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Abstract The objective of this experiment was to investi-
gate the effects of supplemental chromium picolinate
(CrPic) and chromium histidinate (CrHis) on nuclear
factor-kappa B (NF-κB p65) and nuclear factor (erythroid-
derived 2)-like 2 (Nrf2) signaling pathway in diabetic rat
brain. Nondiabetic (n045) and diabetic (n045) male Wistar
rats were either not supplemented or supplemented with
CrPic or CrHis via drinking water to consume 8 μg elemen-
tal chromium (Cr) per day for 12 weeks. Diabetes was
induced by streptozotocin injection (40 mg/kg i.p., for
2 weeks) and maintained by high-fat feeding (40 %). Dia-
betes was associated with increases in cerebral NF-κB and

4-hydroxynonenal (4-HNE) protein adducts and decreased
in cerebral nuclear factor of kappa light polypeptide gene
enhancer in B cells inhibitor, alpha (IκBα) and Nrf2 levels.
Both Cr chelates were effective to decrease levels of NF-κB
and 4-HNE protein adducts and to increase levels of IκBα
and Nrf2 in the brain of diabetic rats. However, responses of
these increases and decreases were more notable when Cr
was supplemented as CrHis than as CrPic. In conclusion, Cr
may play a protective role in cerebral antioxidant defense
system in diabetic subjects via the Nrf2 pathway by reduc-
ing inflammation through NF-κB p65 inhibition. Histidinate
form of Cr was superior to picolinate form of Cr in reducing
NF-κB expression and increasing Nrf2 expression in the
brain of diabetic rats.
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Introduction

Neuropathy is one of most commonly occurring diabetic
complications with an overall prevalence of 50–60 % in
diabetic patients [1]. Some of the functional consequences
of diabetic neuropathy could be alleviated by insulin treat-
ment in insulin-dependent diabetes mellitus [2]. Oxidative
stress plays an important role in the pathogenesis of diabetes
through reactive oxygen species (ROS) that may initiate
inflammatory response because they stimulate a number of
genes regulating the inflammatory signaling cascades [3].
These genes may be upregulated by ROS-mediated activa-
tion of nuclear factor-kappa B (NF-κB), one of the primary
transcription factors initiating inflammatory response and
contributing to inflammatory damage in chronic diseases
including diabetes [4]. It mediates numerous inflammatory
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pathways in multiple cells and organ systems. Inflammation
is now recognized to exacerbate many neurodegenerative
conditions including diabetic neuropathy [5]. Inhibition of
NF-κB activity in spinal glia alleviates pain behaviors in rats
with chronic nerve constriction injuries [6]. Nuclear factor
erythroid 2-related factor 2 (Nrf2), involved in combating
against oxidative stress and neuroinflammation, is a basic
leucine zipper transcription factor known to regulate the
expression of a number of detoxifying and antioxidant
genes. This has also been claimed to regulate various in-
flammatory processes [7, 8]. Several studies ascertained
pivotal role of Nrf2 in modulation of inflammation in insulin
resistance and diabetes [9, 10].

Chromium (Cr) was proposed to be an essential element
about 50 years when its role was believed to be associated
with glucose metabolism and insulin action. This role has
recently been questioned as Cr has been proposed to act as a
pharmacological agent [11, 12]. To achieve pharmacological
effects, it is clear that supranutritional dose is necessary or
subjects that carry risks for impaired glucose and/or lipid
metabolism. Indeed, there is an interrelationship between
chronic diseases and various micronutrients such as Cr,
selenium (Se), and zinc (Zn) [13–16]. Significant alterations
of these elements in diabetic individuals and animals have
been attributed to insulin deficiency [13]. Patients with
diabetes have lower serum Cr, Zn, and Se levels than
healthy subjects [13]. Moreover, absorption and excretion
of Cr are higher in diabetic subjects than in nondiabetic
subjects [17, 18].

Various Cr chelates are available. The Cr histidinate
(CrHis) complex is a form developed to enhance stability
and absorption of Cr, which is shown in a human study [19].
The present study tested the hypothesis that CrHis is more
efficacious than CrPic for improving glucose metabolism in
diabetic subjects, with respect to the IκB/NF-κB pathway and
Nrf2 responses in the brain. Inhibition of the IκB/NF-κB
pathway or Nrf2 responsemay be involved in the amelioration
of insulin resistance during chromium supplementation in the
brain of diabetic rats [20]. Therefore, a combination of a high-
fat diet (HFD) and low-dose streptozotocin (STZ) injection
were used to create a type 2 diabetic animal model [16] to
investigate the effect of CrHis/CrPic supplementation on
changes in IκB/NF-κB pathway and Nrf2 expression in the
brain under diabetic conditions.

