
Vol.:(0123456789)

https://doi.org/10.1007/s12010-022-04098-x

1 3

ORIGINAL ARTICLE

Construction of a Prognostic Evaluation Model for Stomach 
Adenocarcinoma on the Basis of Immune‑Related lncRNAs

Chaobo Xu1 · Zhengwei Chen1 · Xiaoming Pan1 · Ming Liu1 · Guoxiong Cheng1 · 
Jiaxin Li1 · Yijun Mei1

Accepted: 15 July 2022 / 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Progression, prognosis, and therapeutic strategy of stomach adenocarcinoma (STAD) have 
a close connection with tumor microenvironment (TME). Thus, it is pivotal to delve into 
the TME and immune-related genes, which may bring possibilities for improving patient’s 
prognosis. TCGA-STAD dataset was analyzed to acquire differentially expressed lncRNAs 
in tumor samples, which were overlapped with the immune-related lncRNA datasets in the 
ImmLnc database. Twenty-six lncRNAs related to STAD immunity and patient’s prognosis 
were acquired by univariate Cox analysis. Following lncRNA expression patterns, STAD 
samples could be classified into two clusters with completely different immune patterns. We 
performed multivariate Cox regression analysis on lncRNAs to identify 7-feature lncRNAs 
and constructed a corresponding prognostic model. The model validity was verified by sur-
vival analysis and ROC curve in validation and training sets. To explore connection between 
model and TME and tumor drug resistance, this study analyzed differences in immune cell 
infiltration between samples from high- and low-risk groups and then revealed immune cells 
follicular helper with significant differences in tumor tissue infiltration. Analysis of resist-
ance to chemotherapeutic drugs revealed that samples in the high-risk group had resistance to 
cisplatin, doxorubicin, bleomycin, and gemcitabine. Through univariate and multivariate Cox 
analyses, we manifested that risk score could be an independent prognostic factor. Combining 
risk score and clinical factors, a nomogram was constructed to accurately predict patient’s 
prognosis. This model can effectively predict prognosis, TME, and drug resistance of STAD 
patients, which may provide a reference for tumor development evaluation and precise treat-
ment for clinical STAD.
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Introduction 

Stomach adenocarcinoma (STAD) is a main histological type of gastric cancer, accounting 
for 95% of all gastric cancers [1]. Currently, the mainstay of treatment for STAD is surgery 
combined with chemotherapy, but drug resistance, metastasis, or recurrence in STAD patients 
make the prognosis still poor [2]. In particular, the high heterogeneity of STAD greatly aggra-
vates the difficulty of treatment. Its heterogeneity is manifested in the differentially activated 
pathways, immune characteristics, disease susceptibility, etc. and also predicts the need for 
more accurate prognostic prediction and precise treatment options for patients [3]. Therefore, 
new prognostic biomarkers for STAD are urgently needed to precisely assess prognosis.

Tumor immune features have attracted much attention because they can assess the clini-
cal benefits of a variety of treatments, and the corresponding immunotherapy has also been 
used as a novel therapy to achieve good efficacy in the treatment of multiple cancers such 
as lung cancer, breast cancer, and pancreatic cancer [4–6]. The key to the development of 
immunotherapy lies in the in-depth study of the tumor immune microenvironment [7]. The 
tumor microenvironment (TME) of STAD similarly contains abundant infiltrating immune 
cells. Among them, tumor-associated macrophages were remarkably associated with STAD 
tumor angiogenesis, tumor invasion depth, lymph node metastasis status, and clinical stage 
[8]. Tumor-infiltrating immune cells act on the regulation of tumor immunity by releasing a 
variety of cytokines and growth factors, so immune-related gene expression and immune cell 
infiltration are closely related to tumor development [9]. There are several studies evaluating 
the prognosis of cancer patients based on the feature genes in the TME. For example, Ren 
et al. [10] mined the prognostic marker genes in the STAD TME, which can be utilized to 
evaluate the clinicopathological features and overall survival (OS) rate of patients. The genes 
associated with inflammation in STAD can represent different dendritic cell and degrees of 
macrophage infiltration. Wu et al. [11] revealed the potential value of these genes for assessing 
patient prognosis. Comprehensive analysis, immune-related genes are closely related to OS of 
patients, which can offer a new reference for the treatment and prognosis prediction of STAD.

