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Abstract Heavy metals, including cadmium, are common
contaminants in environments subject to human activity.
Responses to exposure in the fruit fly, Drosophila
melanogaster, are dosage-dependent and resistance is select-
able. While metallothionein-mediated sequestration has been
extensively studied as a mechanism of cadmium resistance, a
link between selection for resistance and an increased accumu-
lation of cadmium has yet to be demonstrated. To address this
need, we have selected wild-type flies for cadmium resistance
for 20 generations and tested metal content using mass spec-
trometry. Resistant flies were observed to contain lower levels
of cadmium, arguing for a mechanism of cadmium resistance
that is not mediated by increased sequestration. This, coupled
with genetic evidence suggesting the involvement of factors
located on the X chromosome, suggests a gene other than
metallothionein may be involved in resistance in this line.
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Introduction

Heavy metal adaptation is an important biological response to
environmental contamination with significant ecological im-
plications (for reviews see [1–3]). Heavy metal toxicity acts in
a variety of ways. Organismal responses range from biochem-
ical to physiological.Drosophila melanogasterwas one of the
first terrestrial invertebrates in which adaptation to heavy
metals was definitively demonstrated [4]. However, the

pathways and the genetics underlying the response and adap-
tation are not completely understood.

The mechanisms of toxicity are not entirely clear and may
depend on multiple mechanisms collectively causing toxicity.
In low concentrations, some heavy metals act as essential
micronutrients, such as copper, which is an enzymatic cofac-
tor [5, 6]. High levels of exposure to heavy metals, on the
other hand, are generally toxic; however, many animals de-
velop resistance to heavy metal exposure (for review see [7]).
Cadmium is of particular interest for having highly toxic
effects [8] and no known physiological role [9]. Cadmium
treatment of Drosophila cell lines induces heat shock protein
synthesis [10, 11], supporting the hypothesis that toxicity
involves DNA damage and protein synthesis interference.
Similarly, in exposed Drosophila cells, cadmium has been
shown to replace zinc in metalloenzymes and also interact
with free sulfhydryl groups of other proteins [11]. This may
cause a reduction of enzyme functionality [8] and disruption
of protein synthesis [11]. Giaginis et al. [8] discuss cadmium
inhibition of DNA repair processes, including nucleotide ex-
cision repair, base excision repair, and mismatch repair. For
example, cadmium has been shown to substitute for zinc in the
zinc finger structures contained in the DNA repair protein
XPA, causing deformation and subsequent inactivation [12].
In Drosophila cells, cadmium toxicity results in a decrease in
protein synthesis, followed by cell death [10]. Heavy metals
can also be toxic at the physiological level. Cadmium expo-
sure during the larval stage has been shown to reduce viability
[13] and extend the developmental period, while reducing
overall adult weight, fecundity, and survival [14]. In summary,
studies on cadmium in Drosophila seem to suggest a variety
of different mechanisms that all contribute to toxicity.

Responses to heavy metal exposure seem to vary as much
as mechanisms of toxicity and may function independently or
in concert. These can generally be classified as avoidance
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behavior, detoxification, compartmentalization, or excretion
[2, 14]. Studies on the springtail Orchesella cincta
(Arthropoda: Collembola, springtails), a soil-living inverte-
brate, indicate that these organismal responses mediate resis-
tance to environmental toxicity [7, 15–17]. Selection, whether
through artificial exposure or natural exposure in a toxic
environment, acts on the underlying genetic variation to in-
crease the frequency of resistant phenotypes in the adapted
population. In Drosophila melanogaster, there are examples
of laboratory selected metal resistance and variation in metal
response between laboratory and wild lines. Magnusson and
Ramel [18] showed significant variation in resistance even
among laboratory strains. Heavy metal resistance, specifically
cadmium resistance, has become a model system for inbreed-
ing and selection studies (see, for example, [19]). Shirley and
Sibly [20] selected cadmium resistant flies for over 20 gener-
ations, resulting in a 30 % increase in survival. Resistance of
this line was conferred by a single, dominant, sex-linked gene.
Christie et al. [21] also found a major factor for cadmium
resistance present on the X chromosome of the naturally
resistant laboratory line, v;bw. The best documented mecha-
nism for heavy metal adaptation in D. melanogaster is the
duplication of the metallothionein gene [22]. A third chromo-
somal gene duplication ofMtnA (formerly namedMtn) [22] is
correlated with an increase in survival on cadmium of a wild-
type strain and also a strain into which a second functional
copy ofMtnAwas introduced [23]. Metallothionein-mediated
sequestration [13, 24] and subsequent accumulation of cad-
mium in the fly midgut [25] are widely accepted as a primary
response mechanism to heavy metal exposure in both flies and
springtails [15, 16, 26, 27].

