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Abstract
Non-histone protein acetylation is involved in key cellular processes both in eukaryotes 
and prokaryotes. Acetylation in bacteria is used to modify proteins involved in metabolism 
and allow the bacteria to adapt to their environment. TTE (Thermoanaerobacter tengcon-
gensis) is an anaerobic, thermophilic saccharolytic bacterium that grows at extreme tem-
perature range between 50 and 80 ℃. The annotated TTE proteome contains less than 3000 
proteins. We analyzed the proteome and acetylome of TTE using 2DLC-MS/MS (2-dimen-
sional liquid chromatography mass spectrum). We evaluated the ability of mass spectrom-
etry technology to cover a relatively small proteome as much as possible. And we also 
observed wide spread of acetylation in TTE, which changed under different temperatures. 
A total of 2082 proteins were identified, which accounts for about 82% of the database. A 
total of 2050 (~ 98%) proteins were quantified in at least one culture condition and 1818 
proteins were quantified in all 4 conditions. The result also consisted 3457 acetylation sites 
corresponding to 827 distinct proteins, which covered 40% of the proteins identified. Bio-
informatics analysis reported that proteins related to replication, recombination, repair, and 
extracellular structure cell wall biogenesis had more than half members acetylated, while 
energy production, carbohydrate transport, and metabolism related proteins were least acet-
ylated. Our result suggested that acetylation affects the ATP-related energy metabolism and 
energy-dependent biosynthesis process. Comparing the enzymes related with lysine acety-
lation and acetyl-CoA (acetyl-coenzyme A) metabolism, we suggested that the acetylation 
of TTE took a non-enzymatic mechanism and affected by abundance of acetyl-CoA.
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Introduction

Non-histone protein acetylation is involved in key cellular processes both in eukaryotes 
and prokaryotes. It is generated by transfer of an acetyl group from acetyl-CoA (acetyl-
coenzyme A) to the ε-amino side chain of lysine, which is catalyzed by KATs (lysine 
acetyltransferases) and is reversable by KDACs (lysine deacetylases) [1]. There is also non-
enzymatic acetylation affected by pH, proximal amino acid residues, and the availability of 
acetyl-CoA [2]. It can affect the activity of enzymes, the stability of proteins, and the inter-
action of proteins with other molecules. Acetylation can also play a role in the transport of 
metabolites and in the assembly of multi-protein complexes [3, 4]. In bacteria, this process 
is used to modify proteins involved in metabolism. The acetylation of these proteins can 
change their function and allow the bacteria to adapt to their environment [5]. Research 
of Salmonella enterica samples has found that acetylation modification occurs in cellular 
cytosol, metabolic enzymes are highly acetylated, and acetylation modification regulates 
the activity of metabolic and metabolic enzymes [6].

TTE (Thermoanaerobacter tengcongensis) is an anaerobic, thermophilic, rod-shaped, 
gram-negative saccharolytic bacterium. In 2004, TTE was systematically classified and 
renamed as Caldanaerobacter subterraneus subsp. tengcongensis [7]. It was first found in 
a hot spring in Tengchong, Yunnan Province, China, in 1998 and reported in 2001 [8]. It 
can grow at temperature range between 50 and 80 ℃, with an optimum of 75 ℃. In 2002, 
the first genome sequencing and annotation were done by Bao and colleagues [9]. The 
organism can utilize glucose, galactose, and other carbohydrates. Acetate was the main end 
product from glucose fermentation. The PTM (post-translational modification) research 
of TTE was rarely involved, with preliminary investigations of dozens of sites of scale in 
phosphorylation modifications and large-scale study absent [10, 11]. The ability of TTE to 
grow at in extreme environments makes it a potential candidate for use in thermal-related 
biotechnology applications and the temperature-dependent biological investigations.

