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Abstract The phytotoxic effects of lead (Pb) on seed germinability, seedling growth,
photosynthetic performance, and nutrient accumulation (K+ and Cu2+) in two maize
genotypes (EV-1098 and EV-77) treated with varying levels of PbSO4 (0.01, 0.1, and
1.0 mg L−1) were appraised in this study. In the seed germination experiment, lead stress
significantly reduced seed germination percentage and index, plumule and radicle lengths
as well as fresh and dry weights in both genotypes. In the second experiment, lengths and
fresh and dry weights of shoots and roots decreased due to Pb in both genotypes with
increase in plant age. Higher Pb levels also decreased photosynthetic rate (A), water use
efficiency (A/E), and intrinsic water use efficiency (A/gs), but increased transpiration rate
(E) and Ci/Ca ratio as a result of increase in stomatal conductance (gs). The concentrations
of K+ and Cu2+ decreased in root, stem, and leaves of both genotypes, which could be a
direct consequence of multifold increase in Pb concentration in these tissues. Overall, cv.
EV-1098 had better Pb tolerance potential than EV-77 because the former genotype showed
less reduction in seed germinability parameters, photosynthetic performance, and K+ and
Cu2+ accumulation in shoot and root under lead stress.

Keywords Seed germinability . Germination percentage . Germination index .

Photosynthesis . K . Cu

Introduction

Soil contamination by heavy metals is a major ecological concern due to its widespread
release from agriculture, industry, and human activities [1]. Soils of many areas have been
contaminated with heavy metal toxicity that poisons the plant–soil system, degrade the soil,
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and reduce the quality and yield of most crops [2–5]. Moreover, it also poses a serious
threat to the health of animals and humans upon entering the food chain.

Among different potentially toxic metals, lead (Pb) is one of the most common
pollutants in the environment that readily accumulates in soils and sediments [6]. Main
sources of Pb release are mining and smelting of Pb ores, chimneys of factories using Pb,
metal plating and finishing operations, effluents from the storage battery, industry,
pesticides, fertilizers, and additives in pigments and gasoline [7]. Soil contamination with
Pb has gained considerable attention in the recent era and it seems to be not mitigated in the
near future [8].

Some metals, such as Mn, Cu, and Zn, are essential micronutrients for microorganisms,
plants, and animals in low concentrations, but at high concentrations, they have strong toxic
effects particularly on plants and animals [9–11]. However, as compared to these metals, Pb
is typically nonessential metal because its biological function has not been reported in the
literature [12, 13]. In plants, its uptake, transport, and accumulation have been reported to
be mainly dependent on soil type and nature of a plant species. This metal is absorbed and
accumulated in different plant tissues [14], generally with the highest amount in the root
tissues [15–17].

Plants grown in Pb-contaminated soils show visible nonspecific symptoms including
stunted growth, chlorosis, and inhibition of root growth [18–21]. When Pb enters the cells,
it produces a wide range of toxic effects on physiological and biochemical processes of
plants. It causes inhibition of enzyme activities, perturbation in mineral nutrition and water
balance, change in hormonal status [22], and alterations in lipid composition and protein
content in tissues [23, 24]. These disorders upset normal physiological activities causing
reduction in growth and metabolism that leads to membrane disorganization and reduced
photosynthesis [22, 25].

Heavy metals have been reported to have inhibitory effects on seed germination and
seedling growth in a number of earlier studies [26–29]. As germination and early
seedling growth are critical stages in the development of plants [30], so they play an
important role in getting food crop for subsequent growth. Therefore, keeping in view of
all these deleterious aspects of Pb toxicity, the present study was conducted to examine
the effects of Pb stress on seed germinability, seedling growth, photosynthesis as well as
nutrient concentration (K+ and Cu2+) in two most widely cultivated maize genotypes (EV-
1098 and EV-77).