Metallothionein (MT) production and regulation as a gen-
eral response to heavy metal exposure has been well studied
and recently reviewed [5, 28]. This gene family is comprised of
small, cysteine-rich proteins that facilitate binding of heavy
metals [29] and mediate sequestration [19, 30]. Five genes of
theMT family have been characterized inD. melanogaster and
are found in an array on the third chromosome [22, 31, 32].
Genes in the MT family are found across the organismal
spectrum, from microorganisms, including yeast and algae, to
higher vertebrates, including birds and mammals [11].
Metallothioneins are conserved during evolution, as evidenced
by both promoter [24] and protein [33] sequence homology.

The primary location of MT production, in the fly midgut,
creates high cadmium localization in the abdominal region, as
seen in the housefly, Musca domestica [34], the midgut and
intestines of the springtail, Orchesella cincta [35], and midgut
of D. melanogaster [13]. Lauverjat et al. [25] observed a
greater number of midgut lysosomes, likely to contain
metallothionein-bound metals, in resistant Drosophila strains
exposed to cadmium. These data suggest metallothionein is a
large and effective contributor to cadmium resistance through
lysosomal sequestration in the midgut.

Metallothionein is not the only adaptation to heavy metal
exposure in flies. Gill et al. [36] studiedMT production and its
correlation to resistance in two strains of flies: the sensitive
Austin strain and the resistant v;bw strain. Cadmium exposure
induced increased MT production in both of these strains;
however, MT production increased markedly more in the
sensitive Austin strain. In comparing survival with these MT
levels, the resistant v;bw line exhibited small increases in MT
corresponding with high resistance, whereas the large MT
increases observed in the Austin strain had comparatively
little effect on increasing survival. Even with MT levels sur-
passing that of the resistant v;bw strain at higher levels of
cadmium exposure, Austin was consistently two to three times
more sensitive than the v;bw flies. This indicates resistance
does not depend exclusively or in a straightforward way on
metallothionein-mediated sequestration. In studying
cadmium-adapted midge larvae (Chironomus riparius),
Postma et al. [37] has alternatively suggested a form of resis-
tance mediated by increased metal excretion efficiency.

One prediction of metallothionein-mediated resistance is an
increase in cadmium concentrations through increased seques-
tration. For example, Berger and Dallinger [35] used flame
atomic absorption spectrophotometry to follow both cadmium
and copper in the terrestrial gastropod, Arianta arbustorum,
after laboratory exposure. They found that cadmium levels
increased in the midgut and intestines over the first ten days
of exposure and then plateaued as the rates of uptake and loss
reached equilibrium. No studies in Drosophila have suggested
a specific alternative mechanism to metallothionein-mediated
sequestration. One strong prediction of a metallothionein-
mediated resistance is an increase in cadmium sequestration
as observed by Berger and Dallinger [35] in A. arbustorum. In
this report, we investigate Drosophila resistance to cadmium
exposure by quantifying the heavymetal content of a wild-type
strain raised on cadmium and selected for resistance over 20
generations. We suggest that an alternative mechanism, analo-
gous to the increased excretion in the midge larvae, exists in
the Drosophila response to cadmium exposure.

Materials and Methods

Selection for Resistance

The Berlin wild-type stock (Bloomington Drosophila Stock
Center, IN) was used in this experiment. Magnusson and
Ramel [18] found this strain to be relatively sensitive to heavy
metal exposure. Flies were allowed to lay on grape juice agar
plates (20 % agar and 6 % sugar in grape juice (w/v)) for 15–
20 h. The eggs were then immediately counted under a light
microscope, transferred onto 1 cm×2 cm filter paper, wetted
with water, and placed into vials containing 5 ml instant
Drosophila media (Carolina Biological) made with 4.5 ml of
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CdCl2 solution (0–0.2 mg/ml). CdCl2 solutions were prepared
at concentrations of 0 (control), 0.002, 0.02, 0.08, 0.1, and
0.2 mg/ml and used in the dose-response assay. At 0.08 mg/ml
concentration of CdCl2, 8.2 % of exposed flies survived. This
provided sufficient survival and good selective pressure. This
concentration was used in the selection for cadmium resistance.

The vials containing the transferred eggs were incubated at
25 °C. Emergent adults were collected and counted every 2–3
days for the duration of emergence (9 days from the first
emergence) to keep maximum adult cadmium exposure at
72 h. Percent survival was calculated as the (number of adult
flies)/(number of eggs transferred). Emergent adults were kept
on standard molasses agar medium with no cadmium until the
end of that generation’s emergence (9 days). These adults
were used to establish the next generation (see above) and
then stored at −80 °C for mass spectrometry analysis. Flies
were selected for 20 generations using this protocol. Data
from generations five to six were not included in the analysis
due to inconsistencies in the ways the flies were handled.