We combined TCGA and ImmLnc databases to obtain STAD immune-related lncRNAs 
and obtained STAD immune-related lncRNAs with prognostic significance by univariate Cox 
analysis. According to the expression patterns of these lncRNAs, STAD patients can be clas-
sified into two subtypes, and ssGSEA analysis reveals the different immune patterns repre-
sented by the two subtypes. Multivariate Cox analysis of these immune-related lncRNAs with 
prognostic significance constructed the STAD prognostic model. The model can accurately 
predict the OS rate of patients, and the prognostic model can assess immune cell infiltration 
and resistance of samples to chemotherapeutic drugs. Immune-related feature lncRNAs not 
only have the ability to predict the prognosis of STAD patients, but also can explain the poten-
tial mechanisms affecting the prognosis of patients. This will provide guidance for the precise 
diagnosis of clinical STAD and the development of targeted therapeutic strategies.

Materials and Methods

Data Sources

The gene transcriptome data of STAD as well as the clinical information of the patient 
(TCGA-STAD) were obtained from The Cancer Genome Atlas (TCGA) database (https://​
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portal.​gdc.​cancer.​gov/). The gene transcriptome dataset was annotated to finally obtain the 
expression information of lncRNAs and mRNAs.

Differentially Expressed Immune‑Related lncRNA Screening

Differential analysis of lncRNA data obtained in TCGA-STAD was performed using 
the R package “edgeR” to screen differentially expressed lncRNAs (DElncRNAs) with 
logFC > 1.5 and Padj < 0.05 [12]. Through the website ImmLnc (http://​bio-​bigda​ta.​
hrbmu.​edu.​cn/​ImmLnc/​index.​jsp), the immune-related lncRNA set was retrieved, and the 
immune-related lncRNA set was overlapped with STAD DElncRNAs to obtain differen-
tially expressed immune-related lncRNAs.

Consensus Clustering Analysis of Samples

The R package “survival” was used to perform univariate Cox regression analysis of 
immune-related lncRNAs that were differentially expressed in STAD, using Padj < 0.05 as 
a screening criterion to obtain a lncRNA set with prognostic significance for STAD (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​survi​val/​survi​val.​pdf). The R package “ConsensusCluster-
Plus” was used to perform k-means consensus cluster analysis of STAD samples based on 
the expression of prognostically relevant lncRNAs, and the optimal cluster number K value 
was determined using a double sampling scheme [13]. The samples were divided into dif-
ferent subtypes according to the optimal number of clusters, and the sample differences 
between subtypes were verified using PCA dimensionality reduction. To determine differ-
ences in immune profiles of the subtypes, 29 immune-related phenotypes were selected and 
analyzed by ssGSEA enrichment based on mRNA expression profiles.

Establishment of the Prognostic Model

The samples in TCGA-STAD dataset were divided into training and validation sets in a 7:3 
ratio using the R package “caret” (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​caret/​caret.​pdf). 
Multivariate Cox regression analysis was performed with prognostically relevant lncRNAs 
to obtain information on feature lncRNAs, their coefficients, and hazard ratios, and a risk 
assessment model was built based on the coefficients.

Validation of the Prognostic Model

The risk score was calculated based on the expression level and risk coefficient of each fea-
ture lncRNA, and the median was used as a cut-off value to distinguish the high- and low-
risk groups of the training set and the validation set. PCA dimensionality reduction was 
performed on samples from the two risk groups by the R package “factoextra” (https://​cran.​
micro​soft.​com/​snaps​hot/​2016-​11-​30/​web/​packa​ges/​facto​extra/​facto​extra.​pdf). Survival 
curves were plotted using the R package “survival” to verify the model grouping effect. 
Finally, ROC curves were plotted by the R package “timeROC” to calculate the AUC val-
ues corresponding to the risk assessment model predicting the 3- and 5-year survival rates 
of STAD patients, respectively [14].
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Analysis of Immune Microenvironment and Chemotherapy Response of Samples

