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Abstract The aims of our study were to evaluate the antioxidant defence mechanisms of
liver tissue challenged by doxorubucin (DOX) and to compare the possible protective
effects of N-acetylcysteine (NAC) (n=10), deferoxamine (DOF) (n=10), DOF+NAC (n=
10) and selenium (n=9) on doxorubicin-induced hepatotoxicity. Fifty-six male rats (Mean
weight = 250±50 g) randomly divided into five groups. Animals in study groups were
pretreated with a single dose of Dox, which was administered intravenously. Control group
(n=7) was treated with intravenous saline injection. Selenium was given intraperitoneally.
Blood and urine samples were collected before sacrifice. Liver tissue samples were
collected and tissue superoxide dismutase (SOD), glutathione peroxidase (GSH-px), CAT
activity, MDA, Zn, iron and copper were determined. DFO decreased lipid peroxidation
significantly. DFO and NAC decreased CAT activity significantly. Antioxidant regimes
increase SOD activities significantly. DOF and NAC increase GSH-px activities and copper
levels significantly. Beneficial effect of selenium seems to result from its stimulation of
SOD but not to GSH-px. It has been found that DOF, NAC and selenium have protective
effects on Dox-induced hepatocellular damage. DOF+NAC did not result additional benefit.
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Introduction

Doxorubicin (DOX), an antracycline cancer drug, is widely used against a variety of human
tumours [1]. However, clinical use of DOX in a sufficient dose is limited because of its dose-
dependent form of myocardiotoxicity which is frequently lethal [2–4]. DOX also has been
shown to produce hepatotoxicity [1, 5, 6]. It undergoes redox cycling leading to the production
of oxygen radicals; DOX generates semiquinone radicals, which in turn react with molecular
oxygen and provide other ROI at an early stage after administration. Semiquinone radicals
react with molecular oxygen under aerobic conditions to form superoxide and hydrogen
peroxide and, consequently, hydroxyl radical in the presence of transition metals (iron, copper
(Cu)) [5]. It has been reported that DOX involve in antioxidant enzyme system, in liver tissue
of guinea pigs [4, 7]. Some authors [4, 8] suggested that administration of a single dose of
DOX decreases the content of cytochrome P-450 and glutathione (GSH) in rat liver while high
levels of GSH were also found to protect isolated hepatocytes from DOX toxicity [4, 9].

N-acetyl L-cysteine (NAC), an aminothiol developed in the 1960s, is used as a mucolytic
drug, because of its antimutagenic and anticarcinogenic qualities making it a potential
chemopreventive agent. It acts by raising the intra-cellular concentration of cysteine, and hence
of GSH, and/or acts by scavenging of oxidant species. NAC undergoes a rapid deacylation in
the cells and provides a rate-limiting amino acid (cysteine) needed for intra-cellular synthesis of
GSH, thereby replenishing the depleted levels of GSH in the target cells [10].

On the other hand, DOX free radicals come from a non-enzymatic mechanism that involves
reactions with iron. For example, Fe+3 reacts with DOX in a redox reaction after which the
iron atom accepts an electron and a Fe+2-DOX free radical complex is produced. This iron–
DOX complex can reduce oxygen to hydrogen peroxide and other active oxygen species [11–
13]. In this context, the water-soluble iron chelators deferoxamine (DFO) is mainly used in
non-iron overload conditions to produce antioxidant and antiproliferative effects [14].

Selenium is a vital trace element that in mammals exerts its most important function
probably via selenium-dependent glutathione peroxidase. However, protective mechanisms
of Se vary from organ to organ. Furthermore, high dosage Se-induced toxicity and even
lethality are very well known [15, 16].

In our previous studies [17, 18] conducted to investigate the protective effect of some
antioxidants in experimental nephrotic syndrome, livers of the rats were also harvested and then
oxidative stress status in obtained liver tissues was studied later. The aim of the present article is
to discuss both antioxidant defence mechanism of liver tissue challenged by DOX and other
previous experimental studies performed in regard of investigation of DOX hepatotoxicity.

