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Abstract The white rot fungus Phanerochaete chrysosporium has been identified to be an
environmentally useful microorganism for the degradation of various hazardous pollutants,
mainly because of its ligninolytic enzyme system, particularly the lignin peroxidase (LiP)
secreted by the fungus. In the present work, the behavior of the fungus in liquid medium due
to variation in physico-chemical parameters, i.e., glucose concentration, nitrogen concentra-
tion, agitation, etc., was studied. Increment of the initial concentration of glucose in the
medium increases the biomass growth and LiP activity, when cultured under controlled
conditions. The biomass growth and LiP activity by the fungus was modeled following
stochastic approach. The behavior of growth and enzyme activity of the fungus observed
from the model were found to be in agreement with the experiments qualitatively.

Keywords Phanerochaete chrysosporium . Biomass growth . Lignin peroxidase . Stochastic
modeling

Introduction

The white rot fungus Phanerochaete chrysosporium is well-known for its ability to degrade
a variety of hazardous pollutants owing to its lignin-degrading enzyme system [1]. It is a
basidiomycete and grows with the formation of basidiospores when cultured in liquid
medium [2]. Reactor as well as batch shake flask studies with the fungus confirms that the
production of the enzymes is dependent on physico-chemical parameters [3, 4] of the system
such as media composition, temperature, pH, agitation, etc. Among the enzymes produced
by this fungus, lignin peroxidase (LiP) has been shown to be important. Secretion of this
enzyme is understood to be mainly dependent on nutrient-limiting conditions and biomass
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growth and other physico-chemical factors such as agitation [5] and temperature [6], which
are also responsible for the biomass growth. However, there is no clear study undertaken to
elucidate variability in biomass growth and enzyme secretion kinetics of this environmen-
tally important fungus in relation with these physico-chemical factors, which may form the
basis for improved performance of the fungus for specific applications. Therefore, the aim of
the present study was to understand and model the biomass growth and LiP secretion
kinetics as a function of certain important physico-chemical variables such as glucose
concentration, nitrogen concentration, agitation, etc.

In literature, there are very few models for describing growth of fungus. For instance, the
growth model described by Peilin et al. [7] is based on the Monod–Jacob operon model and
takes into account the production of repressors and mRNA for the estimation of secondary
metabolites. However, the substrate depletion and growth rate were estimated using first-
and second- order differential relationships with biomass itself. It does not describe the
change in the biomass growth behavior caused by physico-chemical parameters. The model
provided by Sugden et al. [8] details on the mycelial growth of filamentous fungi and it
mainly depends on the accumulation of microtubule-transported vesicles containing nutri-
tion as well as their distribution near the hyphae in Neurospora crassa. Dynamics of growth
as well as substrate depletion was studied by Osorio et al. [9] with an unstructured Monod
and Leudeking–Piret model on Aspergillus flavipes, which is however restricted to the
determination of kinetic parameters of the system. In order to study the time evolution of
a system with many different time scales for its sub-processes, stochastic approach can be
more useful over the deterministic models considered mostly in the literature. In the present
work, a Monte Carlo method was developed to model three different processes such as
glucose consumption, cell division, and enzyme secretion by a non-specific fungus. The
results obtained from the model were compared with that of the experiments and a good
qualitative agreement was observed.

Experimental Methods

P. chrysosporium MTCC 787, purchased from IMTECH Chandigarh, India, was main-
tained at 25 °C on malt agar slants; for spore production, slants were maintained at
39 °C for 2–5 days in medium containing (grams per liter): 10 glucose, 10 malt
extract, 2 peptone, 2 yeast extract, 1 asparagine, 2 KH2PO4, 1 MgSO4·7H2O, 0.001
thiamin-HCl, and 20 agar.

Medium optimized by Kirk et al. [10] was initially used to subculture the fungus from
spores and later modified to include only glucose as the sole carbon source along with other
nutrients in the medium in order to study the effect of glucose and other parameters on the
fungal growth and LiP secretion kinetics. Thus the medium used was composed of Basal III
Medium (100 ml), glucose (10 g L−1), 0.1 M 2,2-dimethyl succinate (1.46 g L−1), thiamin
(0.001 g L−1), ammonium chloride (4.68 g L−1), 1 % Tween 80 (50 ml) and trace elements,
where the basal III medium contains KH2PO4 (20 g L−1), MgSO4 (5 g L−1), CaCl2 (1 g L−1)
and trace elements. Initial pH of the medium was set to 4.5.