Materials and Methods

Animals, Diets, and Experimental Design

Male Wistar rats (n090, 8 weeks old) weighing 200–250 g
were purchased from Firat University Laboratory Animal Re-
search Centre (Elazig, Turkey) and reared at the temperature of

22±2 °C, humidity of 55±5 %, and with a 12/12-h light/dark
cycle. The experiment was conducted under the protocol ap-
proved by the Ethical Committee of Firat University. All
procedures involving rats were conducted in strict compliance
with relevant laws, the Animal Welfare Act, Public Health
Services Policy, and guidelines established by the Institutional
Animal Care and Use Committee of the university. Rats con-
sumed a standard diet and tap water ad libitum.

Ingredients and chemical composition of the basal
(control) diet are shown in Table 1. The diets were stored
at 4 °C cold chamber. Animals were fed with a diet consist-
ing of either 8 % fat (control) or 40 % fat (HFD). CrPic and
CrHis (Nutrition 21, Inc., Purchase, NY, USA) chelates
were dissolved in water to assure daily consumption of
8 μg elemental Cr via drinking water for 12 weeks. This
amount was calculated based on 560 μg Cr that is needed for a
70-kg adult human after adjusting doses based on metabolic
body size (700.70019.60 kg, needing 560 μg Cr; ~0.2500.700
0.38 kg needing 10.8 μg Cr).

A rat model of type 2 diabetes created by feeding with a
HFD and STZ treatment developed by Reed et al. [21] pro-
vides a novel animal model for type 2 diabetes that is applica-
ble in testing antidiabetic compounds. In this model,
established hyperglycaemia status (glucose level >140 mg/dl)
after STZ injection (40 mg/kg i.p., for 2 weeks) in high-fat fed
rats was not due to a greater decline in β-cell function. Before
STZ injection, glucose concentrations of rats were measured
and compared to controls.

The 2×3 factorially arranged experimental groups were:
group I (rats fed with the control diet only), group II (rats fed
with the control diet and supplemented with CrPic), group

Table 1 Composition of experimental diets

Ingredients (g/kg) Control diet High-fat diet

Casein 200.0 200.0

Starch 615.0 145.0

Sucrose – 150.0

Maize oil 80.0 –

Beef tallow – 400.0

Cellulose 50.0 50.0

Vitamin–mineral premixa 50.0 50.0

DL-Methionine 3.0 3.0

Choline chloride 2.0 2.0

a The vitamin–mineral premix provides the following (per kilogram):
all-trans-retinyl acetate, 1.8 mg; cholecalciferol, 0.025 mg; all-rac-a-
tocopherol acetate, 12.5 mg; menadione (menadione sodium bisulfate),
1.1 mg; riboflavin, 4.4 mg; thiamine (thiamine mononitrate), 1.1 mg;
vitamin B6, 2.2 mg; niacin, 35 mg; Ca pantothenate, 10 mg; vitamin
B12, 0.02 mg; folic acid, 0.55 mg; d-biotin, 0.1 mg; manganese (from
manganese oxide), 40 mg; iron (from iron sulfate), 12.5 mg; zinc (from
zinc oxide), 25 mg; copper (from copper sulfate), 3.5 mg; iodine (from
potassium iodide), 0.3 mg; selenium (from sodium selenite), 0.15 mg;
choline chloride, 175 mg
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III (rats fed with the control diet and supplemented with
CrHis), group IV (diabetic rats fed with the HFD diet),
group V (diabetic rats fed with the HFD diet and supple-
mented with CrPic), and group VI (diabetic rats fed with the
HFD diet and supplemented with CrHis).

Western Blot Analyses

In all groups, brains were removed from sacrificed rats by
cervical dislocation. Small pieces of samples in each group
of animals were pooled together for Western blot analysis.
Protein extraction was performed as follows: The sample
was homogenized in an ice-cold 1 ml of hypotonic buffer A
[10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic ac-
id (HEPES) (pH 7.8), 10 mM KCl, 2 mM MgCl2, 1 mM
dithiothreitol (DTT), 0.1 mM ethylene diamine tetraacetic
acid (EDTA), and 0.1 mM phenylmethylsulfonyl fluoride
(PMSF)]. A solution of 80 μl of 10 % Nonidet P-40 (NP-40)
was added to the homogenates, and the mixture was centri-
fuged for 2 min at 14,000×g. The supernatant was collected
as a cytosolic fraction for nuclear factor of kappa light
polypeptide gene enhancer in B cells inhibitor, alpha
(IκBα) and 4-hydroxynonenal (4-HNE) assays. The precip-
itated nuclei were washed once with 500 μl of buffer A plus
40 μl of 10 % NP-40, centrifuged, resuspended in 200 μl of
buffer C [50 mM HEPES (pH 7.8), 50 mM KCl, 300 mM
NaCl, 0.1 mM EDTA), 1 mM DTT, 0.1 mM PMSF, and
20 % glycerol], and centrifuged for 5 min at 14,800×g. The
supernatant containing nuclear proteins was collected for
Nrf2 and NF-κB p65 [22].