The human proteome project strives to profile proteome or modifications in the sample. 
However, it is difficult to define whether the unidentified protein is biologically absent or 
not detectable by current instrument. One approach was to start from the genome as simple 
as possible. The TTE proteome contains 2545 proteins (UNIPROT) and we used 2DLC-
MSMS technology to identify proteins and acetylation sites. On the one hand, we inves-
tigated the coverage of mass spectrometry technology on the research object; and on the 
other hand, we observed the identification process of acetylation in the bacterial genome 
and the changes under different temperatures. We used various bioinformatic annota-
tions and methods to orient the extraction of trends of acetylation alteration for further 
discussion.

Methods

Materials

Urea, thiourea, Tris–HCl, CHAPS, and guanine-HCl were purchased from Sigma-Aldrich 
(St. Louis, MO, USA). LC–MS grade water, acetonitrile, and formic acid were purchased 
from Merck Millipore (Billerica, MA, USA). Sequencing-grade trypsin was purchased 
from Promega (Madison, WI, USA).
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Sample Preparation and Digestion

The bacteria were first inoculated at 75 ℃ to the log phase, then distributed to the media 
(at a ratio of 1:50) prewarmed at 55, 65, 75, and 80, respectively. The bacterial cells were 
harvested at log phase by centrifugation at 4000 g at 4 ℃, and the pellets were washed with 
the buffer of 50 mM Tris–HCl, pH 7.8. The washed bacteria were stored at – 80 ℃. Extrac-
tion buffer containing 8 M urea, 2 M thiourea, 4% CHAPS, 10 mM DTT (dithiotreitol), 
and 50 mM Tris–HCl, pH 8.0, was added to extract the proteome with MiniBeadbeater-16 
bead grinding tissue grinder. After protein quantitation, 2 SDS-PAGE (sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis) experiments were performed simultaneously and 
0.2 mg protein was loaded. Only 1 piece of gel was dyed using CBB (Coomassie brilliant 
blue) and named sample CBB in further analysis, while the other transparent piece named 
noCBB. Another aliquot of 0.2 mg protein was cleansed by acetone precipitation and the 
leftover was stored at – 80 ℃.

The SDS-PAGE gel pieces were cut evenly to 20 fragments, then in-gel digestion was 
performed as previously described [12]. For solution sample, sequencing-grade trypsin was 
added to the guanine-HCl re-lysed proteins by a ratio of 1:50. Then the mixture was incu-
bated at 37 ℃ overnight with constant shaking. Formic acid was added to 5% concentration 
(vol/vol) to terminate the digestion. After desalting, the lyophiled samples were stored at 
– 20 ℃ before further analysis.

High pH LC

High-pH LC separation was performed on an HPLC system composed of an LC-20AB LC 
pumps and an SIL-20 AC auto-sampler (all Shimadzu, Tokyo, Japan). Mobile phase A was 
2% acetonitrile and 20 mM NH4FA (pH adjusted to 10 with ammonium); mobile phase B 
was 90% ACN and 20 mM NH4FA (pH also adjusted to 10). Elution profile included 2–8% 
of solution B in the first 10 min, then solution B from 8 to 35% in 55 min, then solution B 
from 35 to 60% in 15 min. The flow rate was 0.2 mL/min and the peptides were monitored 
at 214 nm. The fractioned peptides were collected at one tube/min during the linear elution 
period then mixed to 33 samples for LC–MS/MS injection.

Nano‑LC–MS/MS

Nano-LC MS/MS experiment was performed on an HPLC system composed of two LC-
20AD nano-flow LC pumps, an SIL-20 AC auto-sampler, and an LC-20AB micro-flow LC 
pump (all Shimadzu, Tokyo, Japan) connected to a Q exactive mass spectrometer (Ther-
moFisher, San Jose, CA). Sample was loaded directly onto a C18 reverse-phase column 
(0.075 × 500 mm, Monolith column, Omicsolution Co. Ltd. Shanghai, China) at a flow rate 
of 300 nL/min. The mobile phases were 2% acetonitrile with 0.1% formic acid (phase A 
and the loading phase) and 90% acenitrile with 0.1% formic acid (phase B). To achieve 
proper separation, a 35-min linear gradient from 2 to 45% phase B was employed. The 
separated sample was introduced into the mass spectrometer via the nano-spray interface 
supplied by the mass spectrometer vendor. The spray voltage was set at 2.2 kV and the 
heated capillary at 180 ℃. The mass spectrometer was operated in data-dependent mode 
and each cycle of duty consisted one full-MS survey scan at the mass range 300–1400 Da 
with resolution power of 70,000, followed by MS/MS experiments for 15 strongest peaks. 
Peptides were fragmented using HCD (high-energy collision-induced dissociation) and the 
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normalized collision energy value set at 30%. 2 + , 3 + , and 4 + peaks were selected for 
MS/MS run and previously fragmented peptides were excluded for 60 s. Each sample was 
analyzed twice.