During the experiments, the fungal samples were collected at 6-h intervals from the
medium and centrifuged to remove fungal spores. Fungal growth was measured by
counting the spores using a hemocytometer [11]. Biomass-free supernatants were
divided into two portions. While one portion was analyzed for LiP activity by the
fungus, the other portion was analyzed for glucose concentration. For glucose analy-
sis, dinitrosalicylate method was adopted by taking the absorbance of the color
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developed at 540 nm [12]. LiP activity was determined spectrophotometrically by the
oxidation of veratryl alcohol to veratraldehyde [10, 13, 14].

To determine the effect of initial glucose concentration, its level was varied in the range
5–25 g L−1 keeping the other media constituents at fixed level. All batch shake flasks
experiments in the study were carried out by incubating the flasks in an orbital incubator
shaker set at 30 °C and 150 rpm.

Results

It can be seen from Fig. 1 that the rate of consumption of glucose increased with initial
glucose concentration in the medium. In Fig. 2, the spore count is plotted against time for the
same initial glucose concentrations, which shows that the whole growth process has three
distinct phases with an initial lag phase during which the growth is slow and the
corresponding rate of glucose consumption is also less. It may be because of time taken to
adapt to the new environment due to introduction of the mature spores to another medium. It
can also be noticed that the duration of lag phase shortens as the initial glucose concentration
in the medium is high, because low glucose concentration corresponds to less availability of
glucose to a spore to consume. During the intermediate phase and the end of the lag phase, a
fast growth is observed corresponding to higher rate of glucose consumption due to the more
number of mature spores available for cell division to occur, besides the availability of
glucose in the medium. During the last phase or the saturation phase, the spore count reaches
a maximum value and remains almost constant over a longer period of time. By this time, the
glucose supplied to the medium is completely consumed by the spores, with no further cell
division possible. It is also observed that the maximum spore count is directly proportional
to the initial glucose concentration.

The LiP activity by the fungal culture is plotted against time in Fig. 3, where three distinct
phases can be observed. The first phase is of very low enzyme activity, which may be
because spores take time to adapt to the new environment it was inoculated and also they
sense presence of glucose. Hence, the production of enzymes was initially low. This phase is
short in the case of high initial glucose concentration in the medium that may be because of
faster consumption of glucose, Fig. 1 (inset), which causes spores to secrete enzymes at a
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higher rate as scarcity of glucose reaches faster at higher initial concentration. At the end of
this phase, enzyme activity increases rapidly denoting that most of the spores are producing
enzymes. At the last phase, the activity saturates as there was no more glucose as well as the
spore number is also not increasing.

Though growth mechanism and LiP activity of P. chrysosporium is characterized from
the results obtained in the controlled experiments, it is not clear what empirical laws
governed the growth and enzyme activity of this fungus. In order to have some idea about
these empirical laws behind the growth and enzyme activity, one needs to develop a model
assuming certain growth law and check that the model results reproduce qualitatively the
experimental results obtained.

Model

Based on the experimental findings, glucose seemed to influence both biomass growth and LiP
secretion by the fungus. A stochastic model of fungal growth and activity of the enzyme
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secreted by the fungus was developed in order to understand the experimental results obtained.
The model was developed taking into account that glucose is the sole source of carbon. The
growth process contains three major steps: (a) consumption of glucose, (b) cell division, and (c)
secretion of enzyme. A self-stabilized Monte Carlo algorithm [15, 16] has been developed in
order to study the time evolution of these processes. Initially, Ns(0) number of cells and NG(0)
number of glucose molecules were taken in a constant arbitrary volume V as the initial
parameters of the model. Glucose molecules are consumed by the cells during the growth. As
a consequence, the glucose concentration in the medium decreases with time t. The instanta-
neous glucose concentration in the medium at any time t is then given by:

Gt ¼ G0 1� nGðtÞ
NGð0Þ

� �
ð1Þ

whereG0 ¼ NGð0Þ=V is the initial glucose concentration and nGðtÞ ¼
Pt
i¼1

nGðiÞ is the number

of glucose molecules consumed upto time t. Twomain criteria for glucose consumption are: (1)
availability of a glucose molecule to a cell which is directly proportional to the instantaneous
glucose concentration Gt of the medium and (2) intake probability Pintake of a glucose
molecule by a cell which depends on the size of the cell. The size of a cell is defined as the
number of glucose molecules present inside the cell at a given time. A matured cell contains gc
amount of glucose and has all active primary functions. A cell of size less than a mature cell is
less probable to intake a glucose molecule than a cell of size more than that of a mature cell. The
probability that a cell will intake a glucose molecule is assumed to be a Poisson's distribution
and is given by

pintake / gr exp �grð Þ ð2Þ
where, gr ¼ g=gc is the relative cell size. The probability of glucose consumption is then given
by

pGC ¼ ΓGtpintake ð3Þ
where Г is the molar ability of attachment of a glucose to a cell. In order to make glucose
consume exactly with probability PGC, a Monte Carlo technique is adopted. In this method, a
random number r, uniformly distributed between 0 and 1, is called corresponding to that cell
and if r≤PGC, the glucose molecule is consumed by the cell otherwise it is left out. The number
of glucose molecules to be taken up by the cell is determined by the number glucose molecules
present in the system per cell. All the cells present in the medium at that time were called for
consumption of glucose.

