray and covered by
a 7-cm immobilized pH gradient (IPG) strip, pH 4–7 for 15 h
of rehydration at room temperature. IEF was running with the
conditions as follows: 250 V for 1 h linear gradient, 500 V for
1 h linear gradient, 4,000 V for 3 h linear gradient, 4,000 V
rapid gradient until reaching total 20,000 Vh, and 500 V rapid
gradient for 24 h. The strip was equilibrated for 15min prior to
second-dimension separation in solution A (50 mMTris–HCl,
pH 8.8 6 M urea, 2 % sodium dodecyl sulfate (SDS), 30 %
glycerol, and 1 % DTT) followed by re-equilibration for
15 min in solution B (50 mM Tris–HCl pH 8.8, 6 M urea,
2 % SDS, 30 % glycerol, and 4.5 % iodoacetamide). Proteins
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were further separated using the 12 % SDS-PAGE gel for
second-dimension electrophoresis. Electrophoresis was per-
formed at 10 mA/gel for 30 min and then at 30 mA/gel until
bromophenol blue reached the end of the gel. Following elec-
trophoresis, gels were stained by Coomassie blue G-250 over-
night at room temperature. Then the gels were destained with
1 % glacial acetic acid and washed with MilliQ H2O for three
times. UMAX2100XL Image Scanner was applied to acquire
the Coomassie blue-stained gel images. Image analysis includ-
ing spot detection, spot editing, background subtraction, and
spots matching were performed using PDQuest 8.0 image
analysis software (Bio-Rad, Hercules, CA). Compared with
those in the controls, the protein spots differently expressed
up to twofold with the same differential trends in three treat-
ment groups were chosen for mass spectrometry analysis.

In-Gel Digestion and Mass Spectrometry Analysis

Protein spot of interest was excised and removed from the gel.
The gel piece was washed with destaining solution (0.1 M
ammonium bicarbonate, 50 % acetonitrile) for three times of
30 min each at room temperature. After removing the liquid
part, the gel pieces was allowed to dry and rehydrated with the
addition of modified trypsin in 4 μL 20 mM NH4HCO3 and
incubated for 13 h at 37 °C. Peptides were extracted by two
steps with trifluoroacetic acid (TFA) solution. The first elution
was performed with 8 μL 5 % TFA for 1 h at 37 °C and the
second step with 8 μL 2.5 % TFA for 1 h at 37 °C. The
peptide-containing solution was vacuum-dried and resuspend-
ed with 2 μL 0.5 % TFA, followed by reconstruction with
saturated solution of 50 % acetonitrile and 0.1 % TFA. These
reconstructed samples were loaded on a Scorce 384 target
plate. All mass spectra were obtained on a Bruker Autoflex
MALDI-TOF (matrix-assisted laser desorption-time of flight)
mass spectrometer (MS, Bruker, Germany). Peptide mass
fingerprints were generated by the reflectron mode with a
337-nm nitrogen laser, with an acceleration voltage of 20 kV
and a reflected voltage of 23 kV.

MASCOT search engine (http://www.matrixscience.com)
was used to search for mass spectra data in the entire National
Center for Biotechnology Information (NCBI) mouse

database, in order to identify the target proteins according to
peptide mass fingerprints. During the searching, the max
molecular weight error of peptide was set as 0.5 Da, with the
assumption that the peptides were monoisotopic, oxidized at
methionine residues, and carbamiodomethylated at cysteine
residues. The functions of target proteins were annotated by
using Molecule Annotation System 3.0 (MAS 3.0) (http://
bioinfo.capitalbio.com/mas3/).

Statistical Analysis

GraphPad Prism5 software (GraphPad Software Inc., San
Diego, USA) was applied in this study. All data were analyzed
using one-way ANOVA analysis in which Dunnett’s Post hoc
test was selected. Data was expressed as mean±SEM,
*p<0.05, and **p<0.01.

Results

Spontaneous Activity and Novel Object Recognition

In Fig. 1, mice in HiF+HiPb group showed a significant low
vertical activity (p<0.01), indicating the inhibition of outside
exploration. Although there was a decreasing trend in hori-
zontal activity, no statistical difference was observed. The
results of novel object recognition in Fig. 2 revealed that the
HiF+HiPb significantly decreased the MIs during STM
(p<0.05) phase and LTM (p<0.01) phase, compared with
those in the control. HiF showed no effect on MI in STM
and LTM, while HiPb significantly reduced in the LTM.
Besides, no difference occurred in AP phase.

Protein Fractionation and Identification

As shown in Fig. 3, the map of hippocampus protein spots
from control and fluoride- and/or lead-treated mice was on the
gels stained with Coomassie brilliant blue. After the establish-
ment of reference gel, the spots in each group are well
matched by PDQuest software package. Compared with those
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Fig. 1 Effects of fluoride and/or
lead on spontaneous activity of
offspring male mice. a Horizontal
activity, b vertical activity. Each
bar represents the mean±SEM
(n=15). **p<0.01 (significant
differences compared with the
control)
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in the controls, the expressions of 92 protein spots in HiF,
HiPb, and HiF+HiPb were significantly changed. Nine spots
were altered with the same trend in all treatment groups, and
the expression differences were up to twofold. We chose these
nine protein spots for mass spectrometry analysis.

