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Abstract A survey of mercury (Hg) and selenium (Se) contents was performed in fish
collected from lakes located in two National Parks of the northern patagonian Andean
range. Two native species, catfish (Diplomystes viedmensis) and creole perch (Percichthys
trucha), and three introduced species, brown trout (Salmo trutta), rainbow trout
(Oncorhynchus mykiss), and brook trout (Salvelinus fontinalis), were caught from lakes
Nahuel Huapi, Moreno, Traful, Espejo Chico, and Guillelmo belonging to Nahuel Huapi
National Park and from lakes Futalaufquen and Rivadavia, Los Alerces National Park. In
lake Moreno, fish diet items were analyzed and rainbow trout grown in a farm. Hg and Se
were measured in muscle and liver tissues by instrumental neutron activation analysis. The
average concentrations in muscle of Hg for all species, ages, and lakes are between 0.4 to
1.0 ug g ' dry weight (DW) with a few fish, mainly native, exceeding the United States
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Environmental Protection Agency health advisory for freshwater fish limited consumption,
and from 0.8 to 1.5 pg g ' DW for Se. Average concentrations in liver of Hg in all species
range from 0.4 to 0.9 pug g ' DW. Brown trout, the top predator in these lakes, showed the
lowest average Hg burden in both tissues. Se concentrations in the liver of brown and
rainbow trout, up to 279 pg g ' DW, are higher than those expected for nearly pristine
lakes, exceeding 20 pg g ' DW, the threshold concentration associated with Se toxicity.
These species show lower Hg contents in muscle, suggesting a possible detoxification of
Hg by a Se-rich diet. Creole perch and velvet catfish livers have lower Se concentrations,
with a narrower span of values (2.3 to 8.5 ug g ' and 3.3 to 5.5 ug g ' DW respectively).

Keywords Selenium - Mercury - Freshwater fish - Northern Patagonian lakes -
Nahuel Huapi National Park - INAA

Introduction

Selenium (Se) is an element widely distributed in nature; it is nutritionally important as an
essential trace element for some plants and animals but is harmful at slightly higher
concentrations. The major natural source of environmental Se is the weathering of rocks.
For example, in North America, Se tends to be present in large amounts in areas where the
soils have been derived from Cretaceous rocks [1-3].

Although the sensitivity to Se and its compounds is extremely variable, a diet containing
0.05to 0.1 ug g ' of Se provides adequate protection to humans and to various species of
fish and livestock against Se deficiency, whereas waterfowl has reportedly been adversely
affected by diets containing 12 to 280 ug g ' of Se. Laboratory and field studies with fish,
mammals, and birds have led to agreement that elevated concentrations of Se in diet or
water are associated with reproductive abnormalities, congenital malformations, and growth
retardation [1].

In general, concern levels for Se in fish as diet for other fish are 3-7 ug g ', and the toxic
threshold is 7 pg g ' fresh weight (FW) as whole-body. Lemly [4] reports 2040 pg g ' dry
weight (DW) in viscera as associated with deformities in fish and reports 20 pg g ' DW as
a toxic threshold. Green sunfish from a lake in North Carolina receiving Se as fly ash
wastes from a coal-fired power station had Se levels in liver up to 21.4 ug g ' FW resulting
in reproduction failure and population decline [5].

There is evidence that selenides of some heavy metals, such as mercury, arsenic,
cadmium, and thallium are very insoluble and contribute to keep these metals biologically
unavailable [6]. Moreover, Se has been introduced in aquatic systems to diminish Hg
bioaccumulation [7]. Mercury (Hg) is considered one of the most toxic elements; although
it is not essential for any metabolic process, it can be readily accumulated by biota [8—10].
Experiments performed in enclosures at the Hg contaminated English-Wabigoon river
system showed that there was a reduction of Hg burden in fish proportional to the Se
accumulation [11]. In another work, performed in 25 Norwegian lakes, Fjield and Rognerud
[12] found that Se deposited from the atmosphere seemed to lower the bioavailability of Hg
for brown trout, a top predator. A steady increase of Hg contents, from 0.02 to 0.61 pg g~
FW, in muscle of large mouth bass from Rogers Quarry was observed after the elimination
of selenium-rich discharges of fly ash to the quarry between 1990 to 1998 [13].

