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Abstract
This study aimed to reveal the structural characterization and functional properties of micro-
bial EPS-NOC219 material produced by the Enterococcus faecalis NOC219 strain with high 
EPS yield isolated from yogurt, with simultaneously, demonstrating the potential of this EPS 
for future industrial applications. According to the results of the analyses made for this aim, it 
was determined that the NOC219 strain contains the epsB, p-gtf-epsEFG, and p-gtf-P1 genes. 
In addition, it was also revealed that the EPS-NOC219 structure is expressed by the epsB, p-gtf-
epsEFG, and p-gtf-P1 genes and has a heteropolymeric feature consisting of glucose, galactose, 
and fructose units. According to the results of the analyses made for this aim, it was determined 
that the EPS-NOC219 structure, which was produced from the NOC219 strain containing the 
epsB, p-gtf-epsEFG, and p-gtf-P1 genes, had a heteropolymeric structure consisting of glucose, 
galactose, and fructose units. On the other hand, it was shown that this structure had a thickener 
property, high heat stability exhibited a pseudoplastic flow behavior, and had a high melting 
point. This showed that the EPS-NOC219 had high heat stability and could be used as a thick-
ener in heat treatment processes. In addition, it was revealed that it is suitable for plasticized 
biofilm production. On the other hand, the bioavailability of this structure was demonstrated 
with its high antioxidant activity (55.84%) against DPPH radicals and high antibiofilm activ-
ity against Escherichia coli (77.83%) and Listeria monocytogenes (72.14%) pathogens. These 
results suggest that the EPS-NOC219 structure may be an alternative natural resource for many 
industries as it has strong physicochemical properties and a healthy food-grade adjunct.

Keywords Enterococcus faecalis NOC219 · Exopolysaccharide · Biopolymer · 
Bioactivity · Structural properties
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• E. faecium NOC219 produce EPS harbors epsB, p-gtf-epsEFG, and p-gtf-P1 genes.
• E. faecium NOC219 produce EPS-NOC219 has probiotic potential.
• EPS-NOC219 structure has a high melting point and a pseudoplastic flow behavior.
• EPS-NOC219 has high heat stability and can use as a thickener in heat treatment processes.
• EPS-NOC219 has high antioxidant activity and high antibiofilm activity.

 * Nilgün Özdemir 
 nilgun.ozdemir@omu.edu.tr

1 Department of Food Engineering, Ondokuz Mayıs University, Engineering Faculty, 
55139 Samsun, Turkey

Published online: 27 February 2023

Applied Biochemistry and Biotechnology (2023) 195:6183–6202

http://crossmark.crossref.org/dialog/?doi=10.1007/s12010-023-04393-1&domain=pdf
http://orcid.org/0000-0002-4517-9214


1 3

Introduction

In recent years, one of the most striking issues in the food industry is the microbial 
metabolites produced by microorganisms in the microbiota of fermented foods [1]. One 
of these microbial metabolites is exopolysaccharide (EPS), which has a high-molecular-
weight natural-carbohydrate polymer structure [2]. EPS structures are used for differ-
ent functions in many areas such as textiles, food, medicine, and pharmaceuticals. It is 
known that especially when EPS is used in the food industry, it can affect a food’s tech-
nological and functional properties [3]. For example, some EPS structures have phys-
icochemical properties such as thickener, emulsifier, and stabilizer [4, 5]. On the other 
hand, some EPSs have bioactive effects such as antibacterial, antiviral, antidiabetic, 
antitumor, antioxidant, anti-inflammatory, anti-hypoglycemic, hypocholesterolemic 
antihypertensive, cholesterol-lowering, gastro-protective, and prebiotic properties [6–8]. 
EPS structures even affect the sensory properties of food [3]. EPS-producing microor-
ganisms in the food industry commonly belong to the lactic acid bacteria (LAB) species 
[9]. LAB-derived EPSs are natural, non-toxic, bio-products with diverse chemical struc-
tures and biological activities [3]. Therefore, although LAB-EPS structures are a very 
popular research topic, research on them is still insufficient.

Bacteria of the genus Enterococcus belong to the LAB group and are generally 
known as low-grade pathogens. However, their role as primary pathogens remains in 
question [10]. Some strains of this genus, especially some of the Enterococcus faecalis 
strains, do not show pathogenicity [11]. They have even been found to have potential 
health-promoting benefits such as antidiabetic, antimicrobial, antioxidant, and proteo-
lytic activities, along with probiotic characteristics [2, 12]. One of these properties is 
EPS production. In the literature, the discoveries of a few types of EPS produced by 
some Enterococcus faecalis strains have been documented [4]. However, the number of 
those gaining industrial importance with significant market appeal is limited, especially 
regarding their use as biomaterials. In addition, the high EPS production yield of some 
Enterococcus faecalis strains reveals the necessity of bringing the EPSs produced by 
these strains to the industry.

This study aimed to reveal the structure and biological properties of microbial EPS 
material produced by an E. faecalis strain with high EPS yield isolated from “yogurt,” 
simultaneously, demonstrating the potential of this EPS for future industrial applications.

