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Abstract Staphylococcus aureus, a Gram-positive bacterium, can cause a range of illnesses
from minor skin infections to life-threatening diseases, such as bacteraemia, endocarditis,
meningitis, osteomyelitis, pneumonia, toxic shock syndrome and sepsis. Due to the emer-
gence of antibiotic resistance strains, there is a need to develop of new class of antibiotics or
drug for this pathogen. The phosphotransacetylase enzyme plays an important role in the
acetate metabolism and found to be essential for the survival of the S. aureus. This enzyme
was evaluated as a putative drug target for S. aureus by in silico analysis. The 3D structure of
the phosphotransacetylase from S. aureus was modelled, using the 1TD9 chain ‘A’ from
Bacillus subtilis as a template at the resolution of 2.75 Å. The generated model has been
validated by PROCHECK, WHAT IF and SuperPose. The docking was performed by the
Molegro virtual docker using the ZINC database generated ligand library. The ligand library
was generated within the limitation of the Lipinski rule of five. Based on the dock-score, five
molecules have been subjected to ADME/TOX analysis and subjected for pharmacophore
model generation. The zinc IDs of the potential inhibitors are ZINC08442078,
ZINC8442200, ZINC 8442087 and ZINC 8442184 and found to be pharmacologically
active antagonist of phosphotransacetylase. The molecules were evaluated as no-
carcinogenic and persistent molecule by START programme.
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Introduction

Staphylococcus aureus causes a variety of suppurative (pus-forming) infections and toxinoses
in humans. It causes superficial skin lesions such as boils, styes and furuncules; more serious
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infections such as pneumonia, mastitis, phlebitis, meningitis and urinary tract infections; and
deep-seated infections, such as osteomyelitis and endocarditis [1–5]. S. aureus is a major
cause of hospital-acquired (nosocomial) infection of surgical wounds and infections associ-
ated with indwelling medical devices [1, 3, 4]. S. aureus causes food poisoning by releasing
enterotoxins into food and toxic shock syndrome by release of super-antigens into the blood
stream [6, 7]. S. aureus has been identified with various kinds of virulence factors, which are
biochemical properties that enhance their survival (carotenoids and catalase production);
surface proteins, promoting colonisation of host tissues; invasins (hyaluronidase, kinases
and leukocidin); surface factors (capsule and protein A); immunological disguises (protein A
and coagulase); membrane-damaging toxins (haemolysins, leukotoxin and leukocidin);
exotoxins (SEA-G, TSST and ET); and inherent and acquired resistance to antimicrobial
agents, [8–13]. Targeting these number of virulence factors to design any antibiotic is not an
easy task. The rate of emergence of antibiotic resistance strain of S. aureusis so horrible that
about 90 % are resistant against penicillin while 50 % strains are multidrug resistant; thus,
the battle remains [3, 14]. Targeting any molecule is not just sufficient to develop effective
antimicrobials. The computational approach has been used to investigate novel drug targets
in other pathogenic organisms, such as Pseudomonas aeruginosa [15, 16], Mycoplasma
genitalium [17], Aspergillus [18, 19, 53] and Helicobacter pylori [15, 20]. As most currently
known, antibacterial are essentially inhibitors of certain bacterial enzymes; any bacteria-
specific enzyme could be considered as potential drug targets [5, 18, 19, 21].

In our previous work, we have done a comparative metabolic pathway analysis to find out
some potential targets against S. aureus [5]. Enzymes, which were found to be unique in
compare to host proteome, have been investigated further for their drugability properties.
Thus, in present study, we have evaluated the phosphotransacetylase (PTA) as a putative
target. PTA (EC: 2.3.1.8) is a 328-amino-acid-containing enzyme, encoded by the etuD
gene, also known as phosphate acetyltransferase, phosphotransacetylase and phosphoacy-
lase [22, 23]. This enzyme is involved in three different pathways, namely, taurine and
hypotaurine metabolism, pyruvate metabolism and propanoate metabolism (KEGG data-
base). The acetyl-co-A or acetate, an intermediary compound, plays a very important role in
the fulfilment of energy requirement process [5, 24]. PTA is capable to cleave the short chain
CoA esters besides acetyl-CoA, such as propionyl-CoA and butyryl-CoA, but is unable to
hydrolyse either the succinyl-CoA or the long-chain fatty acyl CoA, palmityl-CoA [25].
Many anaerobic/fermentative/facultative/methanogenic microbes using them by specific
pathways are capable of converting the acetyl-CoA to acetate by the action of phospho-
transacetylase, and acetate kinase is used for the production of ATP, which provides the
majority of the energy. Although the main work is involved in the acetate metabolism,
acetate is an end product of almost all anaerobic/fermentative/facultative/methanogenic
microbes and in turn serves as a growth substrate [26, 27]. Thus, inhibition of PTA could
effectively inhibit growth and propagation of S. aureus. To date, no structural or drug-
targeting information against the S. aureus using PTA has become available.