Laboratory tests showed that selenium-rich diets tend to reduce the retention of
methylmercury (MeHg) in tissues of rainbow trout [14]. In this work, the researchers
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studied the effect of dietary Se on the retention of injected organic and inorganic mercury.
Rainbow trout fed with a Se-supplemented diet (approximately 10 pg g ') augmented the
elimination of organic mercury from muscle, liver, kidney, bile, and erythrocytes, compared
to those fed with a 1 pg g ' Se diet. Elimination of inorganic Hg increased in muscle and
kidney, with a rise of Se content in the trout livers from 1 to 26 pg g ! during the exposure.

The cases of antagonistic character of Se and Hg mentioned above and others reported in
the literature [15—17] show that it depends on the chemical form of both elements.
Researchers have found that Se to Hg molar ratios in tissues of marine mammals are around
1:1, and although the correlation is not so evident in fish tissues, Se to Hg molar ratios are
in general greater than 1. In addition, cases of synergistic enhancement of Se and Hg
toxicity have been reported, as well as the situation that Hg and Se may be antagonistic to
each other for adults and synergistic to the young in birds [15, 18-19].

Historically, the Northern Patagonian Andean range was mostly protected from
anthropogenic contamination due to the low population density and the access difficulty.
Nahuel Huapi National Park, located on the Argentinian side of the northern Patagonian
Andes, encloses a 7,850-km? drainage basin with three major river systems and numerous
lakes, including lake Nahuel Huapi (Fig. 1). The park encompasses from strictly controlled
conservation areas to popular tourist sites. Three major urban settlements are located within
the park; the largest of them is the city of Bariloche with circa 120,000 inhabitants.

Some areas surrounding the lakes are experiencing population growth, and the study of
lacustrine sediment sequences, suspended particulate material, mussels, and lichens gave
evidence of recent metal contamination [20-25]. At present, there are no relevant industrial
or extensive agricultural activities in the surrounding area. Potential sources for
contaminants, besides the volcanic activity of the area, could be found in human
settlements around the lakes, although widespread regional and global contaminants can
reach the area through atmospheric transport and subsequent deposition.

In the present work, we studied the contents of Se and total Hg in muscle and liver of
five fish species of seven lakes within Nahuel Huapi and Los Alerces National Parks. The
existence of wild and farmed rainbow trout, fed only with commercial pelletized food, at
lake Moreno, arose the possibility of investigating the impact of different diets on the same
species elemental contents. Therefore, farmed rainbow trout, commercial fish food, and the
more significant food items of wild fish from lake Moreno were analyzed.

Study Area

The lakes chosen for this study belong to Nahuel Huapi and Los Alerces National Parks.
Nahuel Huapi National Park (see Fig. 1) extends between the parallel 40°8'S on the
northern border to the 41°36'S in the South, and from 71°2'W to 71°6'W, in the northern
Patagonian Andean range. There is a strong vegetation gradient from dense temperate rain
forest in the West to dry grasslands in the East. The West to East precipitation gradient is
steep, from 3,000 mm y ' in the West to 500 mm y ' at the East. All the watersheds within
the park are of glacial origin. Most of the lakes are ultraoligotrophic, monomictic, with
thermal stratification in summer and complete mixing from autumn to spring [26]. The
main human settlements in this Park are Bariloche, Dina Huapi, and Villa La Angostura on
the South, East, and North margins of lake Nahuel Huapi, respectively, and Villa Traful in
the South margin of lake Traful (Fig. 1). These towns are supported by tourism and some
small scale cattle rising. On the Southern shore of lake Moreno East branch, there is a small
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1 g Bariloche City

Fig. 1 Map of the area and sampling sites

200 inhabitant settlement and a fish farm facility that raises 20 tons of rainbow trout per
year in fish pens. The only potential source of Se anthropogenic contamination identified in
the area is the use of Se compounds (sodium selenite) as a feeding supplement for the fish
at the trout farm.