Materials and Methods

The seeds of two most widely cultivated maize genotypes (EV-77 and EV-1098) were
obtained from the Maize and Millet Research Institute, Sahiwal, Pakistan and evaluated for
their Pb tolerance potential in two different experiments. In seed germination experiment,
ten seeds were sown in Petri plates lined with double filter paper and surface sterilized with
0.1% HgCl2 for 2 min. Varying levels of lead (control, 0.01, 0.1, and 1.0 mg L−1 of PbSO4)
were prepared in Hoagland’s nutrient solution [31], and 10 ml of each solution was applied
to each Petri plate. The Petri plates were placed under continuous white fluorescent light
(PAR 350 μmol m−2 s−1) in a growth room at 26±3°C. Seeds were allowed to germinate for
7 days, and seeds germinated were counted daily to calculate seed germination percentage
and index. A seed was counted germinated when both plumule and radicle had emerged
≥0.5 cm. After 7 days of sowing, seedlings were harvested and rinsed with distilled water.
Their plumules and radicles were separated and fresh weights determined. They were then
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wrapped in paper bags and dried in an oven at 65°C up to constant dry weights and their
dry weights recorded.

In the second experiment, seeds of both genotypes were sterilized with 0.1% HgCl2 for
2 min and sown in plastic pots containing 10 kg well-washed river sand. Varying levels of
lead (control, 0.01, 0.1, and 1.0 mg L−1 of PbSO4) were prepared in Hoagland’s nutrient
solution as mentioned above, and 2.0 L of each solution was applied to each pot. The
solutions were applied weekly to maintain constant levels of Pb by completely replacing
old solution with appropriate fresh one. The pots were placed under natural conditions with
PPFD 1,450 μmol m−2 s−1 (14.2 h day−1), average day and night temperatures 21±4°C and
16±2°C, and relative humidity 40±3.2% and 60±4.5%, respectively. The experiment was
laid down in a completely randomized design with factorial arrangement in three replicates.
The data for growth parameters were recorded at 21 days after sowing. Plants were
uprooted and their shoot and root lengths measured. Detached shoots and roots after
properly washing them were placed in an oven and dried at 65°C up to constant dry weights
and their dry weights recorded. Before harvesting the plants, the data for photosynthetic and
gas exchange parameters including CO2 assimilation (A) and transpiration (E) rates,
stomatal conductance (gs) were recorded using an open system LCA-4 ADC portable
infrared gas analyzer (Analytical Development Company, Hoddesdon, England). The
condition adjustments of the equipment used were: leaf surface areas 6.25 cm2, ambient
CO2 concentration (Cref) 290.1 μmol mole−1, temperature of leaf chamber (Tch) varied
from 31°C to 33.8°C, leaf chamber gas flow rate (V) 394 mL min−1, leaf chamber gas flow
rate (U) 256.66 mol m−2 s−1, ambient pressure (P) 98.9 kPa, water vapor pressure (eref) into
the leaf chamber ranged from 4.4 to 6.6 mbar, and molar flow of air per unit leaf area (US)
410.6 mol m−2 s−1. The values of A and E were used to calculate water use efficiency (A/E),
whereas the values of A and gs were used to work out intrinsic water use efficiency (A/gs).
The values of intrinsic (Ci) and ambient (Ca) CO2 concentrations were used to calculate Ci/
Ca ratio. For the determination of inorganic elements, the oven-dried well-ground material
(0.1 g) of leaves and roots was digested in concentrated HNO3. The amount of dissolved
cations like K+ was determined with a flame photometer (Jenway, PFP-70), whereas Pb2+

and Cu2+ were determined with an atomic absorption spectrophotometer (AAnalyst-300,
Perkin Elmer, Germany). The data so collected were subjected to a two-way ANOVA, and
mean values were compared with the least significance difference test at P≤0.05 with a
COSTAT computer package (CoHort Software, 2003, Monterey, CA) to determine statistical
difference among them.