In this study, we present structural information on the PTA, which may be a novel
drug target for studies aimed at developing inhibitors of S. aureus—using a homology
modelling approach followed by a molecular dynamics simulation in order to analyse
the stability of this domain. In addition, we predict the binding site of this PTA in
order to eventually identify drug-like molecules that possess enhanced binding ener-
gies and pharmacokinetic properties for this enzyme using in silico high-throughput
virtual screening with acetyl phosphate (DB02897) as a reference ligand. The potential
specific drug-like molecules obtained from such a screening procedure could serve as
inhibitors against the S. aureus.
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Materials and Method

Sequence Retrieval, Physiochemical Characterisation and Secondary Structure Prediction

The sequences of PTA from S. aureus were retrieved from protein database available on
NCBI server. The physiochemical properties of PTA, like theoretical isoelectric point (pI),
molecular weight, total number of positive and negative residues, extinction coefficient [28],
instability index [29], aliphatic index [30] and grand average hydropathy (GRAVY) [31],
were evaluated by Expasy’s ProtParam server [32]. SOPMA [33] was employed for calcu-
lating the secondary structural features of the phosphotransacetylase sequences used in this
study.

Cellular Localisation and Functional Elucidation

The sub-cellular localisation analysis of this essential protein has been done by Proteome
Analyst Specialized Sub-cellular Localization Server v2.5 (PA-SUB) [34]. For prediction of
“S–S” bonds from the primary structure (protein sequence data), the CYS_REC (http://
sunI.softberry.com/berry.phtml?topic) was used. The domains and family of protein were
confirmed by the Prosite database [35].

Homology Modelling

A 328-amino-acid-containing phosphotransacetylase sequence of S. aureus N315 was
retrieved from NCBI database and identified with gi|15926266| and accession
NP_373799. The FASTA file of the sequence was submitted to EsyPresd3D, a server for
prediction of proteins 3D structure based on the homology modelling [36]. An alignment-
based predicted model was obtained by above server. The available model and secondary
structure was validated by the STRIDE [37]. Energy minimisation and root mean square
deviation (RMSD) was performed by YASARA and SuperPose servers, respectively [38,
39]. The RMSD analysis of the developed model was evaluated by means of deviation from
its template using SuperPose. The SuperPose web server rapidly and robustly calculates both
pairwise and multiple protein structure superposition using a modified quaternion eigenval-
ue approaches [39]. This modelled structure was submitted to UCLA and PROCHEK server
to ensure the quality and stereochemistry of generated structure [19, 40]. The information of
active site PTA used in this study was not found in the CSA database [41] and was not
archived with the active site of the PTA used in this study.

Preparation of Ligand Library

The acetyl phosphate (DB 02897), a known inhibitor for the PTA, was retrieved from drug
bank database, and the initial values of this molecule was used for the library generation [5].
The ligand library was prepared from ZINC database using the parameters −1.5≤xlogP≤5,
2≤H donors≤5, 5≤H acceptors≤10, 140.03≤molecular weight≤500 under the limit of the
Lipinski rule of five [42, 51, 52].