Materials and Methods

Materials

In this study, an isolate that codes NOC-219 was used as material. This isolate was iso-
lated from 15 artisanal yogurt samples produced and consumed by the local people living 
in Samsun province of Turkey. The NOC-219 isolate was selected as the highest-yielding 
EPS-producing strain among the 325 indigenous LAB isolates from the traditional yogurt 
in Ondokuz Mayis University, Department of Food Engineering, Biotechnology Labora-
tory. The other materials were purchased the analytical grade chemicals and reagents from 
Sigma-Aldrich Co. (USA) and Supelco Co. (USA), and the microbial growth mediums 
from Merck Co. (Germany).
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Selection and Identification of EPS‑Producing Isolate

The 325 indigenous LAB isolates were isolated using the previously described method-
ology [13] from the yogurt samples. Colonies with mucoid phenotype were selectively 
picked and subcultured in modified MRS-sucrose agar, which contains 40 g/L sucrose 
instead of glucose 20 g/L [14]. Among LAB isolates producing EPS, the NOC219 isolate, 
which produced the maximum amount of EPS, was chosen for further analysis.

The selected isolate was identified using 16S rRNA gene sequencing. For this, primer 
27F (5′-AGA GTT TGA TCC TGG CTC AG-3′) and 1491R (5′-ACG GCT ACC TTG TTA CGA 
CTT-3′) were used to amplify the 1.5 kb 16S rRNA gene of the NOC219 isolate. PCR 
reaction was performed with the following program: 95 °C for 15 min, followed by 35 
cycles 95 °C for 1 min, 55 °C for 1 min, 72 °C for 3 min, and 72 °C for 10 min final exten-
sion. Subsequently, the amplicons were sequenced by Macrogen Inc. (Amsterdam, Nether-
lands). The similarity was determined with the NCBI database (97–100%).

Determination of EPS Genes of NOC219 Strain

The eps genes in the genome of this isolate were identified with PCR using specific 
primer pairs. The target gene regions were epsA (putative transcriptional regulator), lev 
(levansucrase) and gtf (glucansucrase), epsB (putative polymerization and chain length 
determination protein gene), and p-gtf (putative priming glycosyltransferase gene), rep-
resenting genes required for the production of homopolymeric and heteropolymeric EPS, 
respectively. Table  1 shows the primers, the target amplicon lengths [13, 15], and the 
PCR conditions.

Determination of Potential Probiotic Properties of NOC219 Strain

Resistance to Simulated Gastric Medium and Intestinal Medium Tests

First, 18-h active cell culture of the NOC219 strain was centrifuged. Subsequently, the cell 
pellet was collected and washed. The viable pellet cells were re-suspended in the simulated 
gastric medium (PBS solution containing 0.3% pepsin pH 2.0, Sigma-Aldrich) by filtration 
(filter membrane 0.22 mm), which contained about 8 log CFU/mL. On the other hand, for 
the resistance test to the simulated intestinal medium, a similarly prepared pellet of the 
NOC219 strain was re-suspended in the simulated gastric medium (PBS solution contain-
ing 0.5% bile salt (w/v), 0.2% pancreatin (Sigma-Aldrich) (w/v), 0.1% trypsin (w/v) pH 
8.0, Sigma-Aldrich) by filtration (0.22 mm) [16, 17].

The media were incubated at 37 °C at 100 pm. For the cell viability test in gastric 
medium, samples were taken at 0, 60, and 120 min. For cell viability tests in medium intes-
tinal resistance, tests were taken at 0, 120, and 240 min for cell viability. MRS agar was 
seeded, and after 48 h of incubation at 37 °C, the results were determined as CFU/mL.

Hemolytic Activity and Antibiotic Susceptibility Tests

The NOC219 strain was streaked in Columbia Blood agar plates (Merck, Germany), which 
contained 5% defibrinated sheep blood. After incubation (48 h, 37 °C), the hemolytic 
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activity was determined by observation of a clear zone of hydrolysis around the colo-
nies (β-hemolysis), partial hydrolysis, and greenish zone (α-hemolysis), or no reaction 
(Ɣ-hemolysis).

Broth culture of the NOC219 strain (18 h, 37 °C, adjusted to 0.5 McFarland (8 log CFU/
mL)) was cultivated on an MRS agar sterile petri dish with the spread plate method and 
allowed to dry for 15 min. Afterward, commercially available different antibiotics (metro-
nidazole, ampicillin, erythromycin, amoxicillin, vancomycin, and tetracycline) disks (Bio-
analyse, Turkey) were placed upwards and pressed on the agar plates. After incubation at 
37 °C for 24 h, the presence of a zone of inhibition around the disks was noted as resist-
ance [18].

