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Abstract One aspect of environmental degradation in coastal areas is pollution from toxic
metals, which are persistent and are bioaccumulated by marine organisms, with serious
public health implications. A conventional monitoring system of environmental metal
pollution includes measuring the level of selected metals in the whole organism or in
respective organs. However, measuring only the metal content in particular organs does not
give information about its effect at the subcellular level. Therefore, the evaluation of
biochemical biomarker metallothionein may be useful in assessing metal exposure and the
prediction of potential detrimental effects induced by metal contamination. There are some
methods for the determination of metallothioneins including spectrophotometric method,
electrochemical methods, chromatography, saturation-based methods, immunological
methods, electrophoresis, and RT-PCR. In this paper, different methods are discussed
briefly and the comparison between them will be presented.
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Introduction

Metallothioneins (MTs), first described by Margoshes and Vallee [1], are small (6–7 kDa)
cytosolic proteins involved in metal homeostasis and detoxification processes that contain
about 60 amino acids (none of which aromatic) and a high content of cysteine residues.
MTs have two globular subunits, each comprising about ten cysteine residues that do not
form disulfide bonds and are responsible for sequestering metals with their sulfhydryl
(thiolic) groups.
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Four isoforms of metallothioneins (MT1, MT2, MT3, and MT4) have been known until
now according to the Expert Protein Analysis System Proteomics Server. Their molecular
weight varies from 6.0 to 6.9 kDa, the number of amino acids is about 61, and their pI is
about 8.3. Only MT3 group [2, 3] differs from the others because it contains 68 amino acids
and its pI is about 4.8. MT occurs mainly in the cytosol and is also present in the nucleus
and lysosomes [4].

Although the members of the MT family were discovered nearly 40 years ago, their
functional significance remains obscure. MTs are involved in many pathophysiological
processes such as metal ion homeostasis and its detoxification, scavenging of reactive
oxygen species, cell proliferation and apoptosis, chemo-resistance, and radiotherapy
resistance [5–8]. Considering the heavy metal detoxification significance of MTs, these
proteins can serve as biomarkers of heavy metal pollution of the environment [9–12]. On
the other hand, a comparison between the content of heavy metals and determined MTs
could be very useful not only from toxicological aspects but also from biochemical aspects
due to the better understanding of different functions of MTs in an organism [13].

These proteins are very conservative even between distinct animal groups and have been
widely used as biomarkers of metal exposure in aquatic organisms since there is induction
of MT synthesis resulting from exposure to metallic pollutants [14]. MTs constitute between
5 and 7 mol of group IIB heavy metals (such as Cd, Cu, Hg, and Zn) per mole of protein.
MTs are induced in the cells as the result of elevated metal concentrations, either essential
for cell growth and development (such as Zn and Cu) or non-essential (toxic metal ions
such as Cd and Hg among others) to the organism. It is now thought that MT plays an
important role in the handling and detoxification of this class of metal ions and in
regulating the concentration of the essential metal ions in the cells. The metal content of
purified MT is highly variable and depends on the organism, tissue, and history of metal
exposure [15].

Generally, MT expression increases with the elevation of tissue concentrations of MT-
inducing metals, reflecting metal bioavailability in the environment [16, 17]. For example,
Pedersen et al. [18] reported a clear induction of MT in the gills of the crab Carcinus
maenas related to the presence of copper in the field; whereas Schlenk and Brouwer [19]
demonstrated that copper induced MT synthesis in the hepatopancreas of the blue crab
Callinectes sapidus both in the field and in the laboratory. In fact, it has been established
that increases in MT concentrations are associated with decreases in the sensitivity of an
organism to metals [20]. Some authors have noted that, in a single species, the populations
that live in a medium polluted by metals have higher concentrations of MTs [17, 21, 22].
Among molluscs, they were mainly present in filter feeders, such as mussels and oysters,
but also in the whole soft tissues of the limpets Crepidula fornicata, Patella aspera, Patella
granularis, Patella intermedia, as well as in the whole soft tissues, viscera, and foot of
Patella vulgate [15, 23].

In the limpets P. vulgate collected from the field or exposed in the laboratory
(500 mg l−1 Cd), MT (with a molecular weight of 10,000 Da) was shown to bind apart
from Cd, small amounts of Cu, and Zn [24]. MT induction is variable within metals.
Cadmium, for instance, is one of the strongest known MT inducers [25, 26]. MTs are
present in all tissues but gills and liver are the most usually surveyed organs for MT
induction in fish, due to their role in metal uptake and bioaccumulation/detoxification,
respectively [27].

These data demonstrate the necessity to use analytical techniques not only for
determination of MTs but also for detection of heavy metals in organisms of interest
[13].
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Different Methods for Determination of Metallothionein

There are different analytical methods for the determination of MTs like electrochemical
methods, metal saturation, spectrophotometry, chromatography, immunological methods,
electrophoresis, and quantification of MT mRNA. Here, these methods are briefly reviewed.

Electrochemical Methods

Different electrochemical methods are widely used for the determination of MTs in
environmental studies. Also, in some studies, MTs were used as ionophores to design
metal-sensitive potentiometric biosensors. In these biosensors, MT as a metal ion ionophore
was incorporated into a porous polymer (such as polysulfone). As a model, Ag+-ISEs were
successfully developed using polysulfone matrix-embedding metallothioneins. The con-
structed ISEs respectively have a long lifetime. The reason for this is the lack of leaking
processes due to the polymeric nature of the ionophore as well as the fact that the use of
fully metallated metalloproteins ensures their resistance to air oxidation. These can cause
lower detection limits, as a function of the incubation time, but contrarily show poor
selectivity and require regeneration processes [28].