The R package “CIBERSORT” was used to score the abundance of immune cell infiltra-
tion in samples from the high- and low-risk groups of the training set, and a permutation 
test was used to set p value < 0.05 as the standard to screen immune cells with notable 
differences in infiltration levels between the two risk groups (https://​doi.​org/​10.​1038/​
nmeth.​3337). The R package “pRRophetic” was used to predict the response of high- 
and low-risk group samples in the training set to chemotherapy with the drugs cisplatin, 
doxorubicin, bleomycin, and gemcitabine, and the Wilcoxon test was performed on the 
predicted drug IC50 values of two risk groups to analyze the differences in drug resist-
ance [15].

Construction and Assessment of the Nomogram

Univariate and multivariate Cox regression analyses of risk score, gender, age, and 
TNM tumor stage were performed in TCGA-STAD training set to assess the independ-
ence of the multiple prognostic models. A nomogram was drawn based on the risk score 
and patient clinical information by the R package “rms,” and a calibration curve was 
drawn to predict the 3-year and 5-year survival rates of STAD patients [16].

Results

Immune‑Related lncRNAs with Prognostic Significance in STAD

1812 lncRNAs which were remarkably differentially expressed in STAD tumor samples 
compared with healthy samples were obtained by the differential analysis, of which 1396 
were upregulated and 416 were downregulated (Fig. 1A). 199 lncRNAs were obtained 
after intersection of DElncRNAs with immune-related lncRNAs in the ImmLnc data-
base (Fig. 1B). Univariate Cox analysis of these lncRNAs was performed to obtain 26 
lncRNAs that were immune-related in STAD and had prognostic significance (TableS1). 
In this study, unsupervised consensus clustering was conducted based on prognostically 
relevant lncRNA expression profiles. The STAD samples were divided into two catego-
ries named cluster1 and cluster2 using K = 2 as the optimal number of clusters (Fig. 1C-
E). The results of PCA dimensionality reduction showed that this clustering mode made 
the two groups of samples clearly distinguished (Fig. 1F). To understand the immune 
patterns of the two types of samples, we obtained the immune cell infiltration level and 
immune-related gene set enrichment level in the two groups of samples by ssGSEA 
analysis. The results revealed that the immune cell infiltration level and immune-related 
gene set enrichment level in cluster2 showed a more remarkable upregulation trend than 
cluster1. Therefore, we classified cluster1 as the “cold-immune” subtype and cluster2 as 
the “heat-immune” subtype (Fig. 1G). The above results illustrated that the prognosti-
cally relevant lncRNAs obtained in this study had a potential role in distinguishing the 
immune status of STAD.
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Immune‑Related lncRNA Prognostic Model Construction

Combined with multivariate Cox regression analysis of the expression of prognosis-
related lncRNAs and OS in STAD samples of the training set, 7-feature lncRNAs were 
obtained, namely, ZFPM2-AS1, LINC01060, LINC01537, C15orf54, CYMP-AS1, 
LINC01614, and AC092198.1 (Fig. 2). The risk assessment formula was obtained accord-
ing to the coefficient and expression level of feature lncRNAs: risk score = 0.146*ZFPM2-
AS1 + 0.075*LINC01060 + 0.164*LINC01537 + 0.070*C15orf54 + 0.060*CYMP-
AS1 + 0.075*LINC01614-0.071*AC092198.1.

Fig. 1   Immune-related lncRNAs with prognostic significance in STAD. A Volcano plot of lncRNA dif-
ferential analysis in STAD tumor samples relative to healthy samples; red represents upregulated genes, 
and green represents downregulated genes. B Venn diagram of the intersection of differentially expressed 
lncRNAs with immune-related lncRNAs. C Consensus cluster cumulative distribution function curve with 
K = 2 ~ 10. D Relative change in the area under the cumulative distribution function curve with K = 2 ~ 10. 
E Sample agreement matrix for K = 2. F Differences in PCA dimensionality reduction distribution between 
the 2 cluster subtypes. G Heat map of ssGSEA scores for the two STAD subtypes.
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Immune‑Related lncRNA Prognostic Model Evaluation