Los Alerces National Park (between 42°56'S and 43°12'S and 71°34'W and 72°07'W)
located 150 km to the South has similar geological, climatological, and biological
characteristics as Nahuel Huapi National Park. There are no permanent human settlements
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Table 1 General Data of Lakes Belonging to Nahuel Huapi and Los Alerces National Parks®

Lake Lake Area pH Conductivity Maximum Average Surface Maximum Maximum
Code (km?) (uSem™')  Depth (m) Depth (m) Temperature (°C) Length (km) Width (km)

Winter Summer

Nahuel N 557.0 6.8 30.9 464 175 7 14.8 40 8.3
Huapi

West M 4.8 6.8 37.1 110 60 8 16.5 4.7 2.0
Moreno

East Moreno 54 6.8 37.1 128 69 8 17.5 4.4 1.8
Traful T 171.5 691 41.8 339 173 7 17.0 21.9 4.8
Espejo E 2.5 6.5 29.1 60 30 7 14.8 3.1 0.8
Chico

Guillelmo G 54 - - - - 7 14.5 7.2 0.9
Futalaufquen F 46 78 66 168 101 7 14.5 8.3 1.5
Rivadavia R 217 - 56 147 104 8 14.8 12.9 2.9

?From [26]

in this park. The lakes chosen are Futalaufquen and Rivadavia. Relevant data about these
lakes are shown in Table 1.

Patagonian lakes are poor in fish species. The most widely distributed native fish species
on Andean lakes are creole perch (Percichthys trucha), the small puyen (Galaxias
maculatus), and the creole silverside (Odontesthes hatcherii) [27, 28]. The native catfishes
(Diplomystes viedmensis and Diplomystes mesembranquinus) are present in lakes and rivers
of the Atlantic drainage, including lakes and rivers of Nahuel Huapi National Park. Pacific
and Atlantic salmonid species were introduced by the National Park Administration in early
1900 to enhance sport-fishing in the area [29]. Eggs of trout were imported from the
Northern Hemisphere to supply fish farms in the area. Both native and introduced species
that inhabit the water bodies of Patagonia are considered opportunistic predators of a wide
trophic spectrum, being capable to adaptation to different diet types according to the
availability of resources [30].

Two native and three introduced species were considered for the study: velvet catfish (D.
viedmensis), creole perch (P. trucha), brook trout (Salvelinus fontinalis), rainbow trout
(Oncorhynchus mykiss), and brown trout (Sal/mo trutta). Preliminary studies indicate that
salmonids and creole perch have high mobility in the lakes, whereas velvet catfish,
although it moves always along the bottom meanwhile it feeds, is not considered a great
swimmer as compared to salmonids.

D. viedmensis feeds exclusively of benthic organisms in all studied environments. Creole
perch feeds mostly on macrozoobenthic organisms and has fish as secondary prey. Rainbow
trout is the species that shows a greater diet variation, with fish being the most important
item in lakes Moreno and Nahuel Huapi, macrozoobenthic organisms and fish in lakes
Espejo Chico and Traful, and macrozoobenthic and terrestrial organisms in lakes Rivadavia
and Futalaufquen. Finally, brown trout behaves as an almost strict piscivorous fish on all
lakes studied. Adult catfish is not a prey for any fish species. [31]

Fish were sampled from five sites of lake Nahuel Huapi: (Rincon Branch, BR; Huemul
Branch, BH; Lopez Bay, BL; Puerto Cisnes, PC; and Dina Huapi, DH), lakes Moreno East
and West branches, Traful, Espejo Chico, and Guillelmo. Relevant data about these lakes
are presented in Table 1.
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Materials and Methods

Fish sampling was conducted following the methodology described elsewhere [29, 32].
Fish from lakes Nahuel Huapi, Traful, and Espejo Chico were sampled during the period of
thermal stratification (that will be designated as “summer”) and during the period of
thorough mixing (“winter”). Lake Guillelmo and the lakes of Los Alerces National Park
were sampled only in summer. Rainbow trout, brook trout, and creole perch were sampled
every season (summer, fall, winter, and spring) during 2 years from the West and East
branches of lake Moreno. Rainbow trout were bought at the fish farm, as well as
commercial pelletized fish food.

Fish were frozen after being caught. At the laboratory, before analysis, the individuals
were thawed, and the whole liver, about 10 g of muscle tissue, stomach, and head were
removed using titanium knives. Scales were extracted for age determination.