Production and Purification of EPS from NOC219 Strain

EPS production and purification processes were carried out by minor modifying the pre-
viously reported method [19]. Briefly, the E. faecalis NOC219 was grown in a modified 
MRS-sucrose broth medium in 1 L final volume on a shaker with a speed of 150 rpm at 37 
°C for 48 h aerobically. The fermentation medium was adjusted to pH 6 every 6 h using 3 
M NaOH. Subsequently, the fermented broth was centrifuged at 10,000×g at 4 °C for 30 
min, and the pellet and supernatant parts were separated. The cell-free supernatant was 
subjected to purification. For the purification, an equal volume of cold ethanol was added 
to this supernatant and kept at 4 °C overnight for EPS to precipitate. Afterward, the pre-
cipitated EPS was collected, some distilled water was added to it, and dissolved. This solu-
tion was added to two times the volume of cold ethanol and kept at 4 °C overnight. Sub-
sequently, EPS was separated from the supernatant by re-centrifugation. For the removal 
of compounds that may be found other than the crude EPS obtained. It was dissolved in 
pure water and dialyzed (12–14 kDa) for 3 days, and then 10% trichloroacetic acid solution 
was added and kept at 4 °C overnight. Finally, pure EPS precipitated by centrifugation was 
obtained. It was lyophilized and stored at −80 °C for further studies.

Determination of Monosaccharide Composition of EPS

The freeze-dried EPS solution prepared at a concentration of 20 mg/mL was taken from 
1000 μL EPS solution, 800 μL was taken, and 218 μL of 72% formic acid was added, and 
kept in a water bath at 95 °C for 2 h. It was then neutralized by adding 500 µL of 5 M 
KOH, centrifuged at 12,000 ×g for 5 min, and filtered through a filter (0.45 μm), was deter-
mined by HPLC analysis using a CARBOsep CHO-682 Pb Column (Chrom-tech, 7.8 mm 
ID × 300 mm, USA) and RID-10 (a refractive index detector) with a mobile phase of  H2O, 
using glucose, galactose, fructose, and rhamnose standards. The flow rate is 0.7 mL/min 
and the column temperature is at 25 °C [1].

Determination of Functional Groups of EPS by FTIR Analysis

The major structural groups of the EPS were detected using Fourier transform infrared 
spectroscopy (ATR-FTIR, Perkin Elmer, Spectrum-Two, USA). For this, 1 mg of lyophi-
lized exopolysaccharide was taken and mixed homogeneously with 100 mg of KBr pow-
der. A disk was pressed into a pellet by using a hydraulic press, and the resulting disk 
was subjected to FTIR spectral measurement in the range of 4000–400  cm−1 wavelength. 
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The obtained peaks were evaluated [7, 20]. FTIR spectrum was determined in transmission 
mode, and the number of scans was 32. The infrared spectral resolution was 4  cm−1.

Differential Scanning Calorimeter (DSC) Analysis of EPS

The thermal property of the EPS was determined using differential scanning calorimetry 
(DSC 8000, PerkinElmer, Shelton, CT, USA). It was weighed 5 mg from the EPS to alu-
minum pans and sealed. Then, the sample was analyzed by applying a heating rate of 10 
°C/min in the temperature range of 10–450 °C in a nitrogen gas atmosphere and using an 
empty pan as a reference [9].

Rheological Analysis of EPS

An aqueous solution of EPS (4%) was prepared at a pH value of 6.0. Rheological measurements 
of this solution were carried out using an air-controlled rheometer (Anton Paar, MCR-302, Ger-
many). The cone plate (C35/2ºTi L; 17.5 mm diameter, 2° cone angle, 0.1 mm gap) with plate-
controlled temperature (4 °C) was employed to perform the following test.

Determination of Steady Shear Flow Behavior Property of EPS

A shear rate range ( ̇𝛾 ) of 0.1 1/s to 100 1/s was used in steady shear property measurement. 
Herschel-Bulkley’s model was employed to describe the flow behavior of EPS. The value 
at a shear rate of 50 1/s was shown as an apparent viscosity value (ƞ50) [21].

Herschel-Bulkley model:

τ0  shear stress (Pa)
K  consistency coefficient (Pa sn)
ẏ  shear rate  (s−1)
ẏ  flow behavior index

Temperature‑Dependent Flow Behavior of EPS

The change in viscosity of EPS (η) was analyzed as a function of temperature from 10 to 
80 °C. The temperature ramp rate was 3 °C/min at a constant shear rate of 20 1/s. The acti-
vation energy of flow was calculated according to the Arrhenius equation:

Arrhenius model:

η  shear stress (Pa/s)
η0

e  frequency factor
Eα  activation energy (J/mol)
R  universal gas constant
T  temperature (°K)

(1)𝜏 = 𝜏
0
+ K(�̇�)

n

(2)� = �
0
e
E�

RT
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Determination of Dynamic Shear Flow Behavior Property of EPS

Amplitude sweep test was applied at the frequency (0.1 Hz) at 4 °C, at between 0.001 and 10 Pa. 
Frequency sweep test was performed at 4 °C for 120 s at various frequencies ranging from 0.1 
to 100 Hz (0.628–628.3 rad/s, 0.1 Pa) to evaluate viscoelastic behavior of EPS at constant strain 
within the linear viscoelastic region (less than 1%). The obtained elastic or storage modulus (G′) 
and viscous or loss modulus (G″) values were calculated as a function of frequency (Hz).

