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Abstract
The production of caproic acid (CA) and hydrogen gas (H2) from organic wastewater is 
economically attractive. The Ruminococcaceae bacterium CPB6 has demonstrated poten-
tial for CA production from lactate-containing wastewater. However, our understanding of 
the effects of Fe2+ and Mg2+ on the growth and metabolism of strain CPB6 remains lim-
ited. Therefore, this study aims to investigate the impact of Fe2+ and Mg2+ on CA and 
H2 production, as well as on the expression of key genes involved in CA and H2 biosyn-
thesis pathway. The results indicate that Fe2+ positively affects cell proliferation and H2 
production while minimally impacting CA production. The highest levels of H2 produc-
tion were achieved with the addition of 200  mg/L Fe2+. Conversely, Mg2+ significantly 
enhances CA and H2 production, with the optimal yield observed in a medium enriched 
with 300 mg/L Mg2+. Reverse transcription quantitative PCR (RT-qPCR) analysis reveals 
that Fe2+ promotes the expression of the hydrogenase gene, whereas Mg2+ has a negligi-
ble effect on hydrogenase expression. Notably, Fe2+ and Mg2+ inhibit the expression of 
key genes involved in CA synthesis. These findings suggest that Fe2+ enhances H2 produc-
tion by boosting cell biomass and the expression of the hydrogenase gene, whereas Mg2+ 
improves CA and H2 production primarily by increasing cell biomass rather than influenc-
ing the expression of functional genes involved in CA biosynthesis.
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Introduction

Caproic acid (CA), a six-carbon medium-chain carboxylic acid, is a necessary ingredient for 
the production of alkanes and olefins in biofuels [1–3] and an antibacterial and anti-inflam-
matory agent in humans and livestock [4, 5], as well as a flavoring and feed additive [6, 7]. 
Traditionally, CA is obtained from fossil sources or vegetable oil through chemical processes 
[8, 9]. Recently, CA production through anaerobic fermentation has received more attention 
[10]. For example, the co-culture of rumen microorganisms with Clostridium kluyveri has 
shown promise in promoting CA production [11]. Nzeteu et al. showed a sustainable produc-
tion of CA through a mixed culture utilizing butyric acid as the electron acceptor and lac-
tic acid as the electron donor [12]. Dong et al. demonstrated the efficient generation of CA 
through anaerobic fermentation of organic waste [13]. These findings highlight the potential 
for resource recovery and organic waste treatment. Anaerobic fermentation also yields a sig-
nificant amount of hydrogen gas (H2), providing dual benefits of clean energy production and 
high-value compound generation [14]. H2 is considered a favorable alternative to fossil fuels 
due to its lack of greenhouse gas emissions [15, 16]. Conventional methods for H2 production, 
such as electrolysis and steam reforming, have drawbacks in terms of CO2 emissions and high 
costs [17, 18]. Biohydrogen derived from organic matter offers a cost-effective and environ-
mentally beneficial alternative [19, 20]. Currently, biohydrogen can be obtained through vari-
ous methods, including photosynthetic fermentation, anaerobic fermentation, and microbial 
electrolysis [21–23]. Among these methods, anaerobic fermentation for biohydrogen produc-
tion holds greater promise. This process allows for the generation of hydrogen from inexpen-
sive organic substrates such as wastewater, mono-, di-, and tri-saccharides, as well as cheese 
whey and vegetable fruit wastes [24–26].

Metal ions play a significant role in microbial growth and metabolism. For example, Mg2+ 
and Ni2+ ions have been found to enhance the biomass and H2 production of Rhodobacter 
sphaeroides strain MDC6521 [27]. Similarly, Mg2+ and Fe2+ are major factors influencing 
hydrogen production in Ethanoligenens harbinense [28]. Notably, certain metal ions, includ-
ing Cr, Cu, and Zn, inhibit the activity of hydrogen-generating bacteria in sludge [29]. Fur-
thermore, Fe2+ and Ni2+ have been shown to enhance H2 and ethanol production by influenc-
ing hydrogenase activity and biomass in anaerobic continuous flow stirred reactors [30].