Database Search

The TTE proteome database was downloaded from the UNIPROT website (https:// www. 
unipr ot. org/ prote omes/ UP000 000555). This database contains 2545 entries. Protein iden-
tification and quantitation were performed with the FRAGPIPE software suite. Module 
MSFragger [13, 14] did the database search using the database containing the TTE pro-
teome and common contaminant proteins and their reversed counterparts. Cysteine car-
bamidomethylation was set as fixed modification and protein N-term acetylation, lysine 
acetylation, and methione oxidation were set as variable modifications. We used module 
Philosopher [15] to accomplish the validation step. Quantitation was done with module 
IonQuant [16] running MS1 quant mode and LFQ option. All other parameters of modules 
mentioned above were set default. After the tabular result files were created, downstream 
analysis was carried out using Microsoft Excel or in-house composed R script.

Bioinformatics Analysis

CGVIEW was used to generate circular visualization for TTE genome [17]. The proteome 
profiles were clustered based on Euclidean distances with average linkage by R pheatmap 
package. We only clustered the expression profiles and the temperatures were not clustered. 
The functional annotations and sequence features on each protein of TTE were derived 
from the UNIPORT database. DAVID (https:// david. ncifc rf. gov/) was used to annotate the 
result then categorized into molecular function, biological process, and cellular compo-
nent. We used GPS-PAIL [18] and modified the parameters to predict the acetylation prob-
ability of the lysines in TTE proteins. All 7 types of acetyltransferases supported by GPS 
were included in the prediction, which were CREBBP, EP300, HAT1, KAT2A, KAT2B, 
KAT5, and KAT8, respectively. Simple prediction mode, which took no account of anno-
tations of secondary structure and surface accessibility, was used. Its result cutoff was set 
that prediction scores of high, medium, and low for each site were picked out.

Results

Overview of Proteome and Acetylated Proteome of TTE

We used 2DLC-MS/MS to quantitatively profile the proteome and acetylome of TTE at 4 
temperatures. According to literature [8], the growth rate is approximately 0.04/h, 0.12/h, 
0.27/h, and 0.07/h at each temperature. All identified proteins were aligned to their locus 
in the TTE genome and plotted as bars. The acetylation analysis result was also compared 
with predicted acetylation sites (Fig.  1). All the acetylation sites were color coded and 
aligned as the 4 outmost rings of the Circos diagram. The colors of the bars were tempera-
ture dependent and the selected gene tags were given different colors based on the cluster-
ing results described below. The acetylation sites distributed quite evenly on the genome 
rather than several gene clusters. The mid ring was the predicted acetylation site distribu-
tion. The alignment of the outer and mid rings showed that most gaps in outer rings located 
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at the gaps of prediction. The inner rings were results aligned to the genome research and 
predictions. The gaps in the acetylation distribution were also aligned to the peaks and 
valleys of the GC content ring. The prediction showed that there were more acetylation 
incidents in the minus skew of genome and our result fits it well. As counted in Table 1, 
2082 proteins and 64,493 peptides were identified, which accounts for about 82% of total 
2545 entries of the database. On the quantitative side, 2050 proteins (98% of all proteins) 
were quantified in at least one culture condition and 1818 proteins were quantified in all 4 
conditions (Fig. 2A). The number of proteins quantified for each temperature was 1950, 
1974, 1950, and 1981, respectively. The protein abundance span 5 orders. Average quanti-
fied peptide number of each protein was 21 for the whole experiment and ranged from 17 
to 19 for samples of different temperatures. A total of 44,160 peptides (68% of all peptides) 
were quantified and the peptide abundance also span 5 orders. Comparing our result with 
previous study [19] for TTE cultured at the same temperature series using iTRAQ tech-
nology, 1515 proteins (95% of the proteins in [19] and 83% of our result) were quantified 
throughout all 4 conditions in both studies.