The samples in the training set and validation set were divided into high- and low-risk 
groups according to the median value of risk score. Seven feature lncRNAs showed 
notable differential expression in the two risk groups of STAD training set and vali-
dation set, of which LINC01060, LINC01537, LINC01614, C15orf54, ZFPM2-AS1, 
and CYMP-AS1 showed  upregulation in the high-risk group of training set, and 
AC092198.1 showed considerable downregulation in the high-risk group of training set 
(Fig.  3A). The samples in the training set were arranged according to the risk score 
from low to high. Then the scatter of sample survival time was plotted, which found that 
as the risk score increased, the number of deaths gradually increases, accompanying 
with the gradual shrink of the survival time of patients (Fig. 3B-C). PCA dimensional-
ity reduction of the training set samples revealed a clear distinction between samples 
from the two risk groups (Fig. 3D). The results of survival analysis indicated that the 
OS of patients in the high-risk group of the training set was markedly lower than that in 
the low-risk group (Fig. 3E). These results were equally presented in the validation set 
(Fig. 4A-E). The ROC curve was plotted to verify the accuracy of the model in predict-
ing the prognosis, and the results showed that the AUC values of the model in predict-
ing the 3- and 5-year survival of STAD patients were 0.69, 0.81 (training set), and 0.75, 
0.73 (validation set), respectively (Figs.  3F  and 4F). These results indicated that the 
7-lncRNA risk assessment model had good predictive performance for the prognosis of 
STAD patients in TCGA-STAD dataset.

Fig. 2   Forest plot of multivariate Cox regression analysis of 7-feature lncRNAs. ZFPM2-AS1, LINC01060, 
LINC01537, C15orf54, CYMP-AS1, and LINCO1614 were presented as risk factors, and AC092198.1 was 
presented as protecting factor. *p < 0.05, ** p < 0.01.
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Assessment of the Prognostic Model on the Immune Microenvironment 
and Chemotherapy Response of STAD

To explore the association between the prognostic model and the immune microenviron-
ment of STAD tumors, this study assessed the abundance of each immune cell infiltra-
tion in samples from TCGA-STAD training set (Fig.  5A). There was some difference 
in immune cell infiltration level in the tumor samples of patients in the two risk groups 
(Fig. 5B). Correlation analysis between the abundance of each immune cell infiltration 
indicated a negative correlation between most immune cells (Fig.  5C). These results 
suggested that cell–cell infiltration may be affected by antagonism, and TME-based 
assessment of immune levels required comprehensive consideration of multiple cell 
infiltration levels. The abundance of T cells follicular helper, T cells CD8, and T cells 

Fig. 3   7-lncRNA risk assessment model predicts the survival time and status of patients in the training set. 
A Heat map of the expression of 7-feature lncRNAs in the high- and low-risk groups. B Distribution of 
risk scores for STAD patients (green dots, low-risk group; red dots, high-risk group). C Scatterplot show-
ing the survival of STAD patients (green dots, survival; red dots, death). D PCA dimension reduction map 
of patients in two risk groups. E Kaplan-Meier survival curves showing the difference in patient survival 
between the high (red) and low (blue)-risk groups. F ROC curve for predicting 3- and 5-year overall sur-
vival of patients based on a 7-feature lncRNA risk assessment model.
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CD4 memory activated cell infiltration, a variety of cells related to anti-tumor immune 
activation, was prominently downregulated in the high-risk group relative to the low-
risk group (Fig. 5D). Afterwards, this study predicted the sensitivity of two risk groups 
to common chemotherapeutic drugs for STAD. The results showed that the chemothera-
peutic drugs cisplatin, doxorubicin, bleomycin, and gemcitabine had higher IC50 values 
in patients in the high-risk group (Fig. 5E-H), indicating that the high-risk group had 
favorable chemotherapy drug tolerance. The above results indicated that the 7-lncRNA 
prognostic model was capable of assessing both immune cell infiltration and chemo-
therapeutic drug tolerance in STAD samples.