Material and Methods

Animals and Treatments

The study included 56 Sprague–Dawley male rats (mean weight 250±50 g). All rats were
housed in pathogen-free conditions, with a 12 h light/dark cycle, using standard animal cages
with free access to food and water. Five milligram per kilogram DOX (Adriblastina flacon,
DEVA, Turkey) was injected intravenously via the tail vein under anaesthesia. Control rats (n=
7) were injected with an equal volume of isotonic saline. Five groups were built up from the
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rats whose livers were harvested during our previous studies: one group given only DOX (n=
17) and four groups given DOX and an antioxidant treatment concurrently: (1) NAC (n=10),
(2) DFO (n=10), (3) NAC plus DFO (n=10) and (4) selenium (n=9). Both NAC (Asist
ampoule, Husnu Arsan, Turkey) and DFO (Desferal flacon, Novartis, Turkey) were
administered in a dose of 20 mg/kg intravenously in single dose. Selenium yeast (obtained
as powder from Kocak, Turkey, and a solution of concentration of 5 mg/ml in phosphate
buffer was prepared) was given intraperitoneally at a dose of 15 mg/kg. All these agents were
given immediately after DOX injections. The Animal Ethical Committee of Gülhane Military
Medical Academy approved all animal procedures.

The spontaneously voided urine specimens from each animal were collected by using the
metabolic cage for determination of protein and creatinine on the night before sacrifice.
Blood samples were obtained by substernal cardiac puncture under anaesthesia. Blood
samples were also drawn into tubes coated with Na-EDTA. One kidney and liver harvest
from animals was realised immediately before they were sacrificed.

Measurements

Blood chemistry tests such as, AST, ALT, ALP, biluribines, total protein and albumin were
analysed on autoanalyzer (Olympus AU 2700, Hamburg, Germany) and commercially
available kits were used by using the methods according to the manufacturer’s instructions.
Urinary protein was measured by a colorimetric method with an Olympus AU 2700
autoanalyzer using reagents from Olympus Diagnostics, GmbH (Hamburg, Germany).
Urinary creatinin was measured by modified Jaffe method with an Olympus AU 2700
autoanalyzer using reagents from Olympus Diagnostics, GmbH (Hamburg, Germany).
Urinary protein to urinary creatinin ratio (PCR) was also calculated.

Tissue Oxidative System Parameters and Trace Elements

Livers removed before sacrifice were stored at −80ºC until the assay performed for
determinations of liver oxidative stress parameters in tissue homogenates. Tissues were
homogenised with ice-cold KCl (1.15%) using a glass homogeniser. The homogenates was
then centrifuged at 4,400×g for 10 min at 4°C to remove the cell debris and the supernatant
obtained was used for the determination of antioxidant markers. Tissue SOD and GPX
activities were measured on a UV-VIS Recording Spectrophotometer (UV-2100S,
Shimadzu Co., Kyoto, Japan) as previously described [19]. Tissue SOD and GPX activities
were expressed in units per gram tissue. Tissue CAT activity was measured in the
supernatant at 25ºC by the method of a previous report [20]. The activity was also
expressed, as units per gram tissue.

For tissue specimens, supernatant MDA levels were determined in accordance with the
method described in our previous study [20]. MDA levels of tissue samples were expressed
as nmol/g tissue.

Tissue Zn, iron and Cu concentrations were determined by the atomic absorption
spectrophotometer. Concentrations were expressed as microgram/gram.

Statistical Analyses

Data were analysed with SPSS (SPSS Inc., Chicago, IL, USA) software. Descriptives
were shown as the mean ± SD notation. Normality of the parameters was tested with
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Kolmogorov–Smirnov test. Parameter differences among the groups were investigat-
ed with one-way ANOVA and least significance difference (LSD) as the post hoc
test.

Results

The mean values of oxidative stress parameters and trace element levels determined in liver
tissues of the rats are shown in Table 1. Table 2 shows the liver function tests studied in sera
from animals.

Results indicate that DOX administration alone increased liver tissue MDA significantly
(p<0.001). Both NAC (p=0.001) and selenium (p=0.048) ameliorated lipid peroxidation in
liver tissue of DOX-injected rats. DFO also decreased lipid peroxidation significantly (p<
0.001) (Fig. 1).

DFO alone (p=0.023) and combination with NAC (p=0.025) suppressed the tissue CAT
activity significantly (Fig. 2).

Liver tissue SOD activities were suppressed in DOX-alone-given rats, compared to those
of the controls (p<0.001).Fortunately, all studied antioxidant regimes in present study
seemed to increase the liver tissue SOD activities significantly in DOX-treated animals (p<
0.001 for NAC, DFO, NAC plus DFO and selenium groups) (Fig. 3).