The result also consisted 3457 acetylation sites corresponding to 827 distinct proteins, 
which covered 40% of the proteins identified. The temperature-wise protein counts were 
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Fig. 1  Overview of acetylation sites and prediction sites identified by TTE. Circular genome plot contained 
the genome information and annotation as the most inner circles, acetylation sites predicted as the middle 
circle, and the acetylation sites from each sample stacked as the outer circles. The locus and amino acid 
sites were aligned
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748, 679, 753, and 671, while acetylation site distribution was 1823, 1849, 2621, and 2354 
for each temperature. Although acetylated protein number varied slightly with different 
temperatures, acetylation sites differed significantly at higher temperatures, suggesting 
more acetylation activity. A total of 388 (~ 47%) acetylated proteins were identified from 
all 4 conditions, while 62 (~ 7%) acetylated proteins were identified from only 1 condition 
(Fig. 2B). A total of 632 (~ 18%) acetylation sites were identified from all 4 conditions, 
while 472 (~ 14%) sites were identified from only 1 condition (Fig. 2C). The site distribu-
tion indicated that there were most lysine acetylation events when TTE growth flourished. 
Moreover, the heterogeneity of acetylation pattern suggested that culture temperature has 
complicated effect on acetylation and deacetylation process at each condition.

The UNIPROT TTE proteome database only included 13 proteins with PTM annota-
tion and 70 proteins with modified residue information; none of them was about lysine 
acetylation. To assess the acetylation sites reported, we used the GPS [18] software suite 
to provide the possibility of each protein recorded in the database of TTE proteome being 
acetylated. The prediction was present as high, median, and low, suggesting the possibil-
ity of specific lysine site being acetylated. Among all 66,951 lysine sites in the proteome 
database, number of high, median, and low were 4893, 10,143, and 16,966, respectively, 
forming a roughly 1:2:3.5 distribution and the site distribution alongside the genome was 
roughly even. The corresponding numbers in our data were 202, 461, and 836. We identi-
fied relatively more in-silico medium and low confident acetylation sites, which indicated 
the benefit of wet experiment as supplement to software prediction. From sample cultured 
in 80 ℃, PKN1_CALS4 K23 was one of the acetylation sites that were not scored by GPS 
and identified in the LC–MS data. METK_CALS4 K276 was one of the acetylation sites 
that were scored “high” by GPS and identified in the LC–MS data. We made no discrimi-
nation to acetylation sites with or without GPS prediction. Both peptides received expecta-
tion score < 0.0001 and treated equally in further analysis.

Proteome of TTE Derived at Different Temperatures

Temperature-dependent proteome expression profiles were clustered into 7 clusters using 
hierarchy clustering method (Supple. Table 1). The only 2 clusters (clusters 2 and 5) with 
consistent tendency had most cluster members, where 566 (counts for 27.6% of total pro-
teome) proteins showed consistent escalating trend, and DAVID analysis for GO-anno-
tation enrichment found that BP of translation, pentose-phosphate shunt, transcription, 