For each season and site, muscle tissue and the whole liver of the individuals of the each
species differing in less than 10 mm length were used to create pooled samples. The
individuals of the largest set of fish of each species caught at a same time in one site were
analyzed separately to obtain information on intraspecific variability. Details of sample
handling and conditioning are described in detail elsewhere [33]. Sample conditioning
included freeze-drying and homogenization; handling was performed with Teflon® and
titanium tools. Aliquots of about 120 to 150 mg of the dried material were sealed in
Suprasil AN® quartz ampoules for analysis.

Se and Hg were determined by Instrumental Neutron Activation Analysis (INAA) in the
RA-6 reactor at Bariloche. Corrections for interference due to impurities in the ampoules
were performed, all being negligible. Se was determined by the ">Se(n,y)’*Se reaction. The
mercury concentration measurements were done using the 279.2 keV gamma ray resulting
from de decay of the °*Hg(n,y)***Hg reaction product and the low energy lines (67.0,
68.8, and 77.9 keV) of '°7#Hg. The high contents of Se in several liver samples induced a
significant interference in the 279.2 keV gamma ray peak, which prevented the use of this
line for analytical purposes. In those cases, only the 19(’Hg(n,y)lngg reaction was used.
Very good agreement between both reactions was observed when it was possible to obtain

Table 2 Analysis of Certified Reference Material

Hg Contents (ug g ") Se contents (ug g ')
Analysis Certified Analysis Certified
Results Value Results Value
NRCC-DORM?2* (Dogfish muscle) 4.33+0.53 1.46+0.13
4.93+0.66 1.53+0.16
5.24+0.71 4.64+0.26 1.51+£0.16 1.40+0.09
4.81+0.65 1.44+0.14
4.80+0.60 1.66+0.21
4.61+0.63 1.40+0.14
NRCC-DOLT2* (Dogfish liver) 2.16+0.38 2.14+0.28 6.22+0.54 6.06+0.49
2.28+0.24 5.79+0.47
NRCC-TORT2? 0.271+0.047 0.27+0.06 5.67+0.46 5.63+0.67

(Lobster hepatopancreas)

Concentrations in dry weight basis

#Supplied by National Research Council of Canada
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significant Hg concentrations from ***Hg measurements after the correction for the Se
interference [33].

Reference materials NRCC-DORM-2 Dogfish Muscle, NRCC-DOLT-2 Dogfish Liver and
NRCC-TORT-2 Lobster Hepatopancreas were analyzed together with the samples for
analytical quality control, showing good agreement with the certified concentrations (Table 2).

Results and Discussion

Fish muscle and liver contents were measured for dry tissue. Dry to wet weight mass ratios
for muscle ranged from 0.21 to 0.27 for brown trout, rainbow, brook trout, and creole perch
and from 0.17 to 0.20 for velvet catfish. For liver, dry to wet weight ratios ranged from 0.21
to 0.54 for brown trout, 0.22 to 0.30 for rainbow and brook trout, 0.23 to 0.43 for creole
perch, and 0.18 to 0.57 for velvet catfish.

The number of individual specimens caught in the nets varied with the season and the
site.

Tables 3, 4, 5, 6, and 7 show the Hg and Se contents in muscle and liver of brown trout,
rainbow trout, brook trout, creole perch, and velvet catfish. The number of specimens
analyzed per site and their average lengths and ages are included in the tables. These tables
also show the range of concentrations measured when individuals, instead of pooled
samples, were analyzed for one site and the overall average for the species. Analytical
uncertainties for Se determinations were about 11% in muscle samples and 9% in liver

Table 3 Concentrations of Se and Hg in Muscle and Liver of Brown Trout (ug g ' DW)

Brown Trout Season” Number of Length®  Age® Muscle Liver
Individuals (n)  (mm) (years)

Se Hg Se Hg

Nahuel Huapi Lake Espejo Chico Summer 1 402 5 12074 140 13

National Park Winter 1 384 5 1.6 048 89 0.49

Lake Traful Summer 6 537 >6 1.5 053 90 0.75

Winter 11 505 >6 1.6 039 58 0.29

Lake Moreno-West Summer 1 575 5 0.76 0.12 10.1 0.15

Winter — - - - - - -
Lake Nahuel Huapi—  Summer 8 560 5 0.76 0.55 24 1.0

Rincon Branch Winter 1 635 8 0.85 036 27 0.30

Lake Nahuel Summer 3 665 6 073 136 70 0.43

Huapi-Lopez Bay Winter 5 486 4 0.66 0.06 12 0.06

Lake Nahuel Huapi—  Summer 1 600 6 0.67 027 61 0.28

Huemul Branch Winter 2 488 4 0.64 0.17 72  0.06
Lake Nahuel Summer 5 532 5 0.56 0.095 15.7 0.056
Huapi—Puerto Cisne ~ Winter 5 447 4 0.68 <0.05 7.5 <0.01