Scanning Electron Microscopy (SEM) Analysis of EPS

The microstructure of the EPS sample was determined using a scanning electron microscope 
(SEM; JEOL, Tokyo, Japan). The sample was fixed to the SEM stubs with double-sided tape 
and coated with a layer of gold-palladium coating ~10 nm thick. Then, the samples were 
observed at 500, 1000, and 2500 magnitudes at 10 kV [22, 23].

Antibiofilm and Antioxidant Activities of EPS

This test was performed against Bacillus subtilis (NRRL-B209), Escherichia coli (ATCC-
25922), Listeria monocytogenes (ATCC-7644), and Staphylococcus aureus (ATCC-33862) 
pathogenic bacteria. Firstly, active cultures (at 37 °C 18 h) of pathogenic microorganisms were 
prepared. One hundred eighty microliters of nutrient broth, 10 μL of active pathogenic culture, 
and 10 μL of the EPS solution (0.4 mg/mL) were added to the wells of a microtiter plate, and 
it was incubated for 18 h at 37 °C [24]. After the plate was gently washed with PBS buffer 
(pH 7.2), crystal violet (0.2 %) was added to it, and it was incubated for 15 min. After washing 
the plate with distilled water, 100 μL of acetic acid (30 %, v/v) was added to each well. The 
absorbance was taken at 570 nm, and biofilm inhibition was measured by the equation: Anti-
biofilm activity (%) = (ODcontrol − ODsample/ODcontrol) × 100 [25].

Antioxidant activity was determined using 1,1-diphenyl-2-picrylhydrazyl  (DPPH•) radical 
[26]. Briefly, 2 mL of EPS solution (4 mg/mL) was mixed with 4 mL 0.1 mM  DPPH• solu-
tion. Then the mixture was placed for 30 min, and the absorbance was determined at 517 nm. 
The result was calculated by the equation as follows: Scavenging activity (%) = (1 − (Asam-
ple − Ablank)/Acontrol) × 100.

Statistical Analysis

All analyses were measured at least three times. One-way ANOVA was performed to determine the 
significance (P < 0.05) of differences between the data with Duncan’s multiple comparison test.

Results and Discussions

Identification and Potential Probiotic Properties of NOC219 Strain

The taxonomic position of the NOC219 strain selected for secreting the most EPS was 
identified by biochemical and 16S rRNA gene sequencing analysis. The strain showed 
positive for gram staining, glucose utilization, and Voges-Proskauer tests and negative for 
methyl red, and gelatin hydrolysis, hemolytic activity (γ-hemolytic). On the other hand, the 
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16S rRNA gene sequence of this strain NOC219 showed a high degree (99.79%) of simi-
larity with the type strain E. faecalis ATCC  19433T (Fig. 1) and was named Enterococcus 
faecalis NOC219. Also, its gene sequence was deposited to GenBank (OM982617).

When examined in terms of potential probiotic properties, after 2 h of incubation in 
the prepared simulated gastric medium, the E. faecalis NOC219 strain decreased from 
9.02 ± 0.23 to 7.48 ± 0.52 log CFU/mL, showing a 1.54 log CFU/mL reduction. As for 
tolerance to the simulated intestinal medium, it decreased from 8.96 ± 0.34 to 7.73 ± 0.14 
log CFU/mL, showing a 1.18 log CFU/mL reduction in the simulated intestinal medium 
(Table 2A). Although the decrease in the viability of the strain is significant in both gas-
tric and intestinal environments, it was determined that the strain had good tolerance to 
both environments and had probiotic potential, since the numbers of these environments 
were 6 logs and above after the applied treatment [27]. In some studies in the literature 
[12, 28], it was determined that some E. faecalis strains with potential probiotic prop-
erties showed similar tolerance. Furthermore, as another probiotic property condition, 
it was determined that the E. faecalis NOC219 strain showed high susceptibility to the 
ampicillin, erythromycin, amoxicillin, and tetracycline antibiotics with disk diameters of 
47.02 ± 0.26, 41.34 ± 0.27 (P > 0.05), 30.25 ± 0.09, and 24.17 ± 0.13 mm (P < 0.05), 
respectively.

In accordance with these results, the E. faecalis NOC219 strain was determined to have 
potential probiotic properties such as high antimicrobial activity, no antibiotic resistance, 
and resistance to gastric and intestinal environments (resistances to low pH, bile salts, and 
digestive enzymes).