Results

During the germination experiment (after 7 days of metal treatment), lead (Pb) had a
significantly adverse effect on seed germination and seedling growth of both maize genotypes
(EV-1098 and EV-77). Both treatment (T) and genotype (G) terms differed significantly for
percent seed germination, germination index, plumule and radicle length, and fresh and dry
weights. Whereas the T×G interaction term was significant only for radicle length and plumule
and radicle fresh and dry weights. Overall, seed germination percentage and index and radicle
fresh and dry weights of both genotypes decreased consistently with increase in Pb levels.
Similarly, plumule and radicle lengths also decreased with increasing Pb level of the growth
medium, but the effect on radicle length in genotype EV-1098 was more inhibitory as compared
to that on EV-77. The highest level of Pb (1.0 mg L−1) had the most adverse effects on these
parameters as compared to the low Pb levels (Fig. 1).
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Fig. 1 Germination and seedling growth parameters of the two maize genotypes after 7 days of lead application
[Bars represent SE values; *, **, *** = significant at 0.05, 0.01 and 0.001 levels, respectively; ns=non-significant.
Means sharing the same lowercase letters are non-significant at 5% level, n=10; T=treatments and G=genotype]
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Similar to the inhibitory effects of Pb on seed germinability parameters, severe reduction
in vegetative growth, photosynthesis, and K+ and Cu2+concentration was also observed in
Pb-stressed maize plants after 21 days of growth in the second experiment. Statistical
analysis of the data revealed that T, G, and T×G interaction terms differed significantly for
shoot and root lengths and shoot and root fresh and dry weights recorded after 21 days of
Pb application. Shoot length of both genotypes decreased consistently with increasing
concentration of exogenously applied Pb, while root length and fresh and dry weights of
shoots and roots of genotype EV-77 were not much affected at lower level of Pb stress
(0.01 mg L−1). All these parameters decreased gradually with a gradual increase in Pb
application. Genotype EV-1098 showed less reduction in growth attributes as compared to
that in EV-77 (Fig. 2).

All gas exchange parameters showed a significant reduction after 21 days of Pb
application. Photosynthetic rate (A), transpiration rate (E), stomatal conductance (gS), water
use efficiency (A/E), and intrinsic water use efficiency (A/gs) as well as leaf substomatal to
ambient CO2 ratio (Ci/Ca) were significantly affected due to Pb stress. Overall,
photosynthetic rate (A) of both genotypes decreased consistently with increase in Pb level.
Lead stress caused a marked reduction in A/E and A/gs ratios of both genotypes with
increasing concentration of Pb, while a significant increase in transpiration rate (E),
stomatal conductance (gs), and Ci/Ca ratio was observed at the highest level of Pb
(1.0 mg L−1; Fig. 3).

Potassium (K+) and copper (Cu2+) concentrations in root and leaves of both maize
genotypes were also significantly affected by the addition of Pb to the rooting medium.
Leaf Cu2+ content in leaves and roots of both genotypes decreased consistently with the
increasing levels of Pb application. Although leaf K+ content also decreased significantly in
both genotypes, the reduction was more in EV-1098 at higher levels of Pb stress (0.1 and
1.0 mg L−1) than that in EV-77. In contrast, root K+ content decreased markedly in EV-
1098, but it was not much affected in EV-77 by Pb stress. The decrease in leaf and root K+

and Cu2+ was accompanied by a multifold increase in Pb2+ contents in the respective organs
of both genotypes. Genotype EV-77 showed more increase in root Pb2+ contents as well as
those of leaves. The reduction in all growth and photosynthetic attributes as well as that of
K+ and Cu2+ accumulation parameters was negatively correlated with high accumulation of
Pb in the roots and leaves of both maize genotypes (Fig. 4).