DOX alone seemed to suppress liver tissue GSH-Px activities when compared to those
of the controls (p=0.004). NAC (p=0.001) and DFO (p=0.019) also caused a significant
increase in GSH-Px activities (Fig. 4).

Liver tissue Cu levels showed a statistically significant decrease in only-DOX-
administered rats, compared to those of the controls (p<0.001). NAC (p<0.001), DFO
(p=0.006) and NAC plus DFO (p<0.001) regimes provided significantly higher liver tissue
Cu levels when compared to those of the only-DOX-given rats.

NAC plus DFO regime (p=0.015) increased liver tissue Zn levels in a statistically
significant manner and selenium regime (p=0.001) caused significantly decrease in the
same parameter values, when these two antioxidant regimes were compared to those of the
only-DOX-administered rats. The increase in liver tissue Zn levels observed in NAC plus
DFO regime rats led to significantly higher levels than those of the control rats (p=0.001).

Only-DOX-administered rats showed statistically significant lower liver tissue Fe levels
than those of the controls (p=0.005). NAC plus DFO regime (p<0.001) and selenium (p=
0.016) treatments increased the liver tissue Fe levels when compared with those of the rats
administered DOX alone.

Serum ALT levels of the only-DOX-administered rats decreased significantly,
compared to those of the controls (p=0.020). Both NAC (p=0.010) and DFO (p=
0.014) provided higher A LT levels than those of the DOX alone group (Fig. 5). DOX
administration led to significantly lower levels of serum AST, compared to those of the
controls (p=0.029). Only DFO in studied antioxidant regimes in present study yielded
an increase in AST levels when compared to those of the only-DOX group (p=0.015)
(Fig. 6). Only-DOX administration reduced the serum ALP levels significantly (p=
0.003) when compared to those of the controls. NAC (p<0.001), DFO (p<0.001) and
selenium (p=0.026) provided higher ALP levels than those of the DOX-alone group rats
(Fig. 7).

Only-DOX administration did not differ the rats from those of the controls in regard of
serum total bilirubin and serum indirect bilirubin levels (p=0.481 and p=0.796,
respectively).
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Both serum total protein and albumin levels were significantly lower in only-DOX-
administered rats when compared to those of the controls (p=0.008 and p<0.001, respectively).
NAC (p=0.001 for total protein and p<0.001 for albumin), DFO (p=0.004 for total protein
and p=0.001 for albumin) and selenium (p=0.012 for total protein and p<0.001 for albumin)
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Fig. 2 Liver tissue catalase activity in groups
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Fig. 1 Liver tissue MDA (malondialdehyde) levels in groups
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provided significantly higher levels of these parameters in rats administered these antioxidant
regimes than those of the only-DOX-administered rats. NAC plus DFO regime did not
establish a significant difference both in serum total protein (p=0.887) and serum albumin (p=
0.524) levels when compared them to those of the only-DOX-treated group rats.
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Fig. 4 Liver tissue GSH-Px (glutathione peroxidase) activity in groups
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DOX administration caused overt proteinuria when compared to controls (p<0.001).
NAC (p<0.001) and DFO (p=0.001) were beneficial in reducing proteinuria in DOX-
administered rats while NAC plus DFO (p=0.142) and selenium (p=0.086) were not
effective with respect to this parameter.
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Fig. 5 Serum ALT levels in groups
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Discussion

Although NAC can directly scavenge free radicals, the rate constants for their reaction with
reactive oxygen species are several orders of magnitude lower than those of antioxidant
enzymes such as SOD, CAT and GSH-Px. Thus, the direct free radical scavenging activity
of NAC is not likely to be of great importance for its antioxidant activity in vivo [21]. In a
histopatological study [22], NAC had no protective effects on DOX-induced hepatocellular
damage. However, in present study, NAC seemed to have beneficial effects on DOX-
induced lipid peroxidation in liver tissue of the rats by preserving the activity of SOD and
GSH-Px enzyme activities.