Fig. 1  Phylogenetic tree showing the relative positions of the isolates as inferred by the neighbor-joining 
method of complete 16S rRNA gene (S) sequences

6190 Applied Biochemistry and Biotechnology (2023) 195:6183–6202
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Molecular Detection of EPS Genes in NOC219 Strain

The EPS production characteristic properties of yogurt isolates at strain levels of 
different species were determined with the previously described methodology [19], 
and strains were selected for further screening of the eps genes [13, 29]. The target 
genes for the detection of the eps genes were gtf (glucansucrase), lev (levansucrase) 
and epsA (putative transcriptional regulator), epsB (putative polymerization and 
chain length determination protein gene), and p-gtf (putative priming glycosyltrans-
ferase gene) representing genes required for the production of homopolymeric and 
heteropolymeric EPS, respectively, and PCR conditions and primers used for the 
detection of the target genes were described elsewhere [15].

According to the screening results of EPS genes, it was revealed that the NOC219 
strain harbored the epsB, p-gtf-epsEFG, and p-gtf-P1 genes (Table  2B, Fig.  2A). 
For the heteropolymeric EPS production, an eps gene cluster harboring epsA, epsB, 
and epsD-epsE genes as well as other genes is required [30], whereas a single gene 
is described as gtf or ftf is responsible for homopolymeric glucan or fructan type, 
respectively [15]. This was a molecular indication that heteropolymeric EPS could 
be synthesized by the NOC219 strain. In a study [31], it was determined that the 
EPS-MS79 structure, which was produced from an Enterococcus faecium (MS79) 
strain, was composed of the three monosaccharides arabinose, mannose, and glu-
cose, and therefore, it was a heteropolymeric structure. However, different strains 
of the same species are known to produce EPSs with different structures. For exam-
ple, EPSs produced by E. faecium WEFA23 [32] and E. faecium MC13 [33] dif-
fer from each other. Moreover, the monosaccharide composition has a significant 
influence on the functionalities of the exopolysaccharide [34]. Therefore, EPSs pro-
duced by new strains should be examined in detail. Besides, several factors, includ-
ing medium and fermentation conditions as well as genetic factors, affect the EPS 
production levels of a LAB strain. The monosaccharide composition of EPS exam-
ined in the present study was mentioned below.

Table 2  Resistances to simulated gastric and intestinal medium of NOC219 strain (A); genes in EPS pro-
duction (B)

+ presence of the corresponding gene, – no detection of the corresponding gene
a–c Different lowercase (superscript) letters indicate significant differences between the time periods In 
each of the simulated environments

(A) Resistance to simulated gastric and intestinal medium

For gastric medium (log CFU/mL; period of simulated 
medium)

0 h 1 h 2 h
9.26 ± 0.23a 8.12 ± 0.18b 7.48 ± 0.52c

For intestinal medium (log CFU/mL; period of simu-
lated medium)

0 h 2 h 4 h
8.96 ± 0.34a 8.22 ± 0.27ab 7.73 ± 0.14b

(B) Screening of genes involved in homopolymeric EPS and heteropolymeric EPS production
Gene regions Gene regions Gene regions
epsA – p-gtf-epsEFG + Gtf-Dexreu –
epsB + p-gtf-P1 + Gtf –
p-gtf-epsD/E – Lev-LevV –

6191Applied Biochemistry and Biotechnology (2023) 195:6183–6202



1 3

Production and Purification of EPS from NOC219 Strain

The E. faecalis NOC219 strain exhibited probiotic characteristics and produced an 
EPS yield of 564.62 ± 0.15 mg/L. This structure was named EPS-NOC219. Yields of 
EPS structures produced by LAB differ depending on the type of strain, growth condi-
tions, carbon source, initial pH, culture medium, incubation temperature, and inocu-
lum size [33]. In the literature, it was observed that the EPS yields of EPS-producer 
LAB strains varied considerably. It was reported that the EPS yields were 13.20 g/L 
of the EPS from Leuconostoc mesenteroides S81 [9], 28.82 g/L of the EPS from Lac-
tobacillus fermentum CFR 2195 [33], and 7.47 g/L of the EPS from Enterococcus fae-
cium MC13 [33] belonging to the same species as in this study. However, it was deter-
mined as the EPS yields were 429.4 mg/L of the EPS from Lactobacillus plantarum 
ZDY2013 [36], 130 mg/L of the EPS from Enterococcus faecium WEFA23 [32], and 
355 mg/L of the EPS from Enterococcus faecium K1 [28]. According to the results, it 
was observed that the EPS yield of the strain in the presented study was higher than 
many strains belonging to the same species.