Concentration of the protein was determined according to
the procedure described by Lowry using a commercial pro-
tein assay kit (Sigma, St. Louis, MO, USA). Sodium
dodecyl sulfate–polyacrylamide gel electrophoresis sample
buffer containing 2 % β-mercaptoethanol was added to the
supernatant. Equal amounts of protein (50 μg) were electro-
phoresed and subsequently transferred to nitrocellulose
membranes (Schleicher and Schuell Inc., Keene, NH,
USA). Nitrocellulose blots were washed twice for 5 min
each in phosphate-buffered saline (PBS) and blocked with
1 % bovine serum albumin in PBS at room temperature for
1 h prior to application of the primary antibody. The anti-
body against Nrf-2 and 4-HNE adducts were the purchased
from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA,
USA) and 4 Alpha Diagnostics (San Antonio, TX), respec-
tively. Antibody against IκBα and NF-κB p65 was pur-
chased from Abcam (Cambridge, UK). Primary antibody
was diluted (1:1,000) in the same buffer containing 0.05 %
Tween-20. The nitrocellulose membrane was incubated
overnight at 4ºCwith protein antibody. The blots werewashed
and incubated with horseradish peroxidase-conjugated goat
anti-mouse IgG (Abcam, Cambridge, UK). Specific binding
was detected using diaminobenzidine and H2O2 as substrates.

Protein loading was controlled using a monoclonal mouse
antibody against β-actin antibody (A5316; Sigma). Blots
were performed at least three times to confirm data reproduc-
ibility. Bands were analyzed densitometrically using an image
analysis system (Image J; National Institute of Health,
Bethesda, USA).

Statistical Analysis

The data were analyzed using the general linear model
procedure of SAS software [23]. The least square means
of the groups were compared at a significant probability of
less than 0.05 using ANOVA. Treatments were also com-
pared using Student's unpaired t test for comparison of
individual treatment. Between-group differences in latencies
were analyzed by the analysis of variance for repeated
measurements followed by Fisher's post hoc test for all
groups.

Results

The brain NF-κB p65 subunit expression increased sig-
nificantly in diabetic rats (Fig. 1a). Although Cr che-
lates did not alter brain NF-κB level in nondiabetic rats,
both chelates significantly decreased brain NF-κB level
in nondiabetic rats, at a greater extent in diabetic rats
supplemented with CrHis than those supplemented with
CrPic (P<0.05).

The diabetes decreased cerebral IκBα level (Fig. 1b).
Despite no alteration in nondiabetic rats, Cr chelates in-
creased cerebral IκBα level in diabetic rats. This increase
was more in rats supplemented with CrHis than rats supple-
mented with CrPic, but did not reach level of nondiabetic
rats.

The protein concentration of Nrf2 in the brain tissues for
diabetic rats was lower than that for nondiabetic rats
(Fig. 1c). Neither CrPic nor CrHis affected cerebral Nrf2
protein level in nondiabetic rats. The extent of protein level
increase in diabetic rats supplemented with CrHis was greater
than those supplemented with CrPic.

The brain 4-HNE protein adducts increased significantly
in diabetic rats (Fig. 1d). Supplemental Cr chelates did not
affect cerebral level of 4-HNE protein adducts. However,
both Cr forms decreased the level of 4-HNE protein adducts
in brains of diabetic rats at a similar extent.

Discussion

The purpose of this study was to determine the effects of CrHis
or CrPic on inflammatory markers in the brain of diabetic rats.
Similar to the present study, other reports have shown that
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diabetes causes alterations in synthesis or concentrations of
inflammatory cytokines [24–26]. In this experiment, CrHis or
CrPic decreased NF-κB activation in rats with HFD/STZ-
induced brain injury, suggesting that CrPic and CrHis decrease
lipid peroxidation via the Nrf2/ARE-mediated pathway, as
reflected by 4-HNE protein adducts. Jain et al. [25]
reported that chromium niacinate supplementation lowered
the blood levels of tumor necrosis-α (TNF-α), interleukin-
6 (IL-6), C-reactive protein, and cholesterol and CrPic
supplementation caused a decrease in TNF-α, IL-6, and lipid
peroxidation in rats.