Lake Nahuel Summer 3 623 6 071 035 376 0.36

Huapi—Dina Huapi Winter 1 455 4 072 020 73 045

Los Alerces Lake Futalaufquen Summer 10 466 4 1.5 1.06 90 1.02
National Park Range of 10 1.2- 027- 21- 0.28-

individuals 1.7 24 279 2.7

Lake Rivadavia Summer 1 458 4 1.2 020 41 0.28

Overall average 096 041 463 040

# Summer-stratified; winter-non-stratified
®In mm. Length of the individual (if 7=1) or average of the n individuals

¢ Age of the individual (if n=1) or average of the n individuals
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Table 5 Concentrations of Se and Hg in Muscle and Liver of Brook Trout (ug g ' DW)

Brook Trout Season® Number of Length® Age®  Muscle Liver
Individuals (z) (mm) (years)

Se Hg Se Hg

Los Alerces Lake Summer 1 433 - 1.8 0.76 7.4 0.63
National Park  Futalaufquen
Nahuel Huapi ~ Lake Espejo Summer - - - -

National Park ~ Chico Winter 3 437 - 1.8 071 95 1.2
Lake Traful Summer 9 371 3.7 1.4 0.66 39 0.22
Winter 10 358 3.5 1.7 024 55 0.14
Lake Winter 10 308 2.2 029 55 1.6
Guillelmo
Range of 10 1.7-  0.12- 4.1- 0.23-
individuals 3.1 0.57 76 53
Lake Moreno- Summer 1 240 2.0 096 025 4.5 0.31
West? Winter 6 417 3.8 0.26— 0.94- 3.0- 0.2—
1.9 1.3 6.7 1.07
Lake Moreno- Summer 4 319 2.8 0.93— 0.60— 3.1- 0.42-
East’ 1.04 108 53 16
Winter 10 408 3.8 0.80—- 0.38— 3.3-— 0.49-
1.03 4.0 76 7.1
Lake Nahuel Summer 1 340 - 0.87 037 2.6 0.29
Huapi-Rincon
Branch Winter 4 361 - 1.0 045 38 042
Overall average 1.3 0.65 5.1 0.81

# Summer-stratified; winter-non-stratified
® Length of the individual (if n=1) or average of the # individuals
¢ Age of the individual (if n=1) or average of the n individuals

dRange of values of the different seasons

samples, and about 16% for Hg in muscle samples and 18% in liver samples. Figure 2a
shows the plots of Hg contents in liver vs Hg contents in muscle, and Fig. 2b shows the
plots of Se contents in liver vs Se contents in muscle for all the analyzed samples,
indicating the lake of provenance. Table 8 shows the results of the analysis of diet items of
wild fish from lake Moreno and commercial pelletized food for fish.

The analysis of the data of the individuals of each species collected in one site showed
that the standard deviation of the Se contents in muscle is similar or lower than the
analytical uncertainty (which is around 11%), indicating that there are not significant
differences in Se contents in muscle among individuals of the same species in one site (see
Fig. 2). Se liver contents of salmonids and perch have much higher variability, reaching
maximum to minimum value ratios of up to ten for brown and rainbow trout.

Selenium contents in brown and rainbow trout muscle samples range between 0.56 and
1.1 ug g ' DW, for fish from lakes Moreno and Nahuel Huapi, whereas the samples of the
same species of all the remaining lakes range between 1.2 and 1.7 ug g ' DW, which are
included within the expected range of values for non-contaminated lakes [1]. Se contents
in creole perch muscle are higher but show a similar pattern concerning the lake of origin
(see Fig. 2).