Monosaccharide Composition of EPS‑NOC219

The monosaccharide components of the EPS-NOC219 carried out after acid hydroly-
sis of it were examined by HPLC. The results showed that the EPS-NOC219 was a 

Fig. 2  Exopolysaccharide genes in E. faecalis NOC219 (A); monosaccharide composition of the purified 
EPS-NOC219 from E. faecalis NOC219 (B)

6192 Applied Biochemistry and Biotechnology (2023) 195:6183–6202



1 3

heteropolymer consisting of glucose (4.43 mg/g), galactose (3.25 mg/g), and fructose 
(0.10 mg/g) in comparison with respective standards (Fig.  2B). Previous studies sug-
gested the heteropolysaccharide-EPS production from the various strains of the E. fae-
cium, including E. faecium MS79 [31], E. faecium WEFA23 [32], and E. faecium MC13 
[33]. However, homopolysaccharide-EPS produced by a different strain of the same spe-
cies, such as E. faecium MC-5 [24], were also determined. In the study, the relative 
molar ratio of these sugar monomers in the EPS-NOC219 was 44.3:32.5:1. The main 
monosaccharides were glucose and galactose, while fructose also was present in very 
low concentrations. Here, it was thought that galactose was converted from glucose by 
the UDP-glucose 4-epimerase of the Enterococcus faecium NOC219 strain via the Lel-
oir pathway [37] as a result of the use of sucrose. Besides, if this strain was grown in a 
medium containing lactose and sucrose together, it is also predicted that it will probably 
produce lactosucrose, a prebiotic [38]. It is known that the monosaccharide composition 
of an EPS has a significant influence on its functional properties (antioxidant antiviral 
and anticoagulant properties, prebiotic effect) [34]. The results supported the view that 
this EPS structure may be prebiotic and determined the path for further work.

Functional Groups of EPS‑NOC219

The functional groups of EPS-NOC219 were determined by FTIR analysis. Figure 3A shows 
the FTIR spectra of EPS-NOC219. The polysaccharide showed high absorbance in the region 
1200–1000  cm−1, which was within the so-called fingerprint region (below 2000  cm−1 and 
spectral regions corresponding to polysaccharides are between 890 and 1175  cm−1) [39]. 
This region is dominated by ring vibrations overlapped with stretching vibrations of (C–OH) 
side groups and the (C–O–C) glycosidic bond vibration [40]. Therefore, the strongest absorp-
tion band at 1012.51  cm−1 has indicated that the substance is a polysaccharide and suggests 
that the monosaccharide in it has a pyranose ring [41]. Similarly, the absorption at 1146.76 
 cm−1 was dominated by glycosidic linkage υ(C–O–C)-stretching vibration. It is known that 
characteristic anomeric region absorption bands in carbohydrates at about 898  cm−1 for 
β-anomer and about 845  cm−1 for an α-anomer form of the pyranoid ring [20, 42]. In the 
IR spectra, the characteristic absorption at 844.56  cm−1 indicated α-anomeric configuration 
in the EPS-NOC219. The absorption at 912.05  cm−1 indicated that the EPS-NOC219 had 
β-glycopyranosidic linkages.

As for the other important absorption bands, the few weak peaks at ~1407.95  cm−1 
were characteristic of the carboxyl groups (C=O) (1444–1400  cm−1) or carboxylate 
 (COO−), indicating that EPS-NOC219 is not an acidic polysaccharide. Besides, the 
peak at the 1000–1125  cm−1 range, which showed the presence of guluronic acid and 
mannuronic acid [43], was not determined in a way that supports it. Also, there was no 
peak around 1700–1775  cm−1, suggesting that neither glucuronic acid nor diacyl ester 
was present [7]. As for the peak at 2902.12  cm−1, it was due to C–H stretching vibra-
tion [44], and the peak observed at 2985.42  cm−1 between 2860 and 2990  cm−1 was 
associated with the methyl groups as well as the C–H stretching vibration. Finally, a 
wide peak observed at 3326.82  cm−1 (between 3044 and 36,127  cm−1) corresponded 
to the hydroxyl groups of polysaccharides, suggesting that this polymer was a polysac-
charide. The FTIR spectrums of EPSs produced by some E. faecium strains [25, 28, 
45] are relatively different compared with the present EPS-NOC219. This suggests that 
these EPS have different characteristics.
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Thermal Property of EPS‑NOC219

The thermal transitions of the EPS-NOC219 were determined by the DSC analysis. 
DSC thermogram of EPS exhibited distinct endothermic peaks at 255.91 °C, 296.87 
°C, and 320.30 °C, respectively (Fig.  3B). The sharp and distinct peak observed at 
296.87 °C has exhibited the melting point (Tm) of the EPS-NOC219. To the best of 
our knowledge, this is one of the highest records observed for the melting point of 
EPSs as previous reports showed the melting point of different EPSs ranging between 
53.04 and 178.4 °C [28, 33, 43, 46]. However, high melting points were detected in 
a limited number of studies. In a study by [25], the melting point of the EPS-DU10 
produced by E. faecalis DU10 was determined as 270 °C. In addition, in a study by 
İspirli et  al. [1], the melting point of glucan-E81 produced by Lactobacillus reuteri 
E81 was determined as around 290 °C, and in another study by [47], the melting point 
of glucan-KX57763 produced by Enterococcus hirae KX57763 was determined as 
around 296.67 °C. It is suggested that the EPS, which had a relatively higher melting 
temperature, possessed a stronger ability to retain water [26]. Besides, it is known that 
differences in the thermal behavior of EPS may be due to the molecular configuration 
of the biopolymer, and the polymer degradation at higher temperatures may be associ-
ated with the higher molecular weight of EPS [24]. Therefore, this EPS structure can 
give important advantages to be used in different food systems, especially in thermally 
processed food systems.