Some different electrochemical methods for the determination of MTs are discussed in
the following paragraphs.

Differential Pulse Polarography

In one study on the determination ofMTs [29] in the intestine of red mullet (Mullus barbatus),
MTs were determined in heat-treated cytosolic fractions of intestine tissue by differential
pulse polarography [30]. MTs were quantified from the calibration straight line which was
obtained with MT I + II from rabbit liver as a calibrant [31]. In another study, for modeling
MT induction in the liver of fish Sparus aurata exposed to metal-contaminated sediments,
DPP method was used and the electrode system consisted of a mercury capillary working
electrode, an Ag/AgCl reference electrode, and a platinum auxiliary electrode. The supporting
electrolyte was (1 M NH4Cl, 1 M NH4OH, and 2 mM [Co(NH3)6]Cl3) [27].

Differential Pulse Anodic Stripping Voltammetry

Krizkova et al. developed a method based on voltammetry for the determination of MTs in fish
tissues [13]. In this method, heat-denatured cytosol was utilized. Electrochemical measure-
ments were performed using a standard cell with three electrodes. The working electrode was
a hanging mercury drop electrode with a drop area of 0.4 mm2. The reference electrode was
an Ag/AgCl electrode and the auxiliary electrode was a graphite stick electrode. An
adsorptive transfer stripping technique [32] in connection with chronopotentiometric stripping
analysis (CPSA) was used for the determination of metallothionein by recording the inverted
time derivation of potential (dE/dt)−1 as a function of potential (E).

Cathodic Stripping Voltammetry

In the study done by Hourch et al., in 2003, a new procedure for the quantification of MT
by square wave cathodic stripping voltammetry has been developed and optimized [33].
The determination was based on the complexation of cisplatin and MT and the subsequent
reduction of the complexes at the electrode. In order to achieve the highest sensitivity and
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resolution of the peak, an optimization of the experimental parameters has been carried out
using experimental design methodology (response surface). The detection limit was 6×
10−12 mol l−1. This sensitivity is comparable to that of an immunoassay, inducing that this
procedure may also be used for MT quantification in tissue or serum. Some recent works on
electrochemical detection of metallothionein are summarized in Table 1.

Metal Saturation

This method is based on saturation with metal ions such as silver, cadmium or mercury for
binding to MTs in sample and then removal of excess metal with a protein like hemoglobin.
Afterwards, this solution is heated and metal MT is separated by centrifuge. Then, the
content of metal is determined by AAS or ICP and corresponds to MT concentration.

Table 1 Application of Electrochemical Methods for Determination of Metallothioneins in Aquatic Organisms

Organism Method Determined range Year Ref.

Oyster (Crassostrea gigas) Polarography 0–2,000 mg/kg dw,
200–1,600 μg/g dw

2003, 2006 [79, 80]

Shrimp (Penaeus semisulcatus) DPPa – 2005 [81]

Shrimp (Penaeus indicus) DPP 0–25 mg/g dw 2006 [82]

Polychaete (Hediste diversicolor) DPP – 2003 [83]

Sea bass (Dicentrarchus labrax) DPP 0–2,500 μg/g ww 2008 [84]

Crab (Carcinus maenas), clam
(Ruditapes philippinarum)

ASVb – 2008 [85]

Mussel (Mytilus galloprovincialis) DPP 5–25 mg/g, 0.4–1 mg/mL 2004, 2006 [9, 86]

Crustacean (Neomysis integer) DPVc 1–2.5 mg/g ww 2008 [87]

Eel (Anguilla anguilla) DPP 0–20 mg/g pr,
300–700 μg/g ww

2007, 2008 [88–90]

Clam (Scorbicularia plana) DPP 20–200 mg/g pr 2008 [78]

Fish megrim (Lepidohumbos bascii),
pouting (Trisopterus luscus)

DPP 1,000–10,000 μg/g dw 2007 [91]

Perch (Perca fluviatilis) CPSAd 1.5–50 ng/mL 2007 [92]

Gammarus pulex DPP – 2007 [93]

Red mullet (Mullus barbatus) DPP 8–20 mg/g dw,
0.5–3 mg/g ww

2006, 2007 [94, 95]

Mussel (Bathymodiolus thermophilus) DPP 100–900 μg/g ww 2006 [96]

Sponge (Spongia officinalis) DPP – 2005 [97]

Mussel (Mytilus edulis) DPP 1,000–7,000 mg/kg ww 2005 [98]

Shrimp (Penaeus merguiensis,
Penaeus semisulcatus)

DPP – 2005 [99]

Clam (Ruditapes decussates) DPP 0–2 mg/g ww 2003, 2004 [100, 101]

Wrasse (Symphodus melppis) DPP 1–10 mg/g pr 2008 [102]

Scabbard fish (Aphananopus carbo) DPP – 2007 [103]

dw dry weight, ww wet weight, pr protein
a Differential pulse polarography
b Anodic stripping voltammetry
c Differential pulse voltammetry
d Chronopotentiometric stripping voltammetry
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Cadmium Saturation

Cd saturation assay can be carried out as follows: high molecular weight Cd-binding
compounds are denatured with acetonitrile, Cu bound to MT is removed with ammonium
tetrathiomolybdate, excessive tetrathiomolybdate and its Cu complexes are removed with
DEAE-Sephacel, apothionein is saturated with Cd, and excessive Cd is bound to Chelex
100. The thiomolybdate assay is capable of reliably detecting 14 ng MT and thus is
particularly suitable for measuring MT in small tissue samples (e.g., biopsies), in
extrahepatic tissues, and in cultured cells. Moreover, the combination of the thiomolybdate
assay with the recently developed Cd–Chelex assay also makes it possible to determine the
portion of MT which binds Cu (Cu load of MT), provided that the amount of non-Cu–
thionein exceeds 100 ng, the detection limit of the Cd–Chelex assay [34].