The differences in Se contents in muscle of each species in the different lakes cannot be
related directly to the geographic setting of the lakes: lakes Futalaufquen and Rivadavia
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Table 7 Concentrations of Se and Hg in Muscle and Liver of Velvet Catfish (g g~' DW)

Velvet Catfish Season” Number of Length” Muscle Liver
Individuals (n) (mm)

Se Hg Se Hg

Nahuel Huapi Lake Traful Winter 5 209 1.2 0.21 5.1 0.28
National Park  Range of 5 0.84— 0.055- 4.2—- 0.09—
individuals 1.6 048 55 0.84
Lake Moreno-East Summer 7 221 090 1.3 54 1.6
Range of 7 0.82— 0.76—
individuals 099 23
Lake Nahuel Huapi— Summer 1 155 1.4 1.4 5.8 39
Rincon Branch Winter - - - -
Lake Nahuel Huapi— Summer 3 219 0.77 044 41 041
Lopez Bay
Range of 3 0.48- 0.32- 3.9- 0.32-
individuals 1.1 052 49 049
Lake Nahuel Huapi— Summer 5 245 073 086 54 0.6l
Huemul Branch
Lake Nahuel Huapi— Summer 3 267 0.69 046 49 029
Puerto Cisne
Range of 3 0.57- 0.26— 4.5~ 0.15-
individuals 082 085 51 0.39
Winter 1 190 063 027 4.6 0.58
Lake Nahuel Huapi— Summer 9 196 063 024 41 025
Dina Huapi
Range of 9 0.48- 0.075- 3.3— 0.10-
individuals 082 043 46 042
Winter 1 150 0.48 0.19 4.0 0.40
Overall average 0.83 0.60 4.8 0.92

# Summer-stratified; winter-non-stratified

® Length of the individual (if n=1) or average of the n individuals

are located about 150 km to the South of lake Nahuel Huapi; Traful is located to the
North without a direct connection to the Nahuel Huapi-Moreno lake system, and
Espejo Chico is close to lake Nahuel Huapi (its waters discharge into lake Correntoso,
which drains into Nahuel Huapi through a short river); and Guillelmo is about 40 km
South of Nahuel Huapi, and it belongs to a basin that drains to the Pacific ocean.
Furthermore, the results of a survey on heavy metal contents in soft tissues and
digestive gland of a widespread patagonian mussel, Diplodon chilensis, performed in the
four lakes of Nahuel Huapi National Park, showed that Se content in all sites was
analytically equivalent [22].

Some authors ascribe differences in body burden to dilution effects with growth. We did
not observe any correlation between Se with fish length or age. Regarding the length at a
certain age, salmonids from lake Nahuel Huapi tend to attain larger sizes. It was possible to
obtain the growth curves for rainbow trout of four lakes of Nahuel Huapi National Park (see
Fig. 3). The larger fish sizes at lake Nahuel Huapi could explain for the lower Se
concentrations. However, the growth curves for lakes Moreno and Traful are similar,
whereas the Se concentrations are different.

No fish exceeded the Argentinian Se advisory (Codigo Alimentario Argentino and Res.
SENASA N°533-10.05.94) for human adult consumption without restrictions (2.4 ug g '
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Fig. 2 a Hg contents in liver tissue vs Hg contents in muscle for brown trout, rainbow trout, brook trout,
creole perch, and velvet catfish from lakes Nahuel Huapi (), Moreno (M), Traful (7), Espejo Chico (E),
Guillelmo (G), Futalaufquen (F) and Rivadavia (R). Farmed rainbow trout from lake Moreno are included
(O). b Se contents in liver tissue vs Se contents in muscle for the same fish species and sites. The least square
linear fit of the set of data of each graph is shown. All data are shown in DW basis

DW, assuming a dry weight to wet weight ratio of 0.25). The overall Se mean contents in
muscle for each species is below the recommended value for consumption without
restriction by children (0.3 ug g' FW, 1.2 ug g ' DW, dry weight to wet weight ratio of
0.25), as well as fish from lakes Moreno and Nahuel Haupi. Fish from lakes Traful, Espejo
Chico, Guillelmo, Rivadavia, and Futalaufquen are slightly above this guideline.
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Table 8 Se and Hg Contents in Food Preys for Rainbow Trout and Perch from Lake Moreno, and Pelletized
Food for Farmed Fish (ug g~' DW)