Fig. 4   7-lncRNA risk assessment model predicts the survival time and status of patients in the validation 
set. A: Heat map of expression and clinicopathological differences of 7-feature lncRNAs in the high- and 
low-risk groups. B Distribution of risk scores for each STAD patient (green dots, low-risk group; red dots, 
high-risk group). C Scatterplot showing the survival of STAD patients according to the risk score (green 
dots, survival; red dots, death). D PCA dimensionality reduction map of patients in two risk groups. E 
Kaplan-Meier survival curves showing the difference in patient survival between the high (red) and low 
(blue)-risk groups. F ROC curve for predicting 3- and 5-year overall survival of patients based on a 7-fea-
ture lncRNA risk assessment model.
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Construction and Evaluation of Nomograms

Univariate Cox regression analysis was performed using the risk score given by the 7-fea-
ture lncRNA prognostic model as an independent factor in combination with patient 
clinical factors. The results exhibited that age (HR = 1.815, p = 0.007), N (HR = 1.761, 
p = 0.032), M (HR = 2.022, p = 0.029), and risk score (HR = 1.406, p < 0.001) were all sig-
nificant for patient prognosis and used as prognostic risk factors (Fig. 6A), and multivariate 
regression analysis indicated that age as well as risk score was closely related to prog-
nosis of patients (Fig.  6B). This result suggested that both age and risk score could be 
used as independent prognostic risk factors for STAD. Therefore, two indicators, age and 
risk score, were combined to optimize the risk stratification in this study: the group with 
risk score lower than the median was selected as the low-risk group, the group with risk 
score higher than the median and age ≤ 65 was selected as the intermediate risk group, and 
the group with age > 65 and risk score higher than the median was selected as the high-
risk group. Among these three risk groups, there was a remarkable difference in the OS 
of patients, with patients in the high-risk group having the worst prognosis, and those in 
the low-risk group having the best prognosis (Fig. 6C). The contribution of this optimized 
stratification to the accuracy of the model was verified. Finally, considering that the multi-
variate prediction model was superior to the univariate prediction model, this study plotted 
a nomogram predicting the 3-year and 5-year OS of STAD patients in combination with 
the 7-feature lncRNA risk score and optimized age stratification and other clinical factors 
(Fig. 6D). The corresponding calibration curve showed that the nomogram had good pre-
dictive ability (Fig. 6E-F).

Discussion

STAD is a frequent malignancy of digestive system in the antrum or pylorus with high 
level of heterogeneity [17]. This heterogeneity occurs not only macroscopically, but also in 
the heterogeneous TME and gene expression patterns. Just as gene expression differences 
alone can divide STAD into four clusters representing different phenotypes, mesenchymal-
like subtypes, microsatellite-unstable, TP53-activated, and non-activated types, and have 
different cytokine expression patterns in different clusters [18]. That is, different subtypes 
have differences in immune profiles. Therefore, we focused on the correlation between 
STAD tumor immunity and patient prognosis, obtained STAD-related lncRNA expression 
data and clinical information from TCGA, identified and validated prognostic feature genes 
related to tumor immunity, and established a prognostic risk assessment model. The study 
is important to explore STAD prognosis and treatment options.

In this study, we applied an unsupervised consensus clustering algorithm based on prog-
nostically relevant lncRNAs to divide the samples into two groups of subtypes that could 
represent different immune patterns and classified the overall high-level infiltration and 
expression groups of immune cells and related genes as “heat-immune” and the low-level 
infiltration and expression groups as “cold-immune.” Subsequently, differences were found 
in Th1 and Th2 cell infiltration and APC and immune checkpoint gene expression levels 
between the two groups. Th1 and Th2 are two helper T cell subtypes that both act on can-
cer progression by secreting cytokines, especially interleukins [19]. In another therapeutic 
study for colon cancer, a typical digestive cancer, it was clearly stated that high expres-
sion of helper T cells can significantly prolong patient survival [20]. The tumor inhibitor 
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gene APC plays a vital role in regulating tumorigenesis, cell cycle regulation, and apopto-
sis, especially in digestive system diseases such as gastric cancer and colon cancer, which 
are involved in regulating the proliferation and migration of tumor cells [21, 22]. High 
expression of APC in gastric cancer can reduce adverse prognosis of patients by block-
ing the Wnt/β-catenin pathway, inhibiting epithelial-mesenchymal transition and metasta-
sis of tumors, and reducing the tumor aggressive phenotype [23]. Therefore, the differ-
ence in immune patterns reflected by the two subtypes may be closely related to patients’ 
prognosis.