The Ruminococcaceae bacterium CPB6 is an anaerobic mesophilic bacterium known for 
its high CA production from lactate-containing wastewater with lactate as an electron donor 
and short chain carboxylic acids as electron acceptors [31]. However, the effects of metal 
ions on the growth and metabolism of strain CPB6 remain uncertain. In this study, we inves-
tigated the impact of Mg2+ and Fe2+ on the production of CA and H2 in strain CPB6 through 
batch fermentation. Additionally, we examined the expression of genes encoding key enzyme 
responsible for the synthesis of CA and hydrogen, which encompassed acetoacetyl-CoA thi-
olase (Thl), butyryl-CoA: acetate CoA transferase (Cat), butyryl-CoA dehydrogenase (Bcd), 
and [FeFe]-hydrogenase (HydE), using RT-qPCR.

Materials and Methods

Bacterial Culture and Media

Strain CPB6 was isolated and preserved in our laboratory. The phylogenic analysis based 
on 16 S rRNA sequences and the whole genome revealed that strain CPB6 belongs to a 
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novel clade (genus) within the family Ruminococcaceae; therefore, it has been tentatively 
named as Ruminococcaceae bacterium CPB6 [6]. The CM medium composition per liter 
was as follows: 10 g glucose, 15 g sodium lactate, 5 g peptone, 0.5 g K2HPO4, 3 g yeast 
extract, 3 g NaCl, 5 g sodium acetate, 1 g NH4Cl, 0.1 g MgSO4·7H2O, 5 g beef powder, 
1 mL vitamin solution, 1 mL trace element solution, 0.5 ml Na-resazurin solution, 0.5 g 
L-Cysteine-HCl-H2O, with a pH of 6.5 ± 0.1. The anaerobic flasks were flushed with high-
purity N2 (99.99%) for 5 min, sealed with rubber stoppers, and autoclaved at 115 ℃ for 
20 min. Vitamins were added after autoclaving, and the preparation of vitamin and trace 
element solutions followed the instructions in Wang et al. [31]. A glycerol stock of strain 
CPB6 stored at −80 ℃ was fully thawed and transferred to the CM medium for incubation 
at 37 ℃ for 48 h. The strain underwent three subcultures before being used for subsequent 
experiments.

Experimental Design

A 100 mL anaerobic flask with 50 mL of CM medium was supplemented with different 
concentrations of FeSO4·7H2O or MgSO4·7H2O to investigate their effects on the growth 
and metabolism of strain CPB6. The Fe2+ concentrations tested were 0, 100, 200, 300, 
400, and 500 mg/L, respectively. The Mg2+ concentrations tested were 0, 100, 200, 300, 
500, 700, and 900 mg/L, respectively. Strain CPB6 was incubated at 37 ℃ for 24 h as seed 
inoculum (OD 600 nm = 0.8 ~ 1.0) for batch experiments. An inoculum concentration of 10% 
was used for each assay, and the gas produced was collected by draining (Fig. 1 illustrates 
the experimental setup).

Analysis Methods

The concentrations of volatile fatty acids, ethanol, and glucose in the culture broth were 
measured by an HPLC system (Agilent 1260 Infinity, USA) equipped with a differential 
refraction detector (RID) and a Hi-Plex H column (300 × 6.5 mm). The chromatographic 
column was operated with a mobile phase of 5 mM H2SO4 at 55 ℃. The fermentation broth 
was first centrifuged at 12,000  rpm for 2 min, and the supernatant was subsequently fil-
trated through a 0.22 μm filter (Millipore Corp, Bedford, MA) before HPLC analysis. Gas 
components analysis was performed using a gas chromatograph (Agilent 7890B, USA). 
A gas sample of 3 ~ 5 mL was taken with a syringe and manually injected into the gas 
chromatograph for analysis. The dry weight of the bacteria (biomass) was determined by 

Fig. 1   Experimental setup [1]. anaerobic bottle, [2] venting syringe, [3] check valve, [4] gas sampling bag, 
[5] measuring cylinder, [6] gas collection bottle, [7] outlet pipe, [8] gas inlet pipe. a, b, and c are pipe jigs
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drying the precipitate obtained from 1 mL of bacterial liquid culture to a constant weight 
in an oven (24 h at 80 ℃). The pH of the bacterial culture was measured using a pH meter 
(Mettler-Toledo Instruments Ltd.).