Food prey Se Hg
Wild fish Insect larvae 32 1.4
Salmonid juveniles
Length=6.8-8.5 cm 1.23 0.077
Length=13 cm 0.94 0.206
Galaxid juveniles
Length=3.7-6.8 cm 1.8 0.385
Aegla sp. (small crabs)
Length=1.4-1.8 cm 1.0 0.14
Length=1.8-2.9 cm 1.0 0.14
Gasteropods
Length=1.0-1.7 cm 0.34 0.14
Length=1.7-3.0 cm 0.21 0.046
Samastacus sp. (shrimp)
Length=2.5-3.7 cm 1.3 <0.1
Length=4.5-5.8 cm 0.81 0.25
Farmed fish Pelletized food for younger fish 1.6-2.6 0.02-1.0
Pelletized food for adult fish 1.0-1.9 0.02-0.81

Conversely, Se concentrations in liver of brown and rainbow trout, up to 279 ug g '
DW, greatly exceeded 20 ug g ' DW, the concentration in liver associated with Se toxicity
[4]. The values we measured are closer to the 21 ug g ' FW level mentioned in [5], which
could be an indication that salmonids from the lakes studied are having Se rich diets. Table 9
shows the selenium contents measured in this work compared to contents in salmonids,
northern hemisphere perciformes, and catfishes, from Se contaminated and non-contaminated
lakes. Se contents in muscle of the salmonids included in this study are similar or slightly
above the values measured for salmonids of non-contaminated boreal lakes; however, they
are clearly below the Se contents in muscle of fish from sites with Se rich waters. The same

Fig. 3 Growth curves for rain-
bow trout in lakes of Nahuel
Huapi National Park

800
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pattern is observed when perch is compared with other perciformes and velvet catfish to other
catfishes of the world.

Although Se liver contents present a high degree of variability, there is a correlation
between Se contents in liver and Se contents in muscle (p between 0.46 and 0.66, P
between 0.0001 and 0.0050) for the whole set of data. The linear fits are shown in Fig. 2b.
Because there were not significant differences in Se contents in fish muscle for each species
and lake, these correlations indicate that Se contents in liver show the same geographic
pattern as muscle. These fits give an average liver to muscle Se content ratio of 73+23 for
brown trout, 27+8 for rainbow trout, 1.3+0.4 for brook trout, 1.6+0.4 for creole perch, and
1.4+0.3 for velvet catfish.

Mercury contents do not exceed 1.0 pg g ' FW, which is expected in biota from
locations not directly affected by direct anthropic sources but higher than what is expected
in remote lakes [6]. However, similar contents have been reported in trout from several
wilderness lakes. The lower values measured in this study are similar or lower to those
measured in low impacted lakes of the Northern hemisphere, whereas the higher values are
about twice the maximum values measured in those lakes [12, 41-47].

For brown trout, rainbow trout, perch, and catfish, the longest specimens were,
respectively, 25, 40, 34, and 67% longer than the smallest one; no correlation was found
between Hg contents and length, except for the latter species (p=0.66).

Bio-accumulation of Hg occurs in the species and lakes studied in this project. Although
the ranges of Hg contents for each species overlap, the species considered as the top predator,
brown trout, has lower Hg contents in muscle than the other species in contrast with the
observations in other water bodies. Moreover, brown trout from lake Nahuel Huapi, where
this species behaves exclusively as a piscivore, has the lowest Hg contents (see Fig. 2).
Because organic Hg compounds, not total Hg, are the ones prone of being biomagnified in
the trophic web, no conclusions can be drawn from the total mercury data alone regarding
this phenomenon. A better knowledge of the trophic web structure of the lakes is needed to
draw a conclusion on the low Hg burden of the species considered as the top predator.

Temperature is one of the more influential parameters in Hg bio-accumulation [48—50].
A rise in temperature could increase the accumulation of Hg in fish by increasing the
metabolic rate. We analyzed the ratio between Hg contents in summer to contents in winter
for each tissue at each sampling site. We found that Hg contents in both tissues were
consistently equal or higher in summer than in winter of brown trout for all sites but not for
the other species.

No significant correlation was found between Hg contents in liver vs muscle for a
particular lake; however, when considering the whole data set, there is correlation between
Hg contents in liver and Hg contents in muscle for each species (p between 0.55 and 0.89,
P between <0.0001 and 0.0018). The linear fits are shown in Fig. 2a. These fits give an
average liver to muscle Hg content ratio of 1.0+0.1 for brown trout, 0.7+0.2 for rainbow
trout, 1.2+0.3 for brook trout, 0.27+0.06 for creole perch, and 1.84+0.3 for velvet catfish.
Salmonids have, in average, the same Hg concentration in liver as in muscle, whereas perch
has four times more Hg contents in muscle than in liver, and catfishes have two times more
Hg concentration in liver than in muscle.