Fig. 3  FTIR spectra (A); DSC thermogram of the purified EPS-NOC219 (B) from E. faecalis NOC219
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Rheological Behaviors of EPS‑NOC219

Steady Shear Property

Aqueous EPS-NOC219 solutions (4%, w/w) were loaded in the cone geometry. To the 
best of our knowledge, only one study has been available about rheological information 
on EPS produced by E. faecium [31]. Therefore, the rheological results of the present 
study are quite important. The results were shown in Fig.  4A. According to this, the 
aqueous EPS-NOC219 was shown a pseudoplastic flow behavior in which the viscos-
ity decreased with increasing share rates, at a constant temperature (+4 °C), and it was 
described by a Herschel-Bulkley model. The flow behavior of EPS-NOC219 coincided 
with that previously described for the EPS structures produced from Enterobacter A47 
[48], Leuconostoc carnosum CUPV411 [49], and E. faecium MS79, a strain of the same 
species as the microorganism in the present study; however, it was known that in the lit-
erature, the microbial suspensions of a strain of Bacillus cereus were exhibited a differ-
ent flow behavior such as dilatant [50]. It is known that hydrodynamic forces generated 
during the shear can have led to the breakdown of the structural units and the physical 
networks in the chain structure of EPS structures [51]. Therefore, the shear-thinning data 
presented suggest that the EPS studied would be very suitable to improve the texture or 
palatability of food products. Besides, the apparent viscosity (ƞ) of the EPS sample was 
determined as 186 mPas at a 50  s−1 shear rate because the 50  s−1 is an appropriate esti-
mation of oral shear rate for food samples [52].

Fig. 4  Apparent viscosity (A); storage G′ and loss G″ (B); temperature-dependent behavior (C) of the puri-
fied EPS-NOC219 solutions
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Dynamic Shear Property

As for viscoelastic properties of the EPS-NOC219, the variations of elastic (storage mod-
ule; G′) and viscous (loss module; G″) moduli of the EPS sample with frequency were 
shown in Fig.  4B. Storage modulus represents the energy stored in the structure of the 
material and is a measure of its elasticity; loss modulus represents the viscous part in the 
material’s structure where energy is lost due to deformation and frictions. Since such rheo-
logical tests are linear rheological tests, a safe linear viscoelastic region scanning was per-
formed that would not damage the sample structure. The linear viscoelastic region of this 
EPS sample was determined in the range of selected as less than 1% strain.

Both moduli were seen to increase continuously with the frequency. The variation of G′ 
and G′ modulus with frequency implied that, as the frequency increases, the viscoelastic 
behavior changes from being dominated by viscous properties (G″ > G′ at lower frequen-
cies) to being dominated by elastic properties (G′ > G″ at higher frequencies). The G′ and 
G″ curves intersect (G′ = G″) at a frequency, usually called the cross-over frequency. This 
frequency marks the transition from liquid-like behavior to solid-like behavior. Thus, the 
polymers can be characterized by the frequency at G′ = G″, denoted as the cross-over time 
of the system, and the plateau value of G′ at high frequencies (tan delta δ < 1.0) [53].

In the present study, as seen in Fig. 4B, G′ was lower than G″ at the frequencies < 9.03 
Hz (except at higher frequencies, where a cross-over is perceived at an angular frequency 
of about 9.03 Hz) for the aqueous EPS-NOC219 solutions, which means the vicious char-
acter of the aqueous EPS-NOC219 solutions was dominant rather than elastic character, 
and hence, this sample can be described as having a liquid-like behavior at low frequency 
(tan delta δ > 1.0). Also, this result concurs with those reported by Han et al. [54], Ayyash 
et  al. [31], and Antunes et  al. [48] who recorded higher G″ than G′ of EPS-JD2, EPS-
M41, and EPS-A47, respectively. This indicates that the EPS-NOC219 could be suitable 
as a thickener. In general, both moduli of the solution increased alongside with frequency 
increase; G′ was greater than G″ at frequency > 9.034 Hz (w: 56.76 rad/s). Therefore, the 
viscoelastic behavior of the sample changed to being dominated by elastic properties.

On the other hand, G′ values of the EPS-NOC219 solution obtained were higher than that of 
EPS structures studied by Ayyash et al. [31, 46] and Benhouna et al. [55]. This indicates that the 
EPS-NOC219 more stable and homogeneous structure according to the EPS structures mentioned.