RNA Extraction and cDNA Synthesis

The total RNA was extracted from bacterial cultures by the UNIQ-10 Columnar Trizol 
Total RNA Extraction Kit according to the manufacturer’s instructions. The quality of the 
RNA samples was assessed through 1.5% agarose gel electrophoresis. Reverse transcrip-
tion was performed by using 1.5 µg of the total RNA. In the ice bath, the following rea-
gents were added to the nuclease-free PCR tube: 1 µL of dNTP Mix (final concentration 
of 0.5 mM), 1 µL of Random Primer p(dN)6 (100 pmol), and 14.5 µL of DEPC water. The 
mixture was mixed and centrifuged for 3 ~ 5 s.

The reaction mixture was then incubated for 5 min at 65 ℃ in a warm bath, followed by 
2 min at 0 ℃ in an ice bath, and finally centrifuged for 3 ~ 5 s. After submerging the tubes 
in an ice bath, the following reagents were added: 1 µL of Maxima Reverse Transcriptase 
(200 U), 0.5 µL of Thermo Scientific RiboLock RNase Inhibitor (20 U), and 4 µL of 5x 
RT buffer. The reagents were thoroughly mixed and centrifuged for 3 ~ 5 s. Reverse tran-
scription was performed using a PCR machine, with incubation periods of 10 min at 25 ℃, 
30 min at 50 ℃, and 5 min at 85 ℃. The resulting solution was stored at −20 ℃.

Reverse Transcription‑Quantitative PCR (RT‑qPCR)

Gene expression was quantified using SYBR Green I real-time fluorescence quantitative 
PCR. Primers targeting the functional and reference genes were designed using Primer Pre-
mier 5.0 software. The primer sequences are shown in Table 1. The fluorescent PCR device 
used was a LightCycler 480 II device (Roche, Rotkreuz, Switzerland). A 10 µL reaction 
system was employed, consisting of 5 µL of 2x SybrGreen qPCR master mix, 0.2 µL each 
of the 10 M upstream and downstream primers, 3.6 µL of ddH20, and 1 µL of the template 
(cDNA). The amplification conditions were as follows: 3 min at 95 ℃ for pre-denaturation, 
45 cycles of 15 s at 95 ℃ (denaturation), and 30 s at 60 ℃ (annealing/extension).

The transcription level of key genes including thl, bcd, cat, and hydE was determined 
according to the 2−(ΔΔCt) method, with the recA as a reference gene for the normalization of 

Table 1   Primer sequences for target and housekeeping genes

Gene Primer Sequence

Housekeeping gene recA recA-F 5’-GGC​GAA​GGT​ATT​TCC​CAT​G-3’
recA-R 5’-CCG​AAG​CAC​GAG​GAG​AAA​T-3’

Target gene thl thl-F 5’-GCA​GGT​ATC​CCG​ATT​AGC​AC-3’
thl-R 5’-GCA​GAT​AAG​GAG​CGT​TGG​AC-3’

cat cat-F 5’-ACA​GGT​TCC​GAG​CGT​CAC​TA-3’
cat-R 5’-GAA​ACC​TGG​CAC​ATT​GCT​ACA-3’

hydE hydE-F 5’-CAG​ATG​TCC​TTT​GAC​CAC​CG-3’
hydE-R 5’-GGA​ACG​GCG​TGT​CCT​TGT​-3’

bcd Bcd-F 5’-CAA​GGG​CTT​CAA​GGT​CGC​-3’
Bcd-R 5’-GCT​GAT​ACG​TCT​GCC​AAA​CTG-3’
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gene expression levels, where ΔΔCt = ΔCt(Cttarget−CtrecA)treat − ΔCt (Cttarget−CtrecA)control 
[32, 33]. In this experiment, the control group did not receive any metal ions.

Statistical Analysis

Statistical analysis of the results was conducted using SPSS software (version 26, IBM), 
with independent samples t-test for comparisons between two groups and ANOVA test 
for comparative analysis between multiple groups. Pearson correlation between CA or H2 
production and biomass or gene expression was analyzed and visualized using GraphPad 
Prism software (version 8). A positive correlation is indicated when the correlation coef-
ficient is greater than 0, whereas a negative correlation is indicated when the coefficient is 
less than 0. The magnitude of the absolute value of the correlation coefficient represents 
the strength of the correlation. A P-value greater than 0.05 indicates a lack of statistical 
significance, while a P-value less than 0.05 suggests statistical significance.