Various extracellular signals can initiate NF-κB pathways
by activating IκB kinase complex (IKK). The activation of
IκB kinase complex leads to the phosphorylation, ubiquiti-
nation, and degradation of IκB, which allows NF-κB to
enter the nucleus where it regulates the expression of spe-
cific genes [4, 27]. Zhang et al. [28] hypothesized that
IKKβ/NF-κB pathway is linked to dysfunction of hypotha-
lamic signaling induced by overnutrtion. They [28] studied
the connection between IKKβ/NF-κB and central dysregu-
lation of energy balance (insulin/leptin pathway) in the
hypothalamus and found that chronic high-fat feeding up-
activated NF-κB in hypothalamus. In a previous study, we
reported that NF-κB p65 increased in rats fed with HFD
compared to rats fed with standard diet, but reduced by the
CrHis administration [29].

Nrf2 is considered as the axis of defense against oxida-
tive stress, and there is a clear correlation between patho-
genesis of diabetic neuropathy and Nrf2 pathway [8, 10].
Nrf2 pathway has been implicated to play a significant role
in contributing to the antioxidant defense of the body. Ex-
cess production of ROS is considered to cause abnormal
axon morphology and altered neuronal membrane perme-
ability along with causing functional modification of vari-
ous cellular proteins [26, 30]. Nrf2 and HO-1 have been
shown to possess protective effect against STZ-induced
diabetes and diabetic neuropathy [8]. In the present work,
Nrf2 level in the HFD/STZ-induced diabetes group was
lower than those of controls in brain, whereas Cr treatment
induced activation of Nrf2 and enhanced nuclear transloca-
tion and subsequent ARE binding, suggesting that Cr may
be involved in stabilization and activation of Nrf2. Yet, this
needs further studies to be substantiated. In a previous study,
it was shown that hepatic Nrf2 and HO-1 levels increased by
supplementation of CrHis in rats fed with HFD [29].

Oxidative stress plays a major role in diabetes as well as
in diabetic neuropathy [31, 32]. The reaction of free radicals
with membrane lipids causes the formation of lipid perox-
idation products including several aldehydic compounds,
one of which is highly toxic and called 4-HNE. This is
frequently measured as an indicator of lipid peroxidation
and oxidative stress in vivo and considered as an index of

Fig. 1 Western blot analysis of
cerebral nuclear factor-kappa B
(NF-κB p65) (a), nuclear factor
of kappa light polypeptide gene
enhancer in B cells inhibitor
(IκBα) (b), nuclear factor (ery-
throid-derived 2)-like 2 (Nrf2)
(c), and 4-hydroxynonenal
(HNE) protein adducts (d) in
nondiabetic (fed control diet, c)
and diabetic (injected with
streptozotocin, STZ, and fed
with high-fat diet, HFD) rats
receiving 8 μg elemental Cr via
drinking water in the form of
chromium picolinate (CrPic) or
chromium histidinate (CrHis).
A representative blot is shown
(n03). Actin was included to
ensure equal protein loading.
Densitometric analyses of these
bands are represented as percent
of control. Values are means±
standard error of the mean.
Different letters indicate group
mean differences
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oxidative stress. Moreover, it is one of the most effective
activators of Nrf2 [33]. 4-HNE forms adducts with key
neuronal proteins [34] and these adducts have been shown
to be increased in the peripheral nerves of STZ diabetic rats
[34, 35]. In the present study, 4-HNE protein adducts, indi-
cator of lipid peroxidation, in the brain of diabetic rats
decreased when dietary CrHis or CrPic was supplemented.
CrHis supplementation did not alter these parameters in
nondiabetic rats. The current study appears to be the first
to examine the specific association between dietary Cr in-
take and 4-HNE protein adducts in diabetic rats. Significant-
ly lower levels of 4-HNE adducts observed in diabetic rats
may indicate an association between Cr intake and 4-HNE
adducts for diabetic rats. Indeed, previous findings have
shown that the production of 4-HNE is altered in diabetes,
resulting in increased susceptibility of the tissues to injury
[36]. Cr is postulated to function to augment antioxidant
defense system, as confirmed by decreases in lipid peroxida-
tion, TNF-α, and IL-6 [16, 25]. Preuss et al. [37] also reported
a decrease in hepatic TBARS formation by supplementation
of CrPic and Cr nicotinate in rats.

In conclusion, diabetes affected the IκB/NF-κB pathway
and Nrf2 responses in brain tissue, as reflected by increased
cerebral NF-κB and 4-HNE protein adducts levels and de-
creased cerebral Nrf2and IκBα. Cr chelates (CrPic and
CrHis) exerted protective role in diabetic rats. Histidinate
form of Cr was superior to picolinate form of Cr in reversing
brain injury in diabetes, as reflected by a greater reduction in
level of NF-κB and greater increases in levels of IκBα and
Nrf2 in the brain.
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