Among these spots, six of them were significantly upregu-
lated and three were significantly downregulated. The differen-
tially expressed proteins are identified as pyruvate dehydroge-
nase E1β subunit (Pdhb1), NADH dehydrogenase, ATPase,

heat shock 70-kDa protein 8 (Hspa8), isoform 1 of 60 kDa heat
s hock p ro t e i n /m i t o chond r i a l Hsp60 (Hspd1 ) ,
dihydropyrimidinase-like 2 (Dpysl2), α-spectrin 2 (Spna2),
growth factor receptor protein bound 2 (Grb2), and alanyl-
tRNA synthetase (Aars). The pI and the molecular weight
reported in the mass data for all the identified protein spots were
consistent with the spot position on the gel, as seen in Table 1.

Discussion

Our previous study observed that 30 days of fluoride and lead
exposure adversely affected spontaneous behavior and lowered
the learning ability of rats before the occurrence of dental lesions
[18]. In this study, the same doses of fluoride and lead resulted in
a significant decrease in vertical activity and memory ability of
mice, indicating a successful establishment ofmousemodel, and
we also found that by 2-DE coupled with MS, nine proteins
changing above twofoldwere identified in hippocampus, among
which six were upregulated and three were downregulated.
These proteins are involved in energy metabolism (Pdhb1,
NADH dehydrogenase, ATPase), cell stress response/
chaperones (Hspd1, Hspa8), cytoskeleton development
(Dpysl2, Spna2), protein metabolism (Aars, Hspa8), and cell
surface signal transduction (Grb2), as shown in Table 2.
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Fig. 3 Two-dimensional
electrophoresis representative
gels of brain protein from the
control (a), high fluoride (b), high
lead (c), high fluoride plus high
lead (d) groups. Proteins were
separated on 7-cm pH 4–7 IEF
strips followed by SDS-PAGE
and Coomassie blue G-250
staining. The proteins were then
detected and compared using the
PDQuest software package.
Selected spots represented the
brain with different levels
(twofold) compared with the
controls
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Fluoride and Lead Induced Protein Changes in Energy
Metabolism

Pyruvate dehydrogenase complex (PDC) is considered to be a
gateway enzyme for carbohydrate oxidative metabolism in
mitochondria [31], in which process pyruvate is catalyzed,
followed by the formation of acetyl-CoA and NADH. The
function of this complex largely depends on the
heterotetramer (αβ/α′β′) of pyruvate dehydrogenase E1 α
(Pdh1α) and β (Pdh1β) subunits [32]. Clinical consequences
of PDC dysfunction mainly presented the nervous syndromes,
including developmental delay, seizures, central hypotonia,
peripheral neuropathy, and congenital brain malformations
[33]. Pdh1α gene mutations are frequently reported to induce
the PDC deficiency [34], and the over-expressed αβ/α′β′
heterotetramer can in turn enhance the Pdh1α mutations
[35]. In the present study, with the comparison to controls,
the protein expression of Pdh1βwas significantly increased in

fluoride and/or lead treatment groups, implying an abnormal
αβ/α′β′ heterotetramer structure and may finally lead to low
level of NADH or acetyl-CoA in hippocampus. It is worthy to
note that the NADH dehydrogenase protein level in this study
was downregulated by both fluoride and lead, which might be
the results of the possibly low NADH induced by abnormal
carbohydrate oxidation. Cells with low NADH commonly
need for ATP to supply enough energy [36]. Although we
have not detected the cellular ATP amount, enhanced ATPase
level in mice exposed to fluoride and lead in this study hinted
the energy requirement.

Fluoride and Lead Induced Protein Changes in Cell Stress
Response

Under environmental stress conditions, the expression of heat
shock proteins (HSPs) in stressed cells is increased and re-
mains on elevated level for a prolonged period to prevent

Table 1 Proteomics characteristics of identified protein spots differentially expressed between control, HiF, HiPb and HiF+HiPb groups usingMALDI-
TOF MS

Protein spots GI accession No. Molecular weight,
isoelectric point

Pep. Count Protein score Protein name

1 40254595 62,637.7, 5.95 26 920 Dpysl2 (dihydropyrimidinase-related protein 2)

2 223462890 285,220.6, 5.2 32 386 Spna2 (spectrin alpha chain)

3 76779273 61,088.4, 5.91 24 1,260 Hspd1 (isoform 1 of 60 kDa heat shock protein)

4 1196528 89,950, 5.14 31 566 ATPase

5 655347759 27,610, 7 10 484 NADH dehydrogenase

6 18152793 39,254.1, 6.41 14 581 Pdhb (pyruvate dehydrogenase E1β subunit)

7 6680083 23,686.7, 6.31 12 230 Grb2 (growth factor receptor protein bound 2)

8 34610207 107,696.5, 5.45 14 228 Aars (alanyl- tRNA synthetase)