In another study, 109Cd and bovine hemoglobin were added to scavenge Cd not bound to
MT. The hemoglobin and excess Cd were separated from the 109Cd–MT by heating. The Cd
remaining in the supernatant was a quantitative measure of the MT present. Analysis of
Sephadex G-75 and DEAE ion exchange fractions of liver supernatants from Cd- and Zn-
treated rats indicated that the assay is specific for MT. Because of its speed and sensitivity,
this assay may be useful for measuring MT in large studies where time and expense are
limiting factors [35].

Silver Saturation

A silver saturation method was well established for measuring MT concentration in
bivalves and was used to measure the MT induced by Cd in the mussel tissue [36]. The
tissue was then homogenized in Tris–base buffer with mercaptoethanol (antioxidant) and
phenylmethylsulfonyl fluoride (protease inhibitor). The homogenate was centrifuged and
the soluble fraction was used for the MT assay. Briefly, stable Ag with 20 kBq ml−1 110mAg
in glycine buffer was added to a homogenate soluble fraction to saturate the MT binding
sites. Then, excess Ag was removed by adding rabbit blood cell hemolysate followed by
heat treatment and centrifugation. The addition of hemolysate and heat treatment was
repeated. Then, the supernatant was analyzed for 110mAg. MT concentration (μg g−1 wet wt.)
was calculated as 3.55 times the Ag concentration as in the mammalian tissue. MT recovery
was at >70%, using standard MT from rabbit liver [37].

Mercury Saturation

Cadmium and zinc bioaccumulation and MT response in two freshwater bivalves
(Corbicula fluminea and Dreissena polymorpha) transplanted along a polymetallic gradient
MT concentration were determined using the mercury saturation assay [38]. This technique
was modified slightly as the fresh pig blood hemolysate was replaced by purified and
lyophilized pig hemoglobin prepared in a Tris–HCl buffer. Table 2 shows some of recent
works on the metal saturation.

Spectrophotometry

The application of spectrophotometry in MT determination was introduced for the first time
in 1997 [39]. MT concentration was evaluated utilizing a partially purified metalloprotein
fraction obtained by acidic ethanol/chloroform fractionation of the tissue homogenate. The
procedure takes into account precautions to obtain a complete MT precipitation and to

344 Shariati and Shariati



Table 2 Application of Metal Saturation Methods for Determination of Metallothioneins in Aquatic Organisms

Organism Method of saturation/
instrument

Determined range Year Ref.

Crab (Eriocheir sinensis) Cd-Sat/ICP-AESa 0–7 mg MT/g ww 2005 [104]

Eel Cd-thiomolybdate
Sat/gamma counter

1–100 nmol/g ww 2008 [47]

Rainbow trout
(Oncorhynchus mykiss)

Hg-Sat/gamma
counter

0–500 μg MT/g ww 2005 [105]

Freshwater prawn
(Macrobranchium
rosenbergii)

Cd-Sat/ICP-AES – 2007 [106]

Zebrafish (Denario rerio) Hg-Sat/AAS – 2006 [107]

Bivalve (Dreissna polymorpha) Hg-Sat/CV-AASb – 2006 [108]

Clam (Corbicula
fluminea)

Hg-Sat/AAS,
CV-AAS

– 2006, 2005 [108, 109]

Snail (Lymnea stagnalis) Ag-Sat/AAS 250–1,750 μg/g dw 2003 [110]

Polychaete (Perinereis
aibuhitensis)

Ag-Sat/radioactivity
counter

10–150 μg/g ww 2008 [111]

Daphnid (Daphnia
magna)

Ag-Sat/radioactivity
counter

10–100 μg/g ww 2006 [112]

Eel (Anguilla anguilla) Cd-Sat/gamma
counter

0–100 nmol/g ww,
0–350 μg/g ww

2008, 2001 [47, 113]

Oligochaete (Tubifex
tubifex)

Cd-Sat/gamma
counter

0–3 nmol/g ww 2007 [114]

Gudgeon (Gobio gobio) Cd-Sat/gamma
counter

0–45 nmol/g ww 2007 [71]

Bivalve (Pyganodon
grandis)

Hg-Sat 0–400 nmol Hg
binding sites/g

2006 [115]

Crab (Charybdis
japonica)

Hg-Sat/AAS 0–120 nmol Hg
binding sites/mg

2006 [116]

Gibel carp (Carassius
auratus gibelio)

Cd-Sat/gamma
counter

01–80 nmol/g 2006, 2003 [45, 117]

Brown trout (Salmo tratta) Cd-Sat – 2006, 2001 [118, 119]

Carp (Cyprinus carpio),
barbel (Barbus graellsii)

Ag-Sat/AAS 200–1,200 μg/g ww 2006 [120]