Table 1  Summary of all identified proteins with acetylated peptides

55 ℃ 65 ℃ 75 ℃ 80 ℃ Total

Protein 1950 1974 1950 1981 2050
AceProSite 1823 1849 2612 2354 3457
AceProSite (predict high) 112 104 146 129 202
AceProSite (predict median) 250 245 333 303 461
AceProSite (predict low) 430 451 628 565 836
AceProtein 748 679 753 671 827
AceProtein (N-term) 147 147 146 147 147
Peptide 30,429 33,641 36,003 37,567 44,160
PSMs 245,374 189,892 262,525 326,962 1,024,753
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DNA-templated and MF of DNA binding, structural constituent of ribosome, rRNA bind-
ing, GTP binding, GTPase activity, DNA-directed 5′–3′ RNA polymerase activity, NADP 
binding enriched in cluster 2 (Figs. 3 and 4). The 374 (counts for 18.2%) proteins’ abun-
dance kept declining as temperature rose and BP of DNA recombination, “de novo” UMP 
biosynthetic process and MF of catalytic activity, peptidase activity, electron carrier activ-
ity, sequence-specific DNA binding enriched in cluster 5. Considering the optimum culture 
temperature 75 ℃, cluster 1 (definite minimum at 75 ℃) enriched in biosynthesis including 
branched-chain amino acid, leucine, fatty acid, and valine biosynthetic process and metal 
ion including 4 iron–4 sulfur cluster and iron-sulfur cluster binding. The profile suggested 
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tion. C Sample-wise acetylation site distribution
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that corresponding proteins were metal-binding enzymes taking part in amino acids and 
fatty acid biosynthesis processes. While those enzyme abundance were at their bottom and 
TTE growth rate was largest at 75 ℃, such deficit supported an opinion that there was other 
mechanism such as chaperones assured the growth.

Acetylation Proteome of TTE Derived at Different Temperatures

Temperature-dependent acetylated proteome expression profiles were also clustered 
(Supple. Table 2). Acetylated proteins identified at four different temperatures were with 
smaller difference in quantity than proteome. Hierarchy clustering resulted into 9 clusters. 
Similar to the clusters of protein abundance, the 2 clusters with consistent change tendency 
also had most cluster member counts, where cluster 4 with 166 (counts for 20% of total 
acetylated proteome) proteins showed consistent escalating trend with different tempera-
tures and cluster 6 with 135 (counts for 16%) proteins declining. DAVID GO-annotation 
enrichment analysis found that MF term ATP binding enriched in cluster 4. BP term “de 
novo” UMP biosynthetic process, MF term oxidoreductase activity, and GTPase activity 
enriched in cluster 6. Both clusters enriched in energy metabolism.

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

C
luster 1

C
luster 2

C
luster 3

C
luster 4

C
luster 5

C
luster 6

C
luster 7

Cluster 1 (172)

Cluster 2 (566)

Cluster 3 (82)

Cluster 4 (298)

Cluster 5 (374)

Cluster 6 (230)

Cluster 7 (330)

branched-chain amino acid
biosynthetic process
plasma membrane
metal ion binding

translation
DNA binding

transmembrane transport
miscellaneous

de novo' IMP biosynthetic process

miscellaneous
ATP binding

DNA recombination

miscellaneous
catalytic activity

defense response to virus

miscellaneous

ATPase activity, coupled to
transmembrane movement of substances

cell division
cytoplasm
nucleotide binding

55 65 75 80

Fig. 3  Clustering analysis for proteome data. Data were normalized before clustering. Left: heatmap of the 
clusters; center: box plot of each cluster; right: mostly enriched GO annotation within specific cluster

6088 Applied Biochemistry and Biotechnology (2023) 195:6081–6097



1 3

Analysis of Cluster of Orthologous Group

According to the analysis of COG (cluster of orthologous group), we could categorize the 
temperature-dependent proteins into 25 groups (Fig.  5A). Full annotation for each sym-
bol of COG was derived at NCBI COG database (https:// www. ncbi. nlm. nih. gov/ resea rch/ 
cog/). Because 2 groups were poorly characterized and other 2 groups were ambiguous, the 
functional categories for the temperature-dependent proteins were simplified to 23 groups. 
We analyzed the function distributions of the 2050 identified proteins derived from the 
TTE genome based on these 23 function groups. We also analyzed the acetylation data. We 
estimated the proportional distributions for the two data sets of the COG analysis. After 
excluding general function prediction only or COG entries with less than 10 members, 2 
groups, namely “replication, recombination, and repair” and extracellular structures cell 
wall/membrane/envelope biogenesis had more than half members acetylated. Defense 
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mechanisms, amino acid transport and metabolism, energy production and conversion, and 
carbohydrate transport and metabolism were least acetylated and the portion was less than 
20%.