Docking

The virtual docking study of our predicted 3D model of phosphotransacetylase with the
library prepared was performed with the molecular docking algorithm MolDock [5, 19, 43]
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using the Molegro Virtual Docker version 1.1.1 software (Molegro ApS, Aarhus, Denmark,
http://www.molegro.com) according to instructions. The docking procedure consisted of
three interrelated components: (a) identification of binding site, (b) a search algorithm to
effectively sample the search space (the set of possible ligand positions and conformations
on the protein surface) and (c) a scoring function or energy calculation software [42, 54]. For
docking, the MolDock scoring function, which is based on a piecewise linear potential and a
re-ranking procedure was applied to the highest ranked poses to increase docking accuracy,
was used. Ligands modelled in Arguslab and protein structure complexes were imported into
the docking programme assigning bonds, hybridisation and explicit hydrogen if missing and
always charges and flexible torsions with the Molegro Virtual Docker software. The
molecular structure of imported ligands was manually checked before docking and corrected
in those cases were it had failed. Although our structure only contains proteins, neither co-
factor nor ligands are present. Water molecules with the protein structures were excluded
from the docking experiments [54–56]. The default setting of software parameter was used
in this study, and ligands are given from our library prepared in mol2 format. Binding sites
were restricted within a 15×15×15 Å3 cube centered at the observed binding of ligand in
protein complex. Due to the stochastic nature of the ligand–protein docking search algo-
rithm, 10 runs were conducted and 10 docking solutions (pose) were retained for each
ligand. The interaction energy between the pose with highest ranking MolDock score and
the protein was compared [54–56].

Pharmacophore Generation and Tox Studies

Alignment and hypothetical pharmacophore model generation was done by Ligandscout
2.03 [44]. Ligandscout offers a large range of chemical feature definitions including
hydrogen bonding vectors, chargeable groups, aromatic plane interactions and aromatic-
positive ionisable interactions. An advanced alignment algorithm allows to overlay pharma-
cophore and molecules such that common binding modes may be detected and shared
chemical features can be interpolated, and tox studies is done using the commercially
available software toxtree (developed by Ideaconsult Ltd, Sofia, Bulgaria) for the
computer-based estimation methods in the assessment of chemical toxicity [45].

Results and Discussion

The selection of phosphotransacetylase (EC: 2.3.1.8) for present study is a result of our
previous study, in which we have extensively analysed the pathways of S. aureus, for the
search of essential enzyme. This enzyme was found to be essential. This enzyme has no
similarity with human proteins when search with BLASTp. This 238-amino-acid-containing
enzyme is a product of eutD gene. The phosphotransacetylase as one of the essential for
survival of microbe could be a putative drug target for design and evaluation of new class of
antimicrobials [5, 18, 19].

Physiochemical and Functional Properties of Phosphotransacetylase

Parameters computed using Expasy’s ProtParam tool are represented in Table 1. The
calculated pI (isoelectric point) of the phosphotransacetylase is 4.72, i.e. (pI<7), which
means that the protein is acidic in nature. The extinction coefficient of the protein is required
to establish a quantitative study of protein–protein, and protein–ligand interaction in the
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solution was elucidated as 10,555 M−1cm−1. Instability index of this enzyme was calculated
as 34.61 because the value is lower than 40; thus, it is a stable protein [29]. The aliphatic
index (AI), which is defined as the relative volume of a protein occupied by aliphatic side
chains (A, V, I and L), is regarded as a positive factor for the increase in thermal stability of
globular proteins, and the calculated value was found to be 98.17. The GRAVY value for a
peptide or protein is calculated as the sum of hydropathy values of all the amino acids,
divided by the number of residues in the sequence. GRAVY indices of phosphotransacety-
lase were found to be 0.086 (Table 1). This low range of value indicates the possibility of
better interaction with water. The enzyme has been analysed by SOSUI and found to be a
soluble cytoplamic protein. It is well known that disulphide bridges play a vital role for the
thermal stability of the protein; the probable disulphide bond deduced by the CYS_REC is
provided in Table 1. There is no any positive prediction revealed by this analysis. We have
not found any pattern, motif, signature or fingerprint when the sequence was submitted to
Prosite server. The secondary structure of protein was predicted by the self-optimised
prediction method with alignment (SOPMA), which correctly predicts 69.5 % of amino
acids for a state description of the secondary structure prediction [33]. Secondary structure
features as predicted by SOPMA is represented in Table 1.

Homology Modelling and Docking

The 3D structure of the enzyme phosphotransacetylase from S. aureus was modelled by
EsyPresed3D, an automated homology modelling server (Fig. 1). Alignments are obtained
by combining, weighting and screening the results of several multiple alignment pro-
grammes, and the final structure was built using the modelling package MODELLER
[36]. The template used for the present investigation was 1TD9 chain ‘A’ from Bacillus
subtilis, which was used for 3D structure modelling; the resolution was 2.75 Å, analysed by
X-ray diffraction [25]. The server result shows that this template shares 64.4 % identities
with our query sequence (using ALIGN programme, shown in Fig. 2), while BLASTp result
against PDB database shows 99 % query coverage. PTA shares high sequence similarity
with the reported bacterial and the archaeal domain PTAs (BLAST search results, data not
shown).