Black sea bream
(Acanthopagrus schlegali),
grunt (Terapon jarbua)

Ag-Sat/radioactivity 0–160 μg/g 2005 [121]

Bivalve (Pyganodon
grandis)

Hg-Sat 0–700 nmol Hg
binding site/g dw

2005, 2004 [122–124]

Shrimp (Litopenaeus
vannamei)

Ag-Sat 0–1 mg bounded
Ag/g ww

2005 [125]

Chinese crab (Eriocheir
sinensis)

Ag-Sat 0–100 μg/g ww 2005 [126]

Oligochaete (Tubifex tubifex) Hg-Sat 0–10 nmol/g ww 2004 [127]

Bivalve (Dreissna polymorpha) Ag-Sat 0–450 nmol
binding sites/g ww

2004 [128]

Rainbow trout
(Oncorhynchus mykiss)

Cd-Sat 0–350 μg/g ww 2003, 2001 [117, 129]

Common carp (Cyprinus
carpio)

Cd-Sat 1–100 μg/g ww 2000, 2001,
2003

[117, 130–
132]
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avoid the oxidation of sulfhydryl groups (SH), the contamination by soluble low molecular
weight thiols, and enzymatic protein degradation which can occur during sample
preparation. In the extracts, the concentration of MT, denatured by low pH and high ionic
strength, was quantified spectrophotometrically utilizing the Ellman’s SH reagent.

In conclusion, this spectrophotometric method allows the simple, repeatable, and low-
cost detection of minimal concentrations (nmol) of MT in biological samples, and therefore
it is suggested as a tool for MT quantification in eco-toxicological investigations and
biomonitoring programs [39]. Table 3 presents some spectroscopy methods for the
determination of metallothionein.

Chromatographic and Electrophoretic Methods

Classical techniques, such as metal saturation assays, enzyme-linked immunosorbent
assays, and pulse polarography, provide information on total MT levels but do not provide
information on the induction of different MT isoforms and the differential binding of metals
to these and other metal-binding proteins [40, 41]. Various separation methods were
described for MT and metallothionein-like proteins (MTLPs) purification. They generally
include several combined chromatographic steps, such as gel filtration, ion exchange, and
high-performance liquid chromatography (HPLC). A relatively improved sensitivity has
been achieved using fluorescence detection following derivatization of MTs [42, 43]. In a
derivatization reaction, MTs are labeled with a fluorogenic reagent such as monobromo-
bimane (mBBr) by nucleophilic substitution of the MT thiolate [44].

Today, most of the works have been led to obtain reliable separations of the different
MT/MTLP isoforms and subisoforms, and investigations have been focused to test and
optimize different hyphenated chromatographic and electrophoretic techniques with
sensitive atomic and mass spectrometric detectors. The coupling of high-resolution
techniques, such as HPLC coupled on-line to inductively coupled plasma mass
spectrometry (ICP-MS), provides a powerful tool for this purpose [45, 46]. The major
virtues of these coupled HPLC and ICP-MS techniques are selectivity, sensitivity, and
multi-element capability [47]. Size exclusion chromatography (SEC)–ICP-MS is useful for
a first fractionation of the sample before subsequent separation steps. SEC has been used in
conjunction with ICP-MS with magnetic sector and quadrupole mass analyzer. Compared
to quadrupoles, sector instruments provide an extremely low instrumental background,
improved sensitivity in low resolution for isotopes that are not prone to spectral

Table 2 (continued)

Organism Method of saturation/
instrument

Determined range Year Ref.

Zebrafish (Danio rerio) Ag-Sat LOD, 9 nmol MT/L 2003 [133]

Dogwhelk (Nucella
lapillus)

Ag-Sat 10–40 μg MT/g ww,
10–2,100 μg MT/g ww

2001, 2002 [16, 134]

Bottlenose dolphin
(Tursiops aduncus)

Cd-Sat/gamma
counter

2–1,500 nmol Cd
bound/g

2009 [135]

ww wet weight, dw dry weight
a Inductively coupled plasma-atomic emission spectrometry
b Cold vapor atomic absorption spectroscopy
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interference, and very good detection limits (0.1 to 1 ppt) for nearly all elements [48]. Also,
speciation of some metals (Cd, Cu, and Zn) in different liver MT isoforms was carried out
by means of hyphenated techniques, in particular size exclusion-fast protein liquid
chromatography (SE-FPLC) followed by anion exchange (AE)-FPLC, both coupled with
the ICP-(Q)MS detection [49]

The chemical composition and structure of the MT isoforms in most fish are not exactly
known. Therefore, internal calibration carried out either by the standard addition method or
mass spectrometric isotope dilution analysis (IDMS) with species-specific spiking mode
cannot be applied for direct metal quantification of these species. On-line ID with species-
unspecific spiking, in combination with capillary electrophoresis (CE) or reverse-phase
(RP)-HPLC to ICP-MS has proved to be a reliable method for quantitative metal speciation
of MT isoforms [50, 51]. Partial purification of the MT cytosolic fraction using SEC was
found to be necessary prior to analysis. The simultaneous ion extraction and fast full-
spectra coverage capabilities of inductively coupled plasma time-of-flight mass spectrom-
etry (ICP-TOF-MS) make it especially attractive for multi-isotope analysis of transient
signals and for transient isotope ratios or isotope dilution measurements. Based on the

Table 3 Application of Spectroscopy Methods for Determination of Metallothioneins in Aquatic Organisms

Organism Method Determined range Year Ref.