Correlation of TTE Proteome with Acetylation Proteome at Different Temperatures

Spearman correlation (Fig. 5B) was calculated across the abundance pattern of all clusters. 
DAVID analysis was performed for the overlay protein members of cluster pairs whose 
Spearman correlation coefficient > 0.95 (protein cluster 2 and acetylation cluster 7, protein 
6 and acetylation 5, protein 3 and acetylation 4) or <  − 0.95 (protein 5 and acetylation 4). 
The molecular function category was dominated by enzymes, and the biological process 
category was composed of ribosomal proteins and proteins involved in cell wall biogenesis. 
The cellular component category was represented by proteins related to the cell membrane 
and proteins related with DNA, RNA, and proteins. The result was limited due to member 
counts of the scarce overlay protein counts. Only the overlay proteins of protein cluster 2 
and acetylation cluster 7 (coefficient = 1) showed enrichment of “ATP binding” on the MF 
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GO term and “nucleotide binding” on the keyword ligand term. This result suggests acety-
lation impacts on the energy-dependent biosynthesis process.

Level of acetylation was calculated as ratio of summed acetylated peptide signal inten-
sity to summed intensity of all peptides at each temperature (Fig. 5C). Due to the low abun-
dance nature of acetylation and the lack of modification enrichment method, only about 5% 
of acetylated peptides were successfully quantified. However, we obtained a non-ambig-
uous result. When plotted against temperature, the data showed a “smile” shape curve. It 
halved when comparing samples from 6 and 55 ℃, while escalated at temperatures of 75 ℃ 
and 80 ℃. Despite having most acetylation sites, the optimum temperature of 75 ℃ did not 
bring to highest level of acetylation. Level of acetylation was higher as it reached close to 
the lower and high limit of TTE survival temperature [8], suggesting that increasing level 
of acetylation may function as counter measurement of TTE against extreme environment.

The overlap of proteome and acetylome of TTE contained 827 proteins. Spearman cor-
relation coefficient was used to analyze the correlation between the expression profile of 
acetylated protein at different temperatures (Fig. 5D). Spearman correlation coefficient is 
arranged in descending order. Proteins at either end of 285 proteins’ coefficient were larger 
than 0.8 and 112 proteins less than − 0.8. After functional analysis, proteins enriched in 
those their abundance and acetylation profile correlated well were aminopeptidases and 
magnesium ion binding enzymes, indicating that acetylation regulates translation at the 
same orientation as these proteins. While ATP binding was the sole enriched function pro-
teins in the lower coefficient section, indicating that the correlation between acetylation 
and energy metabolism for these proteins were at the opposite orientation.

Discussion

Acetylation Sites on Protein Fragments with Biological Functions

The results of bioinformatic analysis showed that the change of acetylome was connected to 
metabolism. The sequence feature analysis of sequences around the acetylation sites, ATP 
binding emerged as majority in the “binding site” profile (Fig. 6A). In general, the neutral 
acetyl group neutralizes the positive charge of lysine side chain, therefore, affecting the 
binding events [20]. Although according to function annotation, the proteins binding ATP 
were all ATPase including subunits or have the ability to hydrolyze ATP. Most acetylation 
level differs slightly at all 4 temperatures, except Q8R6W0_CALS4 (iron-regulated ABC 
transporter ATPase subunit SufC, product of gene TTE2673). There is limited function 
annotation of TTE2673. Another protein that significantly changed acetylation level was 
GPMA_CALS4 (2,3-bisphosphoglycerate dependent phosphoglycerate mutase, product of 
gene gpmA), a vital member of glycolysis that catalyzes the interconversion of 2-phospho-
glycerate and 3-phosphoglycerate [21]. The acetylation site was K98, which is annotated 
to the substrate binding site. Acetylation can affect the binding efficiency of substrate and 
enzyme, thus, the glycolysis pathway. In Escherichia coli, acetylation at or close to binding 
sites limits or inhibits the protein’s ability of binding [22, 23]. Our data indicated that TTE 
glycolysis pathway participates in growth and alters at different temperatures.