The structural properties of phosphotransacetylase from the M. thermophilla shows that
cys159 is required for the stability and possibly catalysis and cys312 as being present in the
active site, but non-essential for catalysis; the residues arg87, arg133 and arg 310 were
proposed to interact with CoA [27, 46]. The phosphotransacetylase from S. aureus shows

Table 1 Physiochemical and functional properties of phosphotransacetylase

Analysis Parameters and respective properties

Physiochemical

properties

MW pI −R +R EC II AI GRAV

34,951.7 4.72 45 32 10,555 34.61 98.17 Y 0.086

Calculated

secondary

structure

(by SOPMA)

Alpha

helix,

46.95 %

310 helix,

0.00 %

Pi helix,

0.00 %

Beta

bridge,

0.00 %

Extended

strand,

14.02 %

Beta

turn,

7.93 %

Bend

region,

0.00 %

Random

coil,

31.10 %

Ambiguous

states,

0.00 %

CYS_REC,

PA-SUB

and SOSUI

analysis

CYS_REC: C167

and C310

PA-SUB:

CYTOPLASM

SOSUI: SOLUBLE

PROTEIN
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cys167 and cys310 and arg88, arg 89, arg134, arg148, arg285 and arg308 residues; here, it is
anticipated that arg88, arg134 and arg308 and cys167 and cys310 may be involved in the
active site. To validate the hypothesis of active site predicted for PTA, the CSA server was
used; unfortunately, there was no nay archive with EC: 2.3.1.8 [41]. The alignment study
shows that the residues cys167 and cys310 and arg88, arg 89, arg134, arg148, arg285 and
arg308 could be involved in active site formation. The secondary structure of the PTA was

Fig. 1 Predicted 3D structure of phosphotransacetylase. a Secondary structure representation. b Surface
representation. c Superposition of the predicted structure with template (PDB access code: 1TD9)

Fig. 2 Sequence alignment of phosphotransacetylase from staphylococcus aureus n315 with Cain A (PDB
access code: itd9) from Bacillus subtilis

Appl Biochem Biotechnol (2012) 168:1792–1805 1797



elucidated by STRIDE [37] to analyse the pattern. The modelled structure was subjected for
the force field energy minimisation, and final value was −176,747.6 kJ/mol, and the score is
shown to be −0.09 compared to the initial values of −56,133.5 kJ/mol and −2.97,
respectively. The Cα RMSD and the backbone RMSD deviations for the model and the
template crystal structure were found to be 0.64 and 0.65 Å, respectively. During the
compact structure comparison, the amount of native secondary structure is not so good a
measure of progress towards the native free energy basin as the number of native contacts
[47]. Therefore, the other parameter was studied to evaluate the quality of predicted
structure. The Ramachandran plot for the predicted model reveals that 92.3 % residues were
found in most favourable region, while 7.6 % were found in the allowed region (Fig. 3). The
overall G factor calculated on basis of the main chain parameter inferred that the modelled
structure was acceptable for virtual screening [48].