Cell division is the process of release of daughter cells by the matured cells. It is assumed
in the model that the division of a cell solely depends on the size of a cell. The probability of
cell division is modeled by a sigmoidal growth probability distribution and is given as

pdiv ¼ 1

1þ e� g�gcð Þ=σd ð4Þ
where σd is the capability of cell division of a matured cell. Again, a Monte Carlo
technique is adopted to perform cell division exactly with the probability Pdiv. A
random number r was called and if r<Pdiv the cell was allowed to divide, otherwise
no cell division occurred. All mother cells (cells of the previous time step) were called
for cell division. It is known that P. chrysosporium, is a basidiomycete and grows by
forming basidiospores (multiple spores released at a single ejaculation). This
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phenomenon was incorporated in the model by the release of a number of daughter
cells at a time by the mother cell. The number of daughter cells to be produced
depends on its glucose content g. The glucose content of a cell is utilized as one
glucose molecule for the release of every daughter cell, cell division cost and one
glucose molecule for every new born daughter cell as initial glucose content.

It had already been established that P. chrysosporium produces LiP as secondary metab-
olite when glucose concentration in the medium is less [4]. It is also known that the activity
depends on the size of a cell for an underdeveloped cell [17]. In order to model the enzyme
activity, the cells are classified as developed and underdeveloped cells. A cell is considered
as a developed cell if it undergoes a cell division. The probability of an underdeveloped cell
to produce enzyme is given by

pE ¼ 1� Gt=G0ð Þ exp �Δg2i
� � ð5Þ

where 1� Gt=G0ð Þ , is the fractional glucose consumed from the medium, Δg2i ¼
gC � gð Þ= ffiffiffi

2
p

σE

� �2
, is the measure of deviation of size of a cell from the maturity and σE

is the ability of enzyme production by a cell. For a developed cell, the probability to produce
enzyme depends only on the scarcity of glucose in the medium and it is given by,

pE ¼ 1� Gt=G0ð Þ ð6Þ
The enzyme secretion is also modeled stochastically by adopting a MC technique. A

random number r, uniformly distributed between 0 and 1, is called corresponding to a cell
and if r≤PE certain amount of enzyme is released by the cell otherwise no enzyme is
released. Certain unit of glucose is reduced from the glucose content g of the cell as enzyme
production cost on the release of one unit enzyme. All the cells were called for the
production of enzyme. The three sub-processes, glucose consumption, cell division, and
release of enzyme constitute a single MC time step. The process stops on its own when either
there is no glucose to consume or no further cell division occurs.

In order to measure the enzyme activity, a simplified enzyme kinetic reaction is consid-
ered here as E þ S ! E þ P , where E stands for enzyme, S stands for substrate, and P
stands for product. The enzyme–substrate reaction rate should be proportional to the
concentrations of enzyme and substrate in the medium. Thus,

Rate ¼ ACECS ð7Þ
where A is a constant based on activation energy of the enzyme–substrate complex. As per
the collision theory [18], the value of A is given by,

A ¼ d2p
8kBT

pμ

� �1
2

exp
"

RT

	 

ð8Þ

where ε〉Εα, Εα is the activation energy for the current reaction, kB is the Boltzmann constant, R
is universal gas constant, T is the temperature, d is the average diameter of the two reacting
species called as collision distance, andμ is the reducedmass of the enzyme–substrate complex.
As the enzyme concentrationCE is known from theMC process, the rate could be calculated for
a given substrate concentration CS. The substrate concentration CS is usually kept much larger
than CE in the enzyme assay and hence, CS in the medium remains almost constant during the
assay period. The same condition is also maintained here to calculate the enzyme production
rate.
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Model Results and Comparison with Experiment

The model of biomass growth and enzyme activity is now studied for the parameters listed in
Table 1. Results obtained from the model are presented in Figs. 4, 5, and 6. The results are
shown to 5,000 MC steps to display the actual behavior, though the process stops at more
than 12,700 MC steps. The drop in glucose concentration CG in the medium is shown in
Fig. 4 against the MC time steps. The model result has depicted more or less the same nature
of the experimental data. It shows three different regimes in the consumption of glucose,
slow, rapid, and saturation. Initially, glucose consumption is found slow followed by a rapid
consumption. As time passes, more and more cells are produced and consumption is
increased. Finally, glucose concentration goes to a very low value. Glucose consumption
rate is also found higher for the higher initial glucose concentration in the medium as in the
experiment.