Results

Effect of Fe2+ on the Growth and Metabolism of Strain CPB6

As shown in Fig.  2a, the biomass of strain CPB6 initially increased and then decreased 
with increasing Fe2+ concentration. At a concentration of 200 mg/L Fe2+, the cell biomass 
reached the maximum of 1.43 g/L, significantly higher than the control without Fe2+ (P 
< 0.05). The pH exhibited a decline as Fe2+ concentration increased. Similarly, H2 yield 
showed an initial increase followed by a decrease with increasing Fe2+ concentration, peak-
ing at 1.88 ml H2/mL medium at a concentration of 200 mg/L Fe2+, significantly higher 
than the control group without Fe2+ (P < 0.05, Fig. 2b). The trend in H2 production was 
consistent with cell biomass. However, the addition of Fe2+ had little effect on CA yield 
(Fig. 2b).

Effect of Mg2+ on the Growth and Metabolism of CPB6

According to Fig.  3a, the addition of Mg2+ exerted a noteworthy and positive influence 
on the enhancement of cellular proliferation. The biomass of the cells supplemented with 
Mg2+ was consistently higher than the control without Mg2+ (P<0.05). At a concentration 
of 300  mg/L Mg2+, the cell biomass reached a maximum of 1.53  g/L. However, it was 
observed that the pH tended to drop as the Mg2+ concentration increased, especially when 
the Mg2+ concentration exceeded 200 mg/L. The trend in CA and H2 production followed a 
similar pattern as the cell biomass. The maximum yields of CA and H2 were 6446.04 mg/L 
and 1.31 mL/mL medium, respectively, at a concentration of 300 mg/L Mg2+ (Fig.  3b). 
Mg2+ effectively increased cell biomass and H2 production within a range of concentra-
tions (200 to 700 mg/L), as well as promoting CA production. These results demonstrate 
that the addition of Mg2+ significantly enhanced the growth of the CPB6 bacterium, con-
tributing the higher CA and H2 production.
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Effects of Fe2+ and Mg2+ on the Expression of Key Genes

The addition of Fe2+ led to a significant upregulation of the hydE gene, increasing its 
expression by 1 to 3.5 times compared to the control. The maximum gene expression was 
observed at a concentration of 200 mg/L Fe2+ (Fig. 4a). Conversely, Fe2+ had negligible 
effects on the expression of the bcd and cat genes. However, it exhibited a partial inhibitory 
effect on thl expression. In contrast, Mg2+ had minimal impact on the expression of hydE 
and bcd genes but strongly suppressed the expression of cat and thl genes (Fig. 4b). These 
findings indicate distinct effects of Fe2+ and Mg2+ on the expression of genes involved in 
CA and H2 production.

Correlation Between Metabolites and Gene Expression and Biomass

H2 production exhibited a strong positive correlation with the hydE expression (r = 0.56, 
p < 0.05, Fig. 5a) and cell biomass (r = 0.64, p < 0.05, Fig. 5b) in the presence of Fe2+. 
However, when Mg2+ was added, H2 production only positively correlated with cell bio-
mass (r = 0.67, p < 0.05, Fig.  5e). CA production showed a weak negative correlation 
with cell biomass (r = −0.38, p > 0.05, Fig. 5c) when Fe2+ was added, but a significant 
positive correlation with cell biomass (r = 0.46, p < 0.05, Fig. 5f) when Mg2+ was added. 
These results suggest that Fe2+ primarily increased H2 production by enhancing the activity 

Fig. 2   Effect of Fe2+ on the 
growth and metabolism of strain 
CPB6. a Cell biomass and pH; b 
the production of H2 and caproic 
acid
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of hydrogenase and promoting cell growth. In contrast, Mg2+ increased both H2 and CA 
production by stimulating cell growth. However, the mechanism underlying the negative 
correlation between CA production and carbon chain elongation genes under the influence 
of Fe2+ and Mg2+ requires further investigation.

Discussion

Iron plays a crucial role in microbial growth and metabolism. Previous study has demon-
strated that Fe2+ significantly enhances hydrogenase activity, H2 yield, and butyric acid 
synthesis in a membrane bioreactor [34]. Additionally, Fe2+ has been found to increase 
photosynthetic bacterial activity, biomass, and ATP generation by regulating the activities 
of succinate and NADH dehydrogenase [35]. Similar results have been observed in E. har-
binense [28]. In this study, we observed that the addition of Fe2+ promoted cell growth, 
H2 production, and hydrogenase gene expression, which is consistent with previous find-
ings. Hydrogenases are important enzymes that catalyze the reduction of protons to pro-
duce hydrogen, and their activity relies on iron as an essential cofactor. Hydrogenases can 
be categorized as [NiFe]-, [FeFe]-, and [Fe]- hydrogenases depending on the kind of metal 
ion in the catalytic site [36]. These enzymes are Fe-dependent, with iron serving as a cru-
cial cofactor for their catalytic activity. Iron is involved in the catalytic process of hydrogen 
oxidation or production in hydrogenases [37]. The hydrogenase in the strain CPB6 belongs 