Several stomach adenocarcinoma prognostic biomarkers have been studied and devel-
oped, among which ctDNA was understood for its convenience and reliability. In Maron’s 
study, gastroesophageal adenocarcinoma prognostic status was evaluated by ctDNA 
sequencing, in which genetic alterations were analyzed. However, it was admitted that 
some desired genetic alterations could not be detected for technique limitation. Herein, 
we identified 7 immune-related feature lncRNAs for constructing a prognostic model of 
STAD. Among the seven lncRNAs, only AC092198.1 served as a patient prognostic pro-
tective factor, and the remaining six (ZFPM2-AS1, LINC01060, LINC01537, C15orf54, 
CYMP-AS1, LINC01614) served as prognostic risk factors. The drawbacks are that 
AC092198.1 and C15orf54 have not been reported in relevant studies, and their proper-
ties acting on cancer remain to be further studied. In this study, we found these two lncR-
NAs may be associated with the prognosis of STAD. The majority of the remaining feature 
lncRNAs are associated with cancer progression and poor patient prognosis. ZFPM2-AS1 
is activated by environmental factors in tumor tissues, and its abnormally high expression 
in gastric cancer samples can promote gastric cancer cell proliferation and inhibit apoptosis 
by inhibiting the p53 signaling pathway, so the OS and progression-free survival of gastric 
cancer patients with high expression of this lncRNA are significantly decreased [24]. Stud-
ies on LINC01060 acting on digestive system cancers have not been reported, and the cur-
rent study only shows that this lncRNA worsens disease progression by promoting onco-
gene c-Myc transcription and accumulation of hypoxia-inducible factor HIF-1 in highly 
differentiated glioma stem cells [25]. This has reference significance for STAD, which 
is also highly heterogeneous in this study, and perhaps the upregulation of transcription 
factors is also an important reason why this lncRNA acts as a prognostic adverse factor. 
LINC01537 was significantly associated with the prognostic survival of patients with lung 
adenocarcinoma, and interestingly, this lncRNA has the effect of inhibiting the growth and 
metastasis of lung adenocarcinoma and can be used as a favorable factor for the prognosis 
of lung adenocarcinoma by regulating tumor metabolic capacity [26]. In this study, on the 
other hand, LINC01537 served as an adverse factor for the prognosis of STAD, indicating 
that this lncRNA plays different roles in different cancers. Same as this study, a study by 
Wu et al. [27] has shown that high expression of LINC01537 in gastric cancer is associ-
ated with shorter prognostic survival time of patients. CYMP-AS1 and LINC01614 have 
been shown to be adverse prognostic factors in gastric cancer, and it is worth mentioning 
that LINC01614 has a more remarkable promoting effect on cell proliferation, migration, 

Fig. 5   Analysis of immune cell infiltration and drug resistance differences between samples in two risk 
groups of TCGA-STAD training set. A Relative infiltration abundance of immune cells in STAD samples. 
B Heat map of relative infiltration abundance of immune cells in two risk groups. C Heat map of correla-
tion between the infiltration abundance of each immune cell. Red, positive correlation; blue, negative cor-
relation; darker color, higher correlation; × indicates p > 0.05. D Difference in infiltration of each immune 
cell between the high (red) and low (blue)-risk groups. E–H Predicted IC50 difference of chemotherapeutic 
drugs cisplatin (E), doxorubicin (F), bleomycin (G), and Gemcitabine (H) in samples in two risk groups.

▸
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invasion, epithelial-mesenchymal transition, and tumor growth in vivo and accelerates the 
progression of G2/M phase in the cell cycle [27]. These results indicate that most of the 
feature lncRNAs in this study are associated with cancer progression and have potential 
value in predicting patient prognosis.