Table 10 shows the ranges of concentrations measured in this work compared with Hg
contents of fish found in the literature. Hg concentrations in the same species from other
works are compared to present research when data is available; in other cases, species with
similar habitat or diet are compared (creole perch is compared to other perciformes and
velvet catfish with other carnivore catfishes). Mercury contents in fish tissues have a larger
degree of variability than Se; however, the values reported in this work range from the
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lowest measured in other parts of the world. It is noteworthy to mention that Walleye, a
perciforme from the North hemisphere, shows Hg liver to muscle content ratios smaller
than 1, as is the case with the Patagonian creole perch. Catfish Hg contents in muscle are
similar to other catfishes of the world living in water bodies without direct Hg inputs.
Considering that most Hg in muscle is in the organic form, few fish (creole perch, velvet
catfish, and brook trout) exceeded Argentinian recommendation for methylmercury intake of
freshwater fisheries consumption (0.5 ug g ' FW, or approximately 2 p1g g ' DW) and the US
Environmental Protection Agency’s health advisory for freshwater fish limited consumption.

Selenium and Mercury

There is evidence that selenites of Hg are insoluble and reduce Hg and Se bioavailability.
Se and Hg contents in muscle were not correlated (p ranging from —0.36 to 0.46), as well as
Se and Hg contents in livers from rainbow trout, brook trout, and creole perch (p<0.3), and
weakly correlated for livers of brown trout and catfish (p equal to 0.65 and 0.51,
respectively). This lack of correlation has previously been observed in omnivorous and
piscivorous fish [38].

Total Hg to Se molar ratios in the present work range from 0.04 to 0.4 for brown trout,
0.06 to 0.9 for rainbow trout, 0.03 to 1.2 for creole perch, and 0.07 to 0.4 for velvet catfish.
Except for one unique muscle sample, Se always exceeded Hg, a fact which is consistent
with the findings in other uncontaminated freshwater ecosystems [59-61]. In rivers
contaminated by gold mining activities, Hg is typically in excess of Se [38].

Concentrations of Se in all food items from lake Moreno range between 0.21 and
32 ug g ' DW, with only insect larvae above 3 ug g ' DW, the aquatic ecological risk
threshold for diet. Se contents in pelletized food lies between these limits. Both wild and
farmed trout have similar Se contents in muscle, although Se content in wild trout liver is at
least four times higher. Contents of Hg in food items was variable, from 0.08 to 1.4 pg g '
DW, as well as Hg contents in different aliquots of pelletized food (ranging from 0.02
tol ug g71 DW, see Table 8). The previous results do not allow to draw conclusions on Hg
antagonism or synergism based on the two different diets of rainbow trout.

It should be noted that the species that have the lowest Hg contents in muscle, brown
trout and rainbow trout, have the highest Se contents in liver, which could be an indication
that these fish are protected from Hg by a Se-rich diet.

Conclusions

The following conclusions were drawn from this study:

— Hg contents in liver and muscle tissue are higher than those expected for pristine lakes;
however, the values are not unusual. The most remarkable result is that the species
considered as the top predator does not have the highest contents of Hg in muscle.

— The higher Hg contents in muscle from creole perch are in coincidence with the
lower Se in liver. Evidence would indicate that brown trout and rainbow trout (with
higher Se contents in liver) have Se-rich diets, which could be preventing Hg accu-
mulation in muscle.

—  Selenium contents in liver of brown trout and rainbow trout are well above the toxicity
threshold; however, all fish analyzed belonged to populations which did not appear
stunted. More studies are necessary to assess the impact on the fish population.
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Se contents in muscle of fish from lakes Moreno and Nahuel Huapi are about one half
of the Se contents in muscle of fish from the other lakes. This geographical pattern,
although less obvious, appears for Se contents in liver.

The use of Se compounds (sodium selenite) as a feeding supplement for the fish at the
trout farm at lake Moreno East does not seem to affect the wild fish population.
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