Fig. 3   Effect of Mg2+ on the 
growth and metabolism of strain 
CPB6. a Cell biomass and pH; 
b the production of H2 and 
caproic acid
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to [FeFe]-hydrogenases group, which contains a unique iron-sulfur cluster responsible 
for catalytic activity [38, 39]. Fe2+ is likely to enhance H2 production in strain CPB6 by 
increasing hydrogenase activity and influencing the catalytic process of hydrogen oxidation 
or production [40]. However, the addition of Fe2+ did not improve CA production, poten-
tially attributed to the downregulation of thl gene. This gene is responsible for catalyzing 
the condensation of two acetyl-CoA molecules into acetoacetyl-CoA, which serves as the 
initial enzymatic step in CA biosynthesis [41].

Mg2+ is an activator for various kinases and synthases, as elucidated by previous studies 
[42]. Many kinases and cofactors of synthetic enzymes involved in the glycolytic process, 
such as hexokinase, phosphofructokinase, and glyceraldehyde-3-phosphate dehydrogenase 
[40]. Consequently, Mg2+ plays a role in the glycolytic process by promoting the generation 
of pyruvate and NADH, ultimately leading to H2 production through subsequent oxida-
tion. Mg2+ is also involved in cellular processes such as cell wall and membrane composi-
tion [43] and regulation of ion channels [44]. The study by Hakobyan et al. illuminates the 
potential of Mg2+ to enhance hydrogen production in Rhodobacter sphaeroides, attributing 

Fig. 4   Effect of Fe2+ (a) and 
Mg2+ (b) on the expression of 
key genes involved in H2 and 
CA biosynthesis in strain CPB6. 
A value greater than 1 indicates 
upregulation of gene expression 
compared to control, while less 
than 1 indicates downregulation. 
N.T., not tested
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this enhancement to the role of Mg2+ in improving cell growth and electron transfer [27]. 
Similarly, Zhao et al. demonstrate that the addition of 100 mg/L Mg2+ stimulates biohydro-
gen production and cell growth in Clostridium beijerinckii, albeit with a negative impact on 
the expression of the hydrogenase gene [45]. In our study, we observed a significant sup-
pression of thl and cat expression in response to Mg2+. However, the expression of hydE 
and bcd in strain CPB6 remained unaffected by the presence of Mg2+. Notably, we have 
also observed a significant increase in both CA and H2 production at Mg2+ concentrations 
of 300 mg/L. Although both Fe2+ and Mg2+caused downregulation in the expression of thl, 
cat, and bcd genes involved in CA biosynthesis, the culture of CPB6 did not experience 
a decline in CA production. This can likely be attributed to the compensatory effect of 
increased cell biomass, which counterbalances the adverse effects of gene downregulation.

Fig. 5   Correlation analysis between metabolites and gene expression and biomass. The correlation between 
H2 production and hydE expression (a) and biomass (b), as well as the relationship between CA production 
and biomass (c) in the presence of Fe2+. The correlation between H2 production and hydE expression (d) 
and biomass (e), as well as the relationship between CA production and biomass (f) in the presence of Mg2+
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Conclusion

Previous studies have demonstrated the positive impact of metal ions on H2 production 
and biomass in hydrogen-producing bacteria. However, this study reveals distinct effects 
of Fe2+ and Mg2+ on the production of CA and H2 in the strain CPB6. Notably, Fe2+ and 
Mg2+ exert a greater influence on H2 production compared to CA production. These find-
ings suggest that Fe2+ and Mg2+ may operate through different pathways to influence H2 
and CA generation in strain CPB6. The careful optimization of Mg2+ and Fe2+ combina-
tion holds promise for achieving an optimal balance between cell growth and gene expres-
sion, thereby enhancing the production of both CA and H2 by strain CPB6. However, fur-
ther investigation is necessary to elucidate the co-regulatory effects of Mg2+ and Fe2+ on 
strain CPB6 and determine their optimal addition ratios.
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