Discussion

The data obtained from this showed indicated that cv. EV-23 1098 exhibited better Pb
tolerance potential than EV-77 because the former genotype showed less reduction in all
parameters studied. Pb is considered to be typically nonessential nutrient for plants;
however, plants easily take up Pb from the soil, accumulate in roots, and a small fraction is
translocated upward to the shoots [13]. In this study, lead stress had a significant adverse
effect on seed germination, seedling growth, and photosynthetic performance as well as on
nutrient accumulation in two maize genotypes examined in this study. This is parallel to
what has earlier been observed in a number of studies on different crops, e.g., wheat [32],
rice [17], maize, and barley [33]. In the first experiment on germination, reduction in seed
germination and early seedling attributes was suggested to be a direct consequence of
excess Pb concentration in the growth medium of this crop. It has been shown that
decreased seed germination may be a consequence of reduction in breakdown and
mobilization of stored food in germinating seed as a result of decreased activity of starch-
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and protein-degrading enzymes, such as α-amylase and protease, caused by high Pb
concentration [34]. This can directly result in reduced activity of meristematic cells and
enzymes contained in the cotyledons and endosperm, thereby reducing seedling length and
fresh and dry weights under Pb stress [35].
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In the second experiment, all vegetative growth parameters decreased drastically under
Pb stress applied for 21 days. However, the reduction in root length and fresh and dry
weights was more prominent in roots as compared to shoot length under varying
concentrations of Pb. Similar results have already been reported in wheat [35, 36], Albizia
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lebbeck [29], and Brassica juncea [37]. Roots are directly exposed to high concentration of
Pb in growth medium, and Pb, being relatively less mobile, is sequestered in roots. Thus,
roots have to face direct consequences of high Pb concentration. For example, it has been
reported that high concentration of Pb can directly result in reduced mitosis in meristematic
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zone of Allium cepa roots, thereby arresting mitotic cell division [38] which results in
reduced root proliferation [39, 40]. This can ultimately lead to reduced nutrient and water
supply to aerial plant parts that reduces photosynthetic rates, alters water balance, and
membrane structure and perturbs permeability functions [22], thereby causing reduced
shoot growth under Pb stress.

Analogous to the inhibitory effects of Pb on vegetative growth paramaters, photosyn-
thesis and concentrations of different elements were also affected in maize plants subjected
to Pb stress for 21 days. The photosynthetic rate (A) was adversely affected by Pb toxicity
which could be due to metal-induced reduction in the concentration of photosynthetic
pigments [22, 41, 42], changes in fine structure of chloroplasts [43], inhibition in electron
transport system [44], changes in lipid and protein composition of thylakoid membrane [24,
45], and inhibition of the activities of Calvin cycle enzymes [46]. Rate of photosynthesis is
also determined by substomatal CO2 concentration that is controlled by stomatal
conductance (gs) [47]. In the present study, Pb stress caused a significant increase in
transpiration rate (E) and stomatal conductance (gs), but in contrast, water use efficiency (A/E)
and intrinsic water use efficiency (A/gs) decreased markedly with increasing concentration of
external Pb. Thus, it can be concluded that reduction in photosynthetic rate (A) may have
been due to factors other than stomatal limitation (gs).

Lead (Pb) stress significantly reduced the concentrations of K+ and Cu2+ in the roots as well
as in the leaves of both maize genotypes in the present study. High levels of Pb have been
reported to cause severe imbalance in concentration of mineral nutrients in different plant
tissues [48, 49] as it competes with the entry of different cations (K+, Cu2+, Ca2+, Mg2+) in
the root system [22]. As discussed earlier, Pb stress can result in altered lipid and protein
composition of biological membranes that can increase leakage of cations such as K+ and
Cu2+ from the root cells [50]. In view of some earlier studies, it is evident that only a little
proportion of Pb absorbed by the roots is translocated via xylem into the aboveground plant
organs [51, 52]. However, leaves can accumulate a significant amount of Pb in a
concentration-dependent manner over time as observed in the present study [48, 53].
Therefore, reduction in accumulation of these nutrients in leaves under Pb stress might be a
direct consequence of buildup of high concentration of Pb in the leaves that competitively
reduced the concentration of K+ and Cu2+.

Conclusion

Overall, application of Pb stress decreased seed germinability and plant growth of both
maize genotypes. Moreover, disturbance in uptake and transport of mineral nutrition and
decrease in photosynthesis were observed with increase in concentration of Pb in the
growth medium. Cv. EV-1098 was more tolerant to Pb toxicity as compared to cv. EV-77
because it showed relatively less decrease in growth, photosynthetic performance, and K+

and Cu2+ contents and less accumulation of Pb in the roots and leaves.
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