Sea bream (Sparus aurata) Spectrophotometry 50–450 μg/g ww 2007 [136]

Fish (Seriola dumerilli) Spectrophotometry 200–1,800 ng/g ww 2006 [137]

Fish (Oreochromis niloticus) Spectrophotometry 50–250 μg/g 2008 [138]

Mussel (Mytilus galloprovincialis) Spectrophotometry 10–180 μg/g ww 2006, 2008 [139, 140]

Fish (Geophagus brasiliensis) Spectrophotometry 10–60 μg/g 2008 [141]

Carp (Cyprinus carpio) Spectrophotometry 5–500 μg/g 2008 [142]

Sea bass (Dicentrarchus labrax) Spectrophotometry 10–60 μg/g pr 2008 [137]

Polychaete (Perinereis muntia) Spectrophotometry 20–180 μg/g 2008 [143]

Mussel (Mytilus galloprovincialis) Spectrophotometry 50–300 μg/g,
40–160 μg/g

2006, 2007 [11, 144–147]

Blue mussel (Mytilus edulis) Spectrophotometry 20–140 μg/g ww,
200–600 μg/g ww,
10–40 μg/g ww

2004, 2007 [148–150]

Antarctic clam (Laternula elliptica) Spectrophotometry – 2007 [151]

Isopod (Asellus aquaticus),
Zebra mussel (Dreissna
polymorpha)

Spectrophotometry – 2006 [152]

Eelpout (Zoarces viviparus) Spectrophotometry 50–300 μg/g ww 2006 [153]

Perch (Perca fluviatilis) Spectrophotometry – 2006 [153]

Bivalve (Macoma balthica) Spectrophotometry 200–600 μg/g 2005 [149]

Polychaete (Laeonereis acuta) Spectrophotometry 0.01–2 μmol;
GSH/g ww

2004 [154]

Carb (Carcinus maenas),
Limpet (Patella vulgate)

Spectrophotometry 10–40 μg/g ww 2004 [150]

Tood fish (Halobatrachus
didactylus)

Spectrophotometry 5–70 nmol/g ww 2003 [155]

Mangrove oyster (Crassostrea
rhizophorae)

Spectrophotometry 50–400 pmol
GSH/g ww

2006 [156]

Bivalve (Laternula elliptica) Spectrophotometry – 2007 [157]
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advantages of ICP-TOF-MS, the combination of species-unspecific isotope dilution
methods on-line with liquid chromatography (LC)–ICP-TOF-MS has been exploited for
the quantitative determination of Cu, Zn, and Cd associated with the MT fraction in fish
cytosolic extracts [52]. Recently, fast protein LC (FPLC) in combination with IDICP-
QMS was applied to the metal fractionation of MT isoforms in hepatic cytosols of eels
[45, 53].

Nevertheless, the lack of standards for the different metal-binding proteins present
makes on-line quantification of metal species a difficult task. The development of an
on-line isotope dilution method in combination with the coupling of SE-HPLC to an
ICP-TOF-MS makes the on-line multi-element quantitative speciation of metal-binding
proteins possible [45]. This method has proven to be a powerful technique to perform
metal binding and speciation studies of complex mixtures. The cytosolic metal
partitioning was determined by SE and AE-HPLC directly coupled to an ICP-TOF-MS
[41, 45, 47].

In some studies, protein identification has been accomplished by means of two-
dimensional polyacrylamide gel electrophoresis separations followed by MS analysis [54].
However, due to the intrinsic limitations of gel-based separation methods, a considerable
effort has been focused on the development of integrated capillary separation technology
through the combination of various separation mechanisms with inorganic and organic
mass spectrometric techniques. These separation techniques provide the opportunity to
analyze samples of small volumes with high throughput and sensitivity, good dynamic
range, and minimal sample handling [55]. Two of popular capillary separation techniques
used in proteomics are capillary liquid chromatography (cLC) and CE. These two
separation methodologies have been coupled to elemental detection methods such as ICP-
MS [55, 56].

cLC and CE have been used for the separation of metalloproteins when using collision
cell inductively coupled plasma mass spectrometry (ICP-CC-MS) as a detection system.
However, the most important limitations in connection with the coupling of capillary
separation techniques to ICP-MS derive from the requirement of using suitable interfaces to
maximize analyte transport to the ion source and to minimize post-column peak broadening
effects. Up to now, CE and cLC both on-line coupled to ICP-CC-MS have been used for the
analysis of certain metalloproteins containing Cd, Cu, and Zn (metallothioneins). A limiting
factor in connecting CE techniques to ICP-MS is the use of suitable interfaces to maximize
analyte transport to the ion source and to minimize post-column broadening effects that, in
this case, some authors have studied different interfaces and compared their efficiencies
with like Lobinski and Todoli [56–58].

The results of a study done to compare cLC and CE coupled with ICP-MS for MT
isoforms measurement that can be observed in Fig. 1 show that several species can be
separated by cLC between 20 and 45 min, while in the case of using CE these fractions
elute in a main peak at a migration time of 9.5 min [56]. Several advantages of connection
with separation efficiency for high molecular mass species are the small sample volume
required (typically 1–30 nl), the analysis time, and reagent consumption. In addition, the
disturbance produced by CE–ICP-MS on the existing metal equilibrium is minimal.

Also, according to Alvarez et al., the limited sensitivity of CE in biological samples
because of low levels of metals can be tackled by using a large volume sample stacking
methodology for CE–ICP-MS measurements that was utilized in fish samples [59].