Docking of ligands of generated library with modelled structure of the enzyme was
performed using the MolDock algorithm [43]. Recent developments in molecular character-
isation and bioinformatics have further made it possible to “dock” small molecules (i.e.
ligands) towards proteins and “score” their potential binding. Virtual screening uses com-
putational methodologies to identify biologically active molecules against a specific protein
target [49]. Here, we had used the methodology that involved the search for similarity to
validated ligands and molecular docking method, using the crystallographic data of the
targets. Nevertheless, very limited information on PTA from S. aureus, and their respective
inhibitors is yet available. The novelty of the present study relays on the method used in
virtual screening and the selection of molecules according to pharmacological properties.
The virtual screening was performed with a modelled structure, which qualifies the required
condition for being a suitable model for docking. Thus, methods like docking and virtual
screening are becoming widely used in drug development. Thus, selection of a valid Dock
protocol based on similarity of all re-docked poses to the crystallographically identified
bound orientations was a major concern during the experimental. The symmetry corrected
RMSD was computed for all poses. Virtual screening is one of the fastest methods employed
in the drug discovery process, which is used to filter the undesired molecules, which cannot
show the affinity to the proteins active site. Here, we keep our attention to the Lipinski rules,
one of the criteria to filter the molecule, which cannot show the drug-like property. The
docking was performed with a library of 1,001 molecules, generated under mentioned
conditions. Based on dock score, five ligands were selected using two search algorithms
in conjugation with two scoring functions per poses returned. It was found that the cavity 1
was involved in binding to most of ligands, having a volume of 48.128 Å3 and a surface area
of 148.48 Å2, respectively. Under these circumstances, the docking was performed to
estimate the interaction energy between the ligand and protein. Thus, the MolDock score
and hydrogen bond energy of each ligand were the primary criteria for selecting the
molecules. The properties of the selected compounds like H-bond donor, H-bond acceptor,
molecular weight, molecular formula, xlogp, compound ID, zinc ID, ligand name, etc. are
shown in Table 2. We have chosen these ligands based on their docking score. The top 5
selected ligand molecules and their binding position at the cavity are shown in Fig. 4. The
residue involved in the formation of cavity is also shown in Fig. 5a and the hydrogen bond
interaction at the near cavity residue with the ligand molecule in Fig. 5b.

ADME/Toxtree Prediction and Phamacophore Model Generation

After docking simulation, based on MolDock score, the top 25 compound were selected
from the initial set of 1,001 molecules. These molecules were submitted to filter for its
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Fig. 3 Ramachandran plot of phosphotransacetylase from Staphylococcus aureus obtained by PROCHECK:
92.3 % residues in favourable regions; 7.3 % residues in additional allowed regions; 0.3 % residues in
generously allowed regions; 0.0 % residues in disallowed regions
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Table 2 Physiochemical properties of the five selected ligands obtained from the docking study

Ligand molecule 
Properties ZINC8442078 ZINC 8442200 ZINC 8442087 ZINC 8442184 ZINC 8442182

Compound ID: 9542913 9542940 9542914 3660145 4612017
Molecular Weight 498.64408 448.5854 498.64408 478.58978 464.5632
Molecular Formula C22H22N6O2S3 C18H20N6O2S3 C22H22N6O2S3 C23H22N6O2S2 C22H20N6O2S2

XLogP3-AA 3.9 3 3.8 3.4 3
H-Bond Donor 2 2 2 2 2
H-Bond acceptor: 5 5 5 5 5
IUPACName N-[2-[4-methyl-5-

[2-[(5-methyl-4-
phenyl-1,3-
thiazol-2-
yl)amino]-2-
oxoethyl]sulfanyl-
1,2,4-triazol-3-
yl]ethyl]thiophene
-2-carboxamide

N-[2-[5-[2-[(4-
methyl-1,3-
thiazol-2-
yl)amino]-2-
oxoethyl]sulfanyl-
4-prop-2-enyl-
1,2,4-triazol-3-
yl]ethyl]thiophene
-2-carboxamide

N-[2-[4-ethyl-5-
[2-oxo-2-[(4-
phenyl-1,3-
thiazol-2-
yl)amino]ethyl]s
ulfanyl-1,2,4-
triazol-3-
yl]ethyl]thiophen
e-2-carboxamide

2-[4-methyl-5-[2-
[(5-methyl-4-
phenyl-1,3-
thiazol-2-
yl)amino]-2-
oxoethyl]sulfanyl
-1,2,4-triazol-3-
yl]-N-
phenylacetamide

2-[4-methyl-5-[2-
oxo-2-[(4-
phenyl-1,3-
thiazol-2-
yl)amino]ethyl]su
lfanyl-1,2,4-
triazol-3-yl]-N-
phenylacetamide

Docking score: - -188.8 -181.242 -180.403 -179.924 -175.551
Heavy atoms 33 29 33 33 32
H-bonding energy -11.9416 -9.89572 -10.9408 -10.2336 -9.55797
Torsions
No. of rotatable 
bonds

9 10 10 8 8

Rerank score -130.24 -112.207 -98.3151 -128.719 -124.596

Fig. 4 Position of ligand in the cavity 1 of PTA: a ZINC08442078, b ZINC08442087, c ZINC08442182, d
ZINC08442184 and e ZINC08442200
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pharmacological properties, the Toxtree, a full-featured and flexible user-friendly open
source application, was used to estimate the toxic hazardous properties. User-defined
molecular structures are also supported—they could be entered by SMILES or using the
built-in 2D structure diagram editor [19]. The other properties like absorption distribution,
metabolism and excretion (ADME) were also predicted. Finally, five molecules have been
selected, based on the above properties (Table 2).