We found that SYI_CALS4 (product of gene ileS) was acetylated at the site K600. 
The modification occurred only at 5 and 65 ℃ with a declining trend (Fig. 6F). SYI is 
isoleucine-tRNA ligase and catalyzes the attachment of isoleucine to tRNA (Ile). The 
acetylation site was at the beginning of annotated motif of “KMSKS” motif, motif that 
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catalyzes the amino acid activation with ATP [24]. As false chemical such as structur-
ally similar amino acid valine can inadvertently cause false accommodation and pro-
cessing, SYI has two additional distinct tRNA (Ile)-dependent editing activities. One 
is function through the hydrolysis of activated Val-AMP and the other activity involves 
deacylation of mischarged Val-tRNA (Ile) [25]. The structure of SYI_CALS4 predicted 
by AlphaFold2 (https:// alpha fold. ebi. ac. uk/ entry/ Q8R9L3) suggests there was a hydro-
gen bond between K600 and N607. The neutral acetyl group neutralizes the positive 
charge of lysine side chain, therefore, affecting the hydrogen bond and structure. In 
Escherichia coli, acetylation regulates protein translation [26] and acetylation close to 
the “KMSKS” motif in leucyl-tRNA synthetase (LeuRS) downregulated its enzymatic 
activity [27]. We hereby suggest reduction of SYI_CALS4 enzymatic activity at unfa-
vorable culture temperature that changes the protein structure and leads to acetylation at 
the ATP recognition motif, therefore, downgraded the protein translation related.
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Plausible Acetylation Mechanism

The enzymes responsible for lysine acetylation are the lysine N-acetyltransferase (KAT) 
that catalyze the transfer of acetyl groups from acetyl-CoA to lysine residues, whereas 
lysine deacetylase (KDAC) removes acetyl groups from histones. Limited number of pro-
teins (510 entries out of 2545) have enzyme class (EC, https:// enzyme. expasy. org/ enzyme- 
bycla ss. html) annotation. No protein has annotation of EC 2.3.1.32: lysine N-acetyl-
transferase and 2 proteins (NPD1_CALS4 and NPD2_CALS4, namely, NAD-dependent 
protein deacetylase 1 and 2, products of gene cobB1 and cobB2) were annotated as EC 
2.3.1.286: protein acetyl-lysine N-acetyltransferase and noted as deacetylases. Both pro-
teins’ abundance was much higher at higher culture temperature (Fig. 6E). We observed 
that the level of acetylation and number of acetylated lysine sites were both higher at 75 ℃ 
and 80 ℃. With abundance of deacetylases increasing, this phenomenon indicated that the 
acetylation pattern of TTE took a non-enzymatic mechanism and affected by abundance 
of acetyl-CoA. Acetyl-CoA carboxylase, a primary acetyl-CoA consumer which transfers 
the CO2 group to acetyl-CoA to form malonyl-CoA, was reported as a regulator to his-
tone acetylation and can affect tumor recurrence upon primary tumor resection in mice 
[28, 29]. We found that acetyl-CoA carboxylase alpha subunit Q8R7L8_CALS4 (product 
of gene AccA2) changed less than 20% throughout the temperature span (Fig. 6G) while 
going through multiple acetylation. With insufficient feature description of the sequence, 
we roughly categorized the sequence from 1 to 200 as miscellaneous and 201 to end as 
sequence similar to ACCA_ECOLI. At higher temperature, all acetylations were at the 
second moiety (Fig.  6B) that could affect activity. Bifunctional protein GLMU_CALS4 
(product of gene glmU, the C-terminal domain catalyzes the transfer of acetyl group from 
acetyl-CoA to glucosamine-1-phosphate to produce N-acetylglucosamine-1-phosphate) 
[30] also changed insignificantly but acetylated at multiple sites (Fig. 6C). K349 is anno-
tated as UDP-N-acetyl-alpha-D-glucosamine binding site. Acetylation of K349 can hinder 
the binding ability and reached apex at 75 ℃, leading to least activity. We also observed 
Q8RC88_CALS4 (acetyl-CoA acetyltransferases, which namely removes acetyl group 
from acetyl-CoA to generate CoA [31], product of gene PaaJ) at their lowest abundance. 
Summing up the acetyl-CoA-consuming enzymes above, the acetyl-CoA reservoir was at 
peak level at 75 ℃ and resulted in a maximum number of acetylation sites and relatively 
high acetylation level following the non-enzymatic mechanism.