The use of new metallomics methods in the characterization of MT like SE-LC-ICP-
TOF-MS made possible absolute detection limits ranging from 19.9 pg (114 Cu) to 157 pg
(66 Zn) in cytosols from carp liver and kidney [60].
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Mounicou and co-workers suggested the parallel identification of metallothionein by CE–
ICP-MS to detect MT–Cd, Cu, and Zn complexes and CE–ES-MS to identify them [61].

Besides liquid chromatography, capillary zone electrophoresis (CZE) is able to separate
different MT isoforms with high resolution. The unfavorable adsorption of proteins on the
inner wall of uncoated capillary tubes can be interrupted by modification of the wall by
coating with neutral polymers like linear polyacrylamide or neutralizing of charges on the
wall with ionic additives like polyamines [62]. CZE-ICP-MS system with post-column
isotope dilution was applied for the quantification of MT isoforms. Stable isotopes of 34S,
65Cu, 68Zn, and 116Cd were continuously added via the make-up liquid and mixed with the
CZE effluent in the the CZE-ICP-MS interface. By using an ICP sector-field MS instrument
in mediummass resolution, mode sulfur detection was also possible, enabling the quantification
of the protein via the number of the cysteine and methionine residues in the amino acid
sequence. Cd, Cu, and Zn were simultaneously quantified, allowing a determination of the
metal–MT complex stoichiometry by the metal-to-sulfur ratios [51, 63, 64].

Besides the above methods, affinity chromatography through metal-chelating columns
was utilized for the purification of MTs. The purification of MTs that is done through metal-–
cysteine affinity chromatography by utilizing a metal-chelating resin is a simple and rapid

Fig. 1 Separation of MT
isoforms containing Cd and Cu
(MT-I and -II mixture from rabbit
liver) by a cLC and b CE using
ICP-MS detection [56]
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method and, as it is a one-step procedure, the loss of protein mass is greatly reduced during the
purification procedure [65]. There are some useful reviews about the application of CE–HPLC
coupled to advanced mass spectrometric systems in the determination of biomolecules and
their binding to metal species [62, 66–68].

Table 4 summarizes some development on the determination of metallothionein by
chromatographic and electrophoretic methods.

MT mRNA

During the last years, the analysis of MT mRNA has been performed basically by means of
polymerase chain reaction (PCR). This technique has substituted techniques such as
Northern blotting. The latter involves the direct manipulation of mRNA, which is a highly
unstable molecule, and causes experimental problems that, in many cases, considerably
increase the difficulty of this method. When applying the PCR technique, mRNA, also used
as a starting point, is immediately converted into cDNA in a first step, avoiding all
problems regarding the continuous use of the mRNA during the entire process. A number
of protocols have been developed for the analysis of MT mRNA within different samples
by reverse transcription PCR (RT-PCR). Different conditions and isoform-specific MT
mRNA primers are employed, including different approaches for the quantification of the
PCR products [31].

In addition to the semi-quantitative methods, direct quantification was achieved.
Quantification was performed by two different methods: (1) by scintillation counting of
the radioactivity of the bands corresponding to target and mimic products labeled to mC of
[a-P]dCTP or (2) densitometric analysis of signal intensities of ethidium bromide-stained
PCR products in the agarose gel, visualized under UV trans-illumination. Both methods
yielded similar results. The detection limits found for these protocols were in the range of
5–10 amol/mg total RNA [31]. Table 5 shows some of the recent works on the PCR
methods for the determination of metallothionein.

Immunological Methods

With regard to the immunological reaction of metallothionein with an antibody, techniques
like enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were
developed. ELISA assay has been further improved for the determination of MT in plasma
and urine. Overestimation of MT by immunochemical methods is expected due to
polymerization provoked by oxidation. In order to avoid this effect, mercaptoethanol is
added to the samples prior to analysis. The sensitivity reached at 50% of maximal response
was 100 ng MT/100 ml and the minimum detectable amount was 10 ng/100 ml sample One
advantage of this method is that the total time per assay, 24 h, is shorter than that required
by other ELISA and RIA protocols, i.e., 48 or 72 h, respectively. The use of a commercial
monoclonal antibody provided a detection limit for MT of 0.8 ng/100 ml, which is lower
than previously reported values using the same technique [31].

In general, immunological methods are very sensitive and capable of measuring MT in
biological fluids, such as urine and serum, which normally contain low levels of MT.
However, the low immunogenicity of MT and the risk of polymerization together with the
loss of bound metals could lead to lower detection efficiency. In addition, immunoassays
need specific antibodies that do not cross-react [31].

Some of recent works on the electrophoresis and immunological methods of metal-
lothionein are summarized in Table 6.
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Discussion

There are several reviews for MT quantification and hyphenated techniques. Therefore, the
present review gives only an outline about the general methods of MT quantification in
aquatic life.

Table 5 Application of PCR Methods for Determination of Metallothioneins in Aquatic Organisms

Organism Method Year Ref.