The growth of the cells at any time t is monitored by counting the number of cells per
single initial spore GN. It is plotted in Fig. 5 against the MC time steps. The growth of the
cells is also found similar to that of the experimental observations. However, it may be
noticed that the growth form observed in the model has a better agreement to the experi-
mental results at lower initial glucose concentration than that of higher initial glucose
concentration. The growth process has an initial lag phase followed by the rapid growth
and finally it saturates. Initial slow growth is due to less number of spores and saturation in

Table 1 Values of the parameters taken initially in the simulation

Parameter name Symbol Value

Medium volume is taken as V 107

Initial number of glucose molecules NG(0) 1–5×106

Initial number of spores Ns(0) 103

Mature cell gc 64

Molar attachment ability of glucose Γ 1

Capability of cell division of a matured cell σd 12

Ability of enzyme production by a cell σE 4

0 0552

Timestep x 10
2

0

0.1

0.2

0.3

0.4

0.5

C
g 0 25 50

Timestep x 10
2

0

0.5

1

C
g
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growth is due to non-availability of glucose in the medium. The saturation values are also
found directly proportional to the initial glucose concentration in the medium as in the
experiment (see inset of Fig. 5). The results then confirm that the sigmoidal growth adopted
here in a self-stabilized glucose medium is a suitable growth model for this fungus. One may
notice that the saturation growth regime is achieved by nearly 5,000 MC time steps for the
given parameter values whereas such a regime is achieved in the experiment by about 96 h.
One MC step is then approximately 1 min of experimental time.

In the experimental situation, enzyme activity is measured by performing enzyme assay.
However, enzyme activity here can be measured directly from the enzyme concentration of
the medium applying the rate Eq. (7). The enzyme concentration CE in the medium is plotted
in Fig. 6 against the MC time steps. Since at room temperature, the product conversion rate
per unit volume is directly proportional to the enzyme concentrationCE for a given substrate
concentrationCS, Fig. 6 can represent the rate versus time plot if multiplied by an appropriate
pre-factor. If the enzyme activity of 150 U L−1 obtained in the experiment correspond to
enzyme concentration 0.4 per unit volume in the simulation, the pre-factor in the rate
equation will be10−4. It may be noticed that enzyme concentration represents a similar
behavior to that obtained in the experiment with three different phases of activity. Since the

0 0552

Timestep x 10
2

0

0.002

0.004

0.006

C
E

Fig. 6 Enzyme concentration
(CE) obtained from the simulation
is plotted against MC time step
for different initial glucose con-
centrations as in Figs. 4 and 5
with same symbols

0 0552

Timestep x 10
2

0

100

200

300

G
N

0.1 0.2 0.3 0.4 0.5

Initial  C
g

0

100

200

300

G
N

Fig. 5 Plot of number of cells per
single initial spore (GN) against
MC time steps for different initial
glucose concentrations as in
Fig. 4 with same symbols

712 Appl Biochem Biotechnol (2012) 167:705–713



enzyme activity is qualitatively reproduced in this simulation, it may be concluded that the
enzyme secretion is appropriately modeled for this fungus.

Summary and Conclusion

The experiments performed varying the physico-chemical parameters has shown the behav-
ior of the fungus P. chrysosporium, in the controlled medium. The experiments suggest that
the biomass growth and LiP activity, both are dependent on the initial glucose concentration
of the medium. However, higher concentrations (>20 g L−1) of glucose may show different
effects. This can be attributed to the change in the cellular membrane capabilities of the cell
[17]. The maximum biomass growth varies almost linearly with the initial glucose concen-
tration of the medium, Fig. 2 (inset). LiP activity varies similarly with the initial glucose
concentration, Fig. 3, as the other parameters are kept constant. By the model developed, one
can observe qualitatively similar behavior as that observed in the experiments conducted
within the controlled medium for varying initial glucose concentrations. The constants
should be adjusted according to the experimental condition to obtain quantitative agreement
with the experimental data. Though the model produces results that qualitatively agree with
the experiments, the model should be improved incorporating other details such as cell
death, loss of enzyme, etc. The model can also be used for studying the behavior of similar
kind of fungal system by readjusting different parameters of the model.
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