Cadmium Levels in Fly Tissue

Frozen fly samples were dehydrated and digested in an Anton
Paar Multiwave 3000 Microwave Reaction System.
Dehydrations were performed using the Anton Paar Drying
Rotor 1DRY accessory for the Multiwave 3000 system.
Digestions were run in an 8xf100 digestion rotor using 4 ml
HNO3 (TraceMetal Grade, Fisher Scientific) and 2 ml H2O2

(30 %, Optima Grade, Fisher Scientific) per sample as per
manufacturer muscle digestion recipe. Metal content was
obtained using a Perkin Elmer ELAN DRC-e inductively
coupled plasma-mass spectrometer (ICP-MS) as per manufac-
turer instructions.

Data Analysis

The survival rates and mass spectrometry data were compared
using two-tailed t tests between groups.

Results

The dose-response assay for CdCl2 suggested that 0.08 mg/ml
CdCl2 gave the best balance between survival and selection
(data not shown). A control line was selected on water at each
generation in parallel with the cadmium-exposed line. The
survival of the control line had no general increasing or
decreasing trend through the 20 generations, showing a nearly
horizontal trend-line slope of 0.0899. The average survival of
the controls was 78.7 %. After exposure to 0.08 mg/ml CdCl2,
only 8.2 % of Berlin flies emerged in the first generation. The
line selected for survival on CdCl2 increased to 68.7 % sur-
vival at generation 20, demonstrating a significant 8.6-fold
increase in survival (p<0.01) (Fig. 1).

Heavy metal content of the cadmium-selected flies in gen-
erations 1–20 was determined using ICP-MS. Cadmium
levels in the controls raised on water remained minimal,
averaging 1722.111 ppb (standard deviation=1006.894).
This was distinctly lower than the cadmium resistant line, in
which cadmium content was consistently over 20,000 ppb of
cadmium. During 20 generations of selection on 0.08 mg/ml
CdCl2, the cadmium content in flies varied, but generally
decreased at a rate of 1069 ppb of cadmium per generation
(see trend line, Fig. 2). Flies in generation 20 exhibited a
significant 1.5-fold decrease in cadmium content from the first
generation of exposure (p<0.01).

Discussion

Mechanisms of Cadmium Resistance

Wild-type flies exposed to cadmium responded with a dosage-
dependent decrease in survivorship. Previous experiments
[14] had suggested that survival can be selected to establish
a resistant line that can be used to investigate the heavy metal
response. After 20 generations of selection, resistant flies
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Fig. 1 Survival of flies selected
for cadmium resistance on media
containing 0.08 mg/ml CdCl2
solution. Twenty generations of
selection resulted in survival 8.6
times higher than the first-
generation exposed to cadmium
(p<0.01)
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survived 8.6 times better than unselected flies. This suggests
that the wild-type population contained underlying genetic
diversity that was selected by exposure and exploited to
increase the genetic factors contributing to heavy metal re-
sponse. This is consistent with the increase in survivorship
following selection for cadmium resistance observed by
Shirley and Sibly [20].

Previous work has suggested that the response to heavy
metals in flies is mediated by metallothionein [13, 24] and
results in increased sequestration of the heavy metal in the
lysosomes of the gut [25, 34]. In this case, resistant flies should
have had increased levels of heavy metals. The present exper-
iment sought to test this prediction. Surprisingly, the cadmium
content in flies raised on 0.08 mg/ml CdCl2 decreased as
selection continued and by generation 20 was a significant
1.5-fold lower than in the first generation (p<0.01).
Decreasing cadmium concentration suggests an excretory
mechanism, rather than an increased rate of sequestration, in
response to toxicity. This would suggest cadmium resistance in
this line is mediated by a factor other than metallothionein.
Preliminary data from this selected line indicate that an impor-
tant component of the selected cadmium resistance may be
conferred by the X chromosome (data not shown). A number
of authors have reported anX chromosome contributor [20, 21,
36] to cadmium resistance suggested to be either an
additional metallothionein gene or a gene coding for a regula-
tor of metallothionein, based largely on the pervasiveness of
the metallothionein model for heavy metal mediation.
However, the entire metallothionein gene family is now known
to reside on the third chromosome in Drosophila [22, 31, 32],
and no evidence links metallothionein regulation to the X
chromosome. Other pathways mediating cadmium resistance
have been described including both catalase and glutathione in
C. riparius [38]. Next to metallothionein, glutathione is the

best characterized pathway mediating heavymetal toxicity and
most of the glutathione work has been done in plants (for
review see [39]). In mouse heavy metal mediation is split
between metallothionein and glutathione [40]. Less work has
been done on the glutathione pathway in mediating heavy
metals in Drosophila, although the X-linked glutathione syn-
thetase gene in Drosophila has been shown to mediate arsenic
susceptibility [41]. Work is currently underway to characterize
the X-linked factor in our cadmium resistant line.
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