Due to the evolving technologies in the area of bioinformatics and combinatorial chem-
istry, the number of known targets as well as the size of compound libraries available is
exploding. It has been evaluated that these five molecules were non-carcinogenic, and virtual
screening using pharmacophore has proved to be a major technique for pre-screening
compounds from libraries against targets in silico [19, 50]. A pharmacophore is defined as
an ensemble of universal chemical features that characterise a specific mode of action of a
ligand in the active site of the macromolecule in 3D space. Chemical features are, e.g.
hydrogen bonds, charge interaction, hydrophobic areas, etc. after finding the top 5 ligands
(drug-like molecule) from virtual screening of ligand library; we have done structural
alignment of these molecules using the ZINC08442078 as a reference molecule in the
Ligandscout 2.03 software (it is a software tool that allows to rapidly and transparently
derive 3D pharmacophores from structural data of macromolecule/ligand complexes in a
fully automated and convenient way) and generated the hypothetical pharmacophore model
for phosphotransacetylase. The shared feature pharmacophore model shows only six feature
pharmacophores, one of which is a yellow sphere, i.e. hydrophobic feature, one hydrogen
bond donor (green vectors), one aromatic ring and three hydrogen bond acceptor, while the
merged feature pharmacophore shows eight hydrophobic feature, four hydrogen bond donor,
nine aromatic ring and 11 hydrogen bond acceptor. The alignment of five ligands, shared
pharmacophore model, shared pharmacophore model as well as merged pharmacophore
model is shown in the following Fig. 6. Overall, we selected the PTA as a putative target, and
for S. aureus, the insights of this enzyme revealed were by some computational methods
using standard algorithms. By this study, we had tried to uncover the putative interaction of
enzyme and ligand. This study will be helpful for the design and selection of antimicrobials
and respective adjuvants for appropriate action.

Fig. 5 The residues involved in the formation cavity 1 (a) and residues involved in hydrogen bond, i.e.,
Leu299, Gly298 and Lys143 (b)
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There are several examples showing successful inhibitor development using virtual
screening approaches. The first successful experimental test of docking was carried
out using the DOCK programme to search a diverse subset of for molecules that
might bind to HIV-1 protease [54–57]. One of the ligands from the VS was bromo-
peridol, a close analog of which haloperidol was tested and found to be an HIV-
protease inhibitor, and subsequent analog synthesis yielded a thioketal derivative with
15 μM inhibition. Furthermore, Merck’s HIV protease inhibitor Indinavir sulphate was
developed in part using docking [58].

Anyhow these admonitions, virtual screening is a perpetually very important tool for
exploring biologically relevant chemical space. Thus, a larger virtual screening study
focused on small molecules libraries, up to millions of compound. In our previous work,
we have analysed the metabolic pathways in the finding of essential protein, which could be
targeted for drug designing. A comparative study of the metabolome of S. aureus bestows
the idea that essential enzymes can be targeted for the drug designing [5], and eight
imperative proteins were identified from the organism. Out of these putative targets, PTA
was selected for present work, as it was found to be a non-homologous protein in compar-
ison with human protein, thus could be a safer target. The reported molecule as inhibitor to
this enzyme could further be exploited for drug design. Here, we described a comprehensive
and efficient molecular modelling and docking methodology, which is able to explore the
active site and the binding of inhibitor. It is still needed to explore some more in vivo
experimentation for complete evaluation as a drug. Using this selectable approach for
designing the drug, a researcher can minimise the try and hit methodology; thus, it can save
the time, cost and life of test animals. Furthermore, the present study reveals that some
molecules with putative drug-like properties could be explored as antimicrobial against S.
aureus.

Acknowledgments This study was supported by a grant of the Korea Healthcare Technology R&D Project,
Ministry of Health & Welfare, Republic of Korea (grant no. A103017). The work was also supported in part
by Inha University.

Fig. 6 Pharmacophore mapping of the ligand, ZINC08442078, ZINC08442087, ZINC08442182,
ZINC08442184 and ZINC08442200. a The alignment of selected ligands. b Shared feature pharmacophore.
c Merged feature pharmacophore
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