CBB and noCBB

As we suggest promoting TTE for biological and technology research, we checked the 
impact of CBB staining, the most commonly used technique in these areas which can cause 
loss of information with experimental destain operations to remove excessive CBB before 
MS analysis. We compared the results of using and not using CBB in the analysis of TTE 
proteome and acetylome of sample cultured at 65 °C (Fig. 7). Briefly, 2 parallel SDSPAGE 
were run and only one gel was stained with CBB. The results showed that the identified 
number of TTE proteins changed slightly (about 3%), and the identification rate of acety-
lation sites was greatly improved (about 70% more sites identified with more than 60% 
sites overlapped) when omitting the usage of CBB. We reasoned that the gain of acetyla-
tion sites was consequence of less experimental operation, which had potential to guide 
future experiment designs. We took a closer look at the protein level, the 58 proteins only 
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identified from noCBB sample; about half of them were located to membrane (31 pro-
teins) or had transmembrane (28 proteins) feature and the function annotation with most 
members were transport (9 proteins, Fig. 7C). We attributed the tendency of loss of mem-
brane-related proteins to the hydrophobicity-related binding mechanism that CCB binding 
can be applied as an indicator of protein surface hydrophobicity [32]. For example, protein 
Q8R8R3_CALS4 (product of gene MelB), a well-studied Melibiose permease in prokary-
otes [33, 34], was missing in the CBB sample. We suggest that future studies on hydropho-
bic protein with modern instruments should use CBB carefully.

Conclusion

TTE has the possibility of wide acetylation. By using 2DLC-MSMS, we investigated the 
profile and change of TTE proteome and acetylome at 4 different temperatures. Our result 
covered 82% of the TTE genome and quantified 98% of them. A total of 3457 acetylation 
sites corresponding to 827 distinct proteins were found, which covered 40% of the proteins 
identified. We found that acetylome changed more extensively with temperature than pro-
teome. We connected the change of acetylation of ileS with temperature to its enzymatic 
activity. After reviewing the abundance and acetylation alteration of related enzymes, we 
suggested that the acetylome of TTE takes a non-enzymatic mechanism and affected by 
abundance of acetyl-CoA. The TTE is a model organism with small genome, which can 
be used to investigate the ability of mass spectrometry technology. We suggest promoting 
such TTE for further biological and technology research, while CBB should be used with 
caution.

Abbreviations 2DLC-MS/MS:  2-Dimensional liquid chromatography mass spectrum; CBB:  Coomassie 
brilliant blue; COG:  Cluster of orthologous group; DAVID:  Database for Annotation, Visualization and 
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Integrated Discovery; DEPs: Differential expressed proteins; GO: Gene Ontology; GPS: Group-based pre-
diction system; HCD: High-energy collision-induced dissociation; KEGG: Kyoto Encyclopedia of Genes 
and Genomes; noCBB: Sample that was not stained by Coomassie brilliant blue; SDSPAGE: Sodium dode-
cyl sulfate–polyacrylamide gel electrophoresis; PSMs: Peptide spectrum matches; PTMs: Post-translational 
modifications; TTE: Thermoanaerobacter tengcongensis
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