Lake trout (Salvelinus namaycush) RT-PCRa 2007 [170]

Japenese medaka (Oryzias javanicus) RT-PCR 2006 [172]

Goldfish (Carassius auratus) RT-PCR 2004 [173]

Zebra fish (Denario rerio) RT-PCR 2008 [174]

Silver sea bream (Sparus sarba) RT-PCR 2008 [175]

Scallop (Agropectin irradians) RT-PCR 2008 [176]

Bivalve (Dreissna polymorpha),
clam (Corbicula fluminea)

RT-PCR 2006 [108]

Antarctic notothenioides
(Chionodraco hamatus)

RT-PCR 2006 [177]

Zebrafish (Denario rerio) RT-PCR 2004, 2006, 2008 [178–180]

Common carp (Cyprinus carpio) RT-PCR 2008 [181]

Bivalve (Corbicula fluminea) RT-PCR 2008 [182]

Mandarin fish (Siniperca chuatsi) Tail-PCRb 2008 [183]

Mussel (Mytilus galloprovincialis) RT-PCR 2008 [184]

Tilapia (Oreochromis mossambicus) RT-PCR 2008 [185]

Nematode (Caenorhabditis elegans) RT-PCR 2004 [186]

Ciliate (Tetrahymena pigmentosa) RT-PCR 2008 [187]

Sea bream (Sparus aurata) RT-PCR 2008 [188]

Pufferfish (Takifugu obscunus) RT-PCR 2008 [189]

Olive flounder (Paralichthys
olivaceus)

QPCRc 2008 [190]

Antarctic clam (Laternula elliptica) RT-PCR 2007 [191]

Rainbow trout (Oncorhynchus mykiss) QPCR, RT-PCR 2004, 2007,2006,2008 [192–195]

Silver barb (Puntius gonionotus) RT-PCR 2007 [196]

Crucian carp (Carassius cuvieri) RT-PCR 2007 [197]

Black goby (Gobius niger) RT-PCR 2005 [198]

Gudgeon (Gobio gobio) RT-PCR 2005 [199]

Fish (Lithognathus mormyrus) RT-PCR 2004 [200]

Brown Trout ( Salmo trutta) RT-PCR 2006 [201]

Common sole ( Solea solea) EPIC-PCRd 2008 [202]

Tilapia (T. aurea* T. nilotica) RT-PCR, mimic PCR 2004 [203]

a Real time-polymerase chain reaction
b Thermal asymmetric interlaced-polymerase chain reaction
c Quantitative real time-polymerase chain reaction
d Exon-primed intron crossing-polymerase chain reactions
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The methods used to quantify the total amount of MT in biological materials are divided
into two types. One is based on the measurement of the amount of metal bound to
MT. As metals bind proportionally to the amount of MT, metal contents indicate the MT
content. The affinity to MT differs among metals as per the following order: (Hg (II)>Ag
(I)>Cu (I) > Cd(II)>Zn(II)) [69].

The MT produced in response to various stimuli is composed mostly of Zn, though
higher-affinity metals form different metal thioneins. Therefore, the simplest method for the
quantification of MT is the Cd-hem method [62]. The Cd-hem method utilizes two
properties: that MT is a heat- stable protein and that seven atoms of Cd instead of Zn bind
1 M of MT protein when excess Cd is added to the cytosol fraction. Hg and Ag saturation
methods apply the same theory [62]. These indirect methods quantify MTs assuming a total
saturation of SH groups by metal ions. However, these methods have been shown to present
a risk of over-evaluating the quantities of metals bound to MTs due to the presence of other
biological metal-binding ligands [44].

The other method of quantifying the total amount of MT is based on the assay of protein
content. The quantity of sulfhydryl residues can be used to measure MT protein content like
in the spectrophotometric methods. Also, radioimmunoassay (RIA) or ELISA has been
developed for this purpose. However, the use of radioisotopes and subsequent heavy metal
waste generation has raised some environmental concerns. If the properties of each isoform
are to be examined, a separation technique can be used before the detection. For separation,
gel permeation chromatography, anion exchange chromatography, HPLC, and CZE are
often used, while UV absorption, fluorescence detection, AAS, MS, and ICP-MS are used
for the detection of MT and its isoforms as well as metals [62, 70].

Although the abovementioned analytical procedures have been developed for MT
determination, the quantitative real-time RT-PCR method is considered simple and accurate.
Significant correlations were found among accumulated metal concentrations and MT

Table 6 Application of Immunoassay Methods for Determination of Metallothioneins in Aquatic Organisms

Organism Method Determined range Year Ref.

Rainbow trout (Oncorhynchus mykiss) Radio-immunoassay 1–100 μg/g 2001, 2003 [204, 205]

Mandarine fish (Siniperca chuatsi) Immunohistochemical – 2009 [183]

Tilapia (Oreochromis mossambicus) ELISA 100–
1,600 ng/mg Pr

2006, 2008 [185, 206]

Tilapia (Oreochromis
mossambicus), milkfish
(Chanos chanos), fish
(A. Paaradoxus)

ELISA – 2006 [207]

Stiped sea bream (Lithognathus
mormyrus)

cELISAa MT-Pr
(nM/nM actin)

2008 [208]

Tilapia (Oreochromis sp.) ELISA 1–6 μg/mg Pr 2007 [209]

Mussel (Mytilus galloprovincialis) ELISA – 2006 [210]

Lobster (Homarus americanus) ELISA 0.01–0.2 μg/mg 2003 [211]

Pacific oyster (Crassostrea gigas) ELISA 0.01–0.5 mg/g 2009 [212]

Bloch (Channa punctatus) Western blot – 2006 [213]

Sea bream ( Sparus sarba) Dot-blot – 2006 [214]

Oyster (Crassostrea gigas) Immunohistochemical – 2005 [215]

a Competitive ELISA
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protein and mRNA levels [71]. Also, molecular biological advances using MT gene
amplification or duplication have confirmed that the functions of different isoforms are
different, some of them being involved in metal homeostasis and others in non-essential
metal detoxification [22].