Temperature‑Dependent Behavior

The temperature was an important factor affecting the rheological properties of an EPS 
structure. The apparent viscosity of this EPS solution was dramatically decreased with 
increasing temperature (Fig. 4C). This suggested that the thickening properties of the EPS 
solution declined with increasing temperature. This was mainly caused by the decreased 
molecular flexibility under lower temperatures [56]. The initial temperature of the decrease 
was about 20 °C (17.11 °C). This result means that the thermal energy after 20 °C is suffi-
cient to break up the polymer structure. The finding suggests that the present EPS-NOC219 
is not suitable for high thermal processes. Also, the activation energy of the EPS-NOC219 
solution calculated by the Arrhenius equation was 32.58 kJ/mol. On the other hand, in 
a study on the EPS of a strain of the same species conducted by Ayyash et  al. [31], it 
was detected that the EPS-M41 solution with  CaCl2 pH 6.0 among the EPS solution pre-
pared with different salt types and pH values had the highest activation energy of 10.68 kJ/
mol. Similarly, in a study by Xu et al. [56], the activation energy of EPS-3 produced from 
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Streptococcus thermophiles S3 was determined as 7.34 kJ/mol. This information shows 
that the stability of the EPS-NOC219 in the presented study against temperature increase 
is higher according to the EPS structure mentioned. The activation energy is related to the 
chain flexibility in the solution. The relatively high activation energy for EPS indicated 
more inter- and intra-molecular interactions between polysaccharide chains in the investi-
gated concentration [57].

Microstructure of EPS‑NOC219

Scanning electron microscopy (SEM) analysis of the macromolecules helps to correlate 
the known physical properties of this material with its microstructural properties. In the 
present study, the EPS-NOC219 was determined by the surface morphology and the micro-
structure of it by SEM images at 500×, 1000×, and 2500× as can be seen in SEM images 
(Fig. 5A). It is seen that the EPS-NOC219 has two types of structures: a layer-like, compact 
and closed structure and a spherical granular, compact and smooth structure. It is known 
that studies suggested that smooth surfaces of EPS are counted as a favorable characteristic 
for making plasticized biofilms of EPS, and the consistent polymeric matrix is presumed to 
give mechanical stability to such biofilms [58]. On the other hand, colonization of microbi-
ota on abiotic and biotic surfaces through biofilm in the intestine may impart various health 
benefits. Therefore, these results may be important in food applications, as they affect the 
physicochemical properties and rheological properties of food.

Fig. 5  Scanning electron micrograph (SEM) images of the purified EPS-NOC219 from E. faecalis NOC219 
(A); in vitro antioxidant potential and antibiofilm potential against biofilm formed by various pathogenic 
bacteria (B)
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Antibiofilm and Antioxidant Capacities of EPS‑NOC219

Antibiofilm and antioxidant tests were carried out to examine the bioactive properties of 
this structure. According to the results (Fig.  5B), the EPS-NOC219 structure showed a 
pretty good effect with 55.84% antioxidant activity. In a study [45], the EPS produced from 
Enterococcus faecium (BDU7) strain showed similar results with the same amount of it in 
the present study. Also, the result is very close to the antioxidant effect (<50%) of phenolic 
compounds in some fruits (cantaloupe, nectarine, avocado, etc.) [59]. The  EC50 value of 
this EPS was nearly 3.5–4 mg/mL and had a lower effect than the antioxidant capacity of 
levan S81 from Leuc. mesenteroides S81 with an  EC50 value of 1.7 mg/mL [9].

As for the antibiofilm results, the EPS-NOC219 showed the highest activities against 
E. coli (77.83%) and L. monocytogenes (72.14%) (P < 0.05), then they were followed by 
S. aureus (59.05%) (P < 0.05) and B. subtilis (48.96%) (P < 0.05). EPS structures may 
be causing these inhibitions by competitively preventing nutrient uptakes or inhibiting cell 
wall reactions.

These results may expand the range of properties of the EPS structure. In other words, 
while improving the structural properties of a product to which EPS is added, its bioac-
tive effect may also increase. This double effect shows that the functionality of the EPS-
NOC219 material obtained is versatile.

Conclusion

In this study, the EPS-NOC219 obtained from the E. faecium NOC219 strain, which is 
a high-yield EPS producer, was investigated in terms of structural and functional proper-
ties. In addition, the expression of genes related to EPS production of this strain was also 
determined. The EPS-NOC219 was revealed to be a heteropolymer composed of glucose, 
galactose, and fructose units, and the fact that the producer strain harbors the epsB, p-gtf-
epsEFG, and p-gtf-P1 genes, required for the production of heteropolymeric-EPS. The 
EPS-NOC219 structure had a high melting point, exhibited a pseudoplastic flow behavior, 
and the viscous character of its aqueous solution was more dominant than its elastic char-
acter. This indicated that the EPS-NOC219 had high heat stability and could also be used 
as a thickener in heat treatment processes. Additionally, this EPS was determined to be 
suitable for making plasticized biofilms. On the other hand, the EPS-NOC219 has shown 
high antioxidant activity against DPPH radicals and high antibiofilm activity against the E. 
coli and L. monocytogenes pathogen strains. This situation has revealed its bioavailability. 
In addition, the probiotic potential of the producer strain was determined. The results have 
revealed that the EPS-NOC219 structure can be a good alternative natural resource that can 
be used in foods from a structural and functional point of view, as it has strong physico-
chemical properties in addition to a healthy food grade.
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