Immune microenvironment analysis based on prognostic models showed that the abun-
dance of T cells CD4 memory resting cell infiltration was markedly upregulated in the 
high-risk group, accompanied by a significant downregulation of the abundance of T cells 
follicular helper, T cells CD4 memory, and T cells CD8 activated cell infiltration. Among 
them, T cells CD4 memory resting is common in the study of HIV. Generally, the infiltra-
tion of this cell has a protective effect on HIV and is not conducive to the clearance of 
HIV. In other words, the presence of these dormant memory CD4 T cells hinders the clear-
ance of the target pathogen by the drug [28], which may be closely related to the higher 
chemoresistance of STAD samples in the high-risk group revealed in this study. Both 

Fig. 6   Evaluation of independent prognostic factors and nomogram construction. A Forest plot for univari-
ate Cox regression analysis of risk score, age, gender, and T, N, and M stages. B Forest plot of multivari-
ate Cox regression analysis for risk score, age, gender, and T, N, and M stages. C TCGA-STAD patients’ 
survival curves after the optimized stratification of age and risk score. D Nomogram of risk score combined 
with clinical information. E–F Calibration curve of nomograms to predict 3- (E) and 5-year (F) survival of 
STAD patients.
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CD8 T cells and activated CD4 memory T cells are associated with upregulated immune 
levels [29]. T cells follicular helper plays a crucial role in both initiating B-cell antibody 
responses and maintaining the body humoral immunity, with anti-microbial defense and 
the ability to inhibit cancer development [30]. These immune cells can produce cytokines 
such as TNF-α and interleukins [31, 32]. Immune cells in the tumor immune microen-
vironment can exhibit differences in drug resistance through different accumulation of 
cytokines[33]. Thus, the downregulation of these immune cell infiltration levels predicts a 
lower immune level of the tumor immune microenvironment and also shows different drug 
resistance. Patients with STAD often present poor prognoses. The prognostic model con-
structed in this study can be used to assess the immune microenvironment and chemothera-
peutic drug response in STAD patients, which can provide guidance for the precise treat-
ment of STAD patients. Similarly, Chen and his colleagues displayed a TME-associated 
prognostic signature for colon cancer. In their study, colon cancer samples were scored in 
immune and stromal degree, followed by screening DEGs according to the scores, and Cox 
regression was introduced to the DEGs constructing a TME-associated prognostic model 
(PMID: 34,497,681). Comparing to their work, our study presented prognostic model with 
lncRNA signature, which was different from Chen`s study. However, both the similar ana-
lytical steps showed reliable.

In conclusion, we obtained 26 lncRNAs associated with immunity and prognosis by 
univariate Cox analysis. And their close association with STAD immunity was verified by 
consensus clustering. We then performed multivariate Cox analysis of prognosis-related 
lncRNAs, by which we had successfully mined the feature lncRNAs and constructed a 
7-lncRNA prognostic model whose their effectiveness had been evaluated then. Based on 
this prognostic model, it can not only predict the OS of STAD patients, but also assess the 
tumor immune infiltration and sample resistance to chemotherapeutic drugs. Finally, in this 
study, nomograms were constructed based on prognostic model risk score, age, gender, and 
TNM tumor stage for accurately predicting the prognosis of STAD patients. The prognos-
tic model constructed in this study can be used as reliable data support for clinical STAD 
prognosis prediction and precise treatment.

Our study firstly presented immune-related DElncRNAs signature combining K-means 
clustering and Cox regression analyses to assess the prognosis of stomach adenocarcinoma 
patients. However, this study still has limitations. First, the performance evaluation of our 
prognostic model should be validated on more STAD datasets. Second, all data are derived 
from open databases, and there are systematic errors among the data. Finally, this study 
is a pure bioinformatics study, and the results of the role of feature lncRNAs on patient 
prognosis and drug resistance differences in samples should be further confirmed by clini-
cal experiments. Hence, in the follow-up study, we will try to establish our own sample 
database to further verify the experimental results and explore its potential mechanism in 
depth.
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