It has been extensively used in biomarker studies with a high degree of accuracy.
Therefore, taking advantage of this technology application of multi-biomarker approach
where MT is also a part of the suite holds promise in biomonitoring and risk assessment
[72].

Based on a study about the application of two SH-based methods (spectrophotometry
and DPP) for MT determination in mussels, polarographic and spectrophotometric methods
gave significantly (p<0.05) different results in laboratory and field studies. In the laboratory
experiment, MT values detected with DPP were nine times higher than with spectropho-
tometry. The results obtained by the two methods were significantly correlated. Both
methods could discriminate between control and exposed mussels. In field studies, MT
values obtained by DPP were 34- to 38-fold higher than with spectrophotometry, and the
MT concentrations measured by both methods were not correlated. This discrepancy could
be due to several factors, including the low levels of bioavailable metals in the studied areas
and the possibility that the different methods can measure MT isoforms differentially [12].
Also, another study showed a good correlation between results obtained, for instance, using
DPP and a metal saturation assay [70] and between DPP and spectrophotometric
determination [73].

In a research, the comparison of five current methods for measuring MT was done and
methods of MT estimation in biological materials (Hg/TCA, Cd/heme, SH assay, G 75
method, and RIA) were compared. Uniform calibration was ensured by measuring the
nitrogen content of the standard apoprotein after “Kjeldahl digestion”. Known amounts of
rabbit standard Cd–MT I were recovered from identical rat S9 samples. In an overall rating,
RIA and Cd/heme assay performed best, whereas the other methods either underestimated
(SH, G 75) or overestimated (Hg/TCA) the 100% expectation [74].

In another study, the Cd saturation method for MT analysis in tissues was compared with
a recently developed RIA. The Cd saturation assay was fast but less specific and accurate
than the RIA. The former assay, previously used for MT analysis in urine and plasma, was
modified to suit its use in measuring MT concentration in tissues. Liver and kidney from
control were assayed and values of 7 and 67 µg g−1 were measured in the two tissues,
respectively. The detection limit of the assay is 10 ng g−1. A modified version of the Cd
saturation assay gave results which were similar to the ones obtained by the RIA [75]. A
comparison of the Hg radioassay (i.e., “Piotrowski” assay), the Cd radioassay (i.e.,
“cadmium–hemolysate” assay), and the RIA for MT in Cd- and Zn-pretreated rats indicated
that the Cd and Hg radioassays have similar results in all cases. The RIA values compared
very favorably to those obtained by the metal saturation assays for MT from control. The
values obtained for Cd- or Zn-treated animals were generally lower in the RIA than in the
Hg or Cd radioassay, ranging from 36% to 75% of the metal saturation assays. The various
assay systems employed did yield MT concentrations that followed similar intra-assay
patterns, being lowest in control, elevated to an intermediate level with Cd treatment, and
highest following Zn treatment [76].

In a study to compare the sensitivity of HPLC-FL assay to that of spectrophotometric
method, sea bass fish (Dicentrarchus labrax) were exposed to Cu, Cd, and Hg. Compared
to the spectrophotometric assay, the RP-HPLC-florescence (FL) method detected a
significantly higher MT content in all metal-exposed animals. The discrepancy between
both methods could be attributed to the underestimation of the MT content due to the use of
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GSH as standard instead of MTS and/or to partial co-precipitation of MT with hydrophobic
proteins during the solvent extraction required before the spectrophotometric assay. In
conclusion, quantification of total MTs by RP-HPLC-FL in unheated fish extracts allows
the evaluation of metal effects with higher sensitivity and specificity than the
spectrophotometric assay [77].

In another study, MT was determined in clam (Scorbicularia plana) by two methods,
namely, RP-HPLC-FL assay in unheated samples and DPP. The results show that, in
contrast to DPP and other methods based on thiol group detection that rely on heating pre-
purification steps, in this method MTs are separated from other cys-containing proteins by
HPLC, obtaining a unique intense fluorescent band after chromatography of non-heated
clam extracts. In conclusion, quantification of MTs by RP-HPLC-FL in non-heated bivalve
extracts allows the assessment of metal contamination with higher sensitivity and specifity
than other well-established assays [78].

MTs have a role to play as biomarkers, if used wisely in well-designed sampling
programs. Careful choices need to be made on the selection of organism, choice of organ,
and method of analysis [22] since MT expression is rapidly induced by a variety of
substances including metals, hormones, cytokines, oxidants, stress, and radiation. Also, in
natural populations, several confounding factors, such as seasonal variation, water
temperature, salinity, tissue, gender, and age can influence both mRNA and protein
expression. For example, while MT protein and gene expression give a quantitative picture
of metal load at a single time point, quantitative information in natural populations can
therefore not always be obtained when different time points (including different years) are
compared. In particular, sexual development in female fish can dramatically affect MT
metabolism. In biomonitoring studies using MTs, sex differences should therefore be taken
into account. Furthermore, monitoring the reproductive status of females, for example, by
determining 17-estradiol plasma levels, would be a valuable addition to MT field surveys
[71]. So, these confounding factors require attention while standardizing the MT biomarker
for field application. A multi-biomarker approach including MT and other specific
biomarkers of exposure may provide a better estimate of pollution than using a single
biomarker [72].
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