9 31981690 71,055.3, 5.37 22 1,030 Hspa8 (heat shock cognate 71 kDa protein)

Table 2 Functionalities of identified proteins in brains in control, HiF, HiPb, and HiF+HiPb groups

Function Proteins Biological process Molecular functions Expression
different

Energy metabolism Pdhb1 Glycolysis, oxidation reduction Pyruvate dehydrogenase activity,
oxidoreductase activity

Upregulated

NADH dehydrogenase Oxidative phosphorylation Catalytic activity Downregulated

ATPase Protein catabolism, protein catabolism Hydrolase activity, protein binding Upregulated

Chaperones Hspd1 Cell stress response Anti-inflammatory Upregulated

Cytoskeleton
development

Dpysl2 Neuronal differentiation; nervous
system development

Hydrolase activity, protein binding Upregulated

Spna2 Neuronal membrane integrity Protein binding Upregulated

Protein metabolism Aars Protein folding, alanyl-tRNA aminoacylation,
negative regulation of neuron apoptosis,
protein biosynthesis

Alanine-tRNA ligase activity,
nucleic acid binding, ATP binding

Downregulated

Hspa8 Protein folding, chaperone cofactor-dependent
protein folding, regulation of cell cycle,
response to stress

Unfolded protein binding, ATPase
activity

Upregulated

Cell surface signal
transduction

Grb2 Cell differentiation, MAPKKK cascade, Ras
protein signal transduction

SH3/SH2 adaptor activity, protein
domain specific binding

Downregulated

Proteomic Analysis of Hippocampus in Mice exposed to F and Pb 231



cellular damage [37]. HSPs, as molecular chaperones, play a
major role in cytoprotection by inhibiting irreversible protein
aggregation or misfolding [38]. According to the sequence
homology and molecular weight, HSPs were classified into
several families. Hspa8 and Hspd1, which were both upregu-
lated by fluoride plus lead exposure in this study, are the
members of Hsp70 and Hsp60, respectively. Hsp70 superfam-
ily is the most abundant and the most highly conserved HSPs
[39]. Previous study on zebrafish embryos pointed out that the
stress-inducible HSP70 functions in attenuating the apoptotic-
like process [40]. Mitochondrial Hsp60 (Hspd1) is essential
for early embryonic development in mice [41]. In the
staurosporin-induced apoptosis model, Hsp60 and Hsp10
(the co-chaperone of Hsp60) were observed to release the
active caspase-3 [42]. Accumulated investigations have re-
ported that fluoride or lead evokes cell apoptosis through
different pathways, including Fas/FasL, Caspase, and bcl-2/
c-fos. Therefore, the elevatedHspa8 and Hspd1 suggested that
neurons in hippocampus may be in the stressed conditions
induced by fluoride and lead exposure.

Fluoride and Lead Induced Protein Changes in Cytoskeleton

Dpysl2, which involves in neuronal differentiation and axonal
guidance [43], is the most highly expressed isoform of
dihydropyrimidinase (DRP) family in different brain areas such
as the olfactory bulb, hippocampus, and cerebellum in adult
nervous system [44]. Spna2 is a protein that functions in
maintaining neuronal membrane integrity [45]. Dpysl2 and
Spna2 play roles in the pathological processes in various ner-
vous system diseases like vitamin A depletion [46], stroke [47],
and alcohol-induced brain pathology [48]. By using proteomic
analysis, Chen et al. found that Dpysl2, Spna2, and Hsp70 were
upregulated in focal cerebral stroke in rats induced by ischemia
[47]. The increased gene expressions of Dpysl2 and Spna2
were also detected in rat cortex with a significant apoptosis rate
and injured swollen cells [49]. In this study, besides the elevated
Hsp70 member mentioned above, the protein expressions of
Dpysl2 and Spna2 were also increased in groups administrated
with fluoride and/or lead. Morphological experiments by trans-
mission electron microscope demonstrated that fluoride causes
swelling of the mitochondria, granular endoplasmic reticulum,
damages the membrane of nuclear and synapses, and decreases
the number of synapses [50]. Together with the current results,
we suggested that morphological alterations in hippocampus of
mice exposed to fluoride and lead probably related to the
upregulated Dpysl2 and Spna2.

Fluoride and Lead Induced Protein Changes in Cell Surface
Signal Transduction

Grb2, as an adapter protein, can positively regulate the cell
surface expression of FasL and mediate FasL reverse

signaling via activation of Ras and the extracellular signal-
regulated kinase (ERK) MAPK pathway 1, finally participat-
ing in cell proliferation or differentiation [51, 52]. The down-
regulated Grb2 in this study suggested that the toxicity of
fluoride and lead combination may involve in the Ras-
signaling pathway to adversely affect neuron proliferation.
Further investigation can focus on selecting the target proteins
in the downstream in this signal pathway.

In conclusion, this study presented the identification of
proteomic pattern in hippocampus of mice exposed to fluoride
and/or lead. Further studies are required to verify the differ-
entially expressed proteins associated with important biolog-
ical activities to clarify the pathological mechanisms underly-
ing fluoride- and lead-induced neurotoxicity.
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