In vitro, DFO is not only an iron chelator but also binds other metal ions, reacts with
superoxide and hydroxyl radicals, affects eicosanoid synthesis, can act as a substrate for
peroxidases and can generate a reactive nitroxide radical [23]. In our study, DFO was also
observed to be effective in protecting the liver tissue of the rats against DOX-induced
oxidative stress by preserving the activity of SOD and GSH-Px enzyme activities, as was in
NAC treatment. In spite of deleterious effect of DFO on liver tissue CAT activity, its
effective antioxidant property seen in this model was also remarkable. Because we could
not be able to reach the studies conducted to investigate DFO antioxidant effects in DOX-
induced hepatotoxicity, a comparison could not be realised.

Selenium is an essential trace element and its physiological role was established as a
component of GSH-Px [24, 25]. This enzyme is also termed as a selenoprotein [26].
Selenium deficiency is usually associated with increased lipid peroxidation which affects
cell functions [27–29]. In contrast to anticipated, the observed beneficial effect of selenium
administration on preventing hepatic injury due to DOX in present study seemed to be
resulted from its stimulation to SOD recovery but not to GSH-Px. Diphenyldiselenide, a
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simple organoselenium compound, was reported to decrease methylmercury-induced
hepatic oxidative stress. In that study, diphenyldiselenide did not modify hepatic GSH-
Px, CAT and SOD activities and its beneficial effect was attributable to its preventive effect
on the reduction in hepatic non-protein thiols (NPSH) levels [30]. Although it was reported
that liver selenium-glutathione peroxidase was greatly diminished as a function of time in
rats fed the selenium-deficient diets [31], both studies, ours and Freitas’, established no
beneficial effect of selenium supplementation on GSH-Px activity in rats exposed to
oxidative stress. Because we could not also reach the studies investigating antioxidant
effects of selenium in DOX-induced hepatotoxicity, a comprehensive comparison of our
results could not be done, as was in DFO.

NAC plus DFO was found to be beneficial in preventing oxidative stress in previous
studies investigated the role of this antioxidant regime in various organs of rats and mice,
such as lung [32–34], brain [35–37] and liver [38, 39]. However, detrimental effects of N-
acetylcysteine plus desferoxamine combination in an experimental nephrotic syndrome
model were reported by us [17]. The harvested livers from the rats in the abovementioned
and another study of us [18] were studied later for the present report. It was also noted that
NAC plus DFO antioxidant combination regime was not successful to prevent lipid
peroxidation in livers of rats administered DOX. This antioxidant combination seemed to
cause a decrease in tissue catalase activity and an increase in tissue SOD activity while it
was ineffective on tissue GSH-Px activity. The results of present study indicate that DFO
interacts with ameliorating effects of NAC in rats exposed to DOX hepatotoxicity. When
these two antioxidant agent were used together, iron released from iron stores due to action
of DFO might interact with NAC [40]. Therefore, the anticipated prevention for oxidative
stress with NAC plus DFO regime could not have been observed. Liver enzymes decreased
after only DOX administration did also not recover under the NAC plus DFO antioxidant
combination regime; however, these two antioxidants had beneficial effects on restoration
of studied liver enzymes when used separately. This observation suggested an interaction
between NAC and DFO.

Liver tissue trace element levels seemed to be independent from tissue oxidative stress
status. Only DOX administration caused significantly decrease in tissue iron and copper
levels but it did not change tissue zinc levels. No clear cut results could be obtained with
respect to tissue trace element levels investigated under different antioxidant regimes in
present study.

DOX administration caused significant decreases both in serum total protein and
albumin levels and all types of antioxidant regimes yielded protective effects with respect to
these parameters, except NAC plus DFO regime. Nevertheless, it should be kept in mind
that harvested livers studied in present investigation were obtained from rats in nephrotic
state. The effects of DOX administration on kidney, whether the animals developed
nephrotic syndrome due to DOX or not, was not mentioned in the other experimental
investigations [1, 4, 22, 41, 42] related to DOX-induced hepatotoxicity.

Finally, NAC, DFO and selenium have ameliorating effects on lipid peroxidation
induced by DOX administration in liver tissue. NAC and DFO suggest to have an
interaction between each other so that beneficial effects of NAC are hampered by
concurrent use of DFO. Therefore, simultaneously use of NAC and DFO does not seem to
be preventive against DOX-induced hepatic lipid peroxidation. Liver tissue SOD activity
has an early recovery after DOX administration suggesting its independent behaviour from
antioxidant regime effects. Furthermore, the probable effects of the presence of a nephrotic
state should also be kept in mind in concluding the results of the studies investigating the
DOX hepatotoxicity.
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