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Abstract In this work, the mathematical optimization of a continuous flash fermentation
process for the production of biobutanol was studied. The process consists of three
interconnected units, as follows: fermentor, cell-retention system (tangential microfiltra-
tion), and vacuum flash vessel (responsible for the continuous recovery of butanol from the
broth). The objective of the optimization was to maximize butanol productivity for a
desired substrate conversion. Two strategies were compared for the optimization of the
process. In one of them, the process was represented by a deterministic model with kinetic
parameters determined experimentally and, in the other, by a statistical model obtained
using the factorial design technique combined with simulation. For both strategies, the
problem was written as a nonlinear programming problem and was solved with the
sequential quadratic programming technique. The results showed that despite the very
similar solutions obtained with both strategies, the problems found with the strategy using
the deterministic model, such as lack of convergence and high computational time, make
the use of the optimization strategy with the statistical model, which showed to be robust
and fast, more suitable for the flash fermentation process, being recommended for real-time
applications coupling optimization and control.
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Introduction

The optimized operation of butanol fermentation processes is essential to run a biobutanol
industry that can compete effectively with the current butanol derived from the
petrochemical route, once the acetone, butanol, and ethanol (ABE) fermentation, as
normally is called the fermentation to produce butanol, is characterized by its low
productivity. Product toxicity results in low butanol concentration in the reactor. In
addition, the use of dilute sugar solution results in large process volumes. Mainly because
of these problems and due to high costs related to the distillation of dilute product streams,
the production of biobutanol on a commercial scale has been considered to be
uneconomical [1, 2], when compared to the conventional petrochemical route, which is
currently responsible for all butanol produced worldwide. In order to turn the butanol
fermentation viable, experts suggest that the production cost must be less than US
$0.44 kg−1 [3]. Recently, DuPont (US) and BP (UK) announced their plans to produce
biobutanol. It is anticipated that the first plants would operate on sugar or corn starch;
however, it is likely that agricultural waste will become a potential substrate [2].

During the past two decades, a significant amount of research has been performed on the
development of alternative technologies designed to remove the butanol continuously from
the fermentation broth (e.g., adsorption, gas stripping, ionic liquids, liquid–liquid
extraction, pervaporation, aqueous two-phase separation, supercritical extraction, perstrac-
tion, etc.) [2]. These recovery techniques reduce the effect of product inhibition, allowing
an increase in the substrate concentration which results in a reduction in the process
streams, higher productivity, and lower distillation costs [4]. According to Qureshi and
Blaschek [3], pervaporative recovery significantly reduces the price of butanol production
from corn. From US$0.55 kg−1 when employing the batch fermentation and distillative
recovery, the production cost can drop to US$0.11–0.36 kg−1. In the process presented in
this study, the continuous recovery of butanol is carried out by the flash fermentation
technology [5–9] where the fermentor remains at atmospheric pressure while the broth is
circulated to a vacuum chamber where butanol is continuously boiled off.

A key factor for the optimization of a process is the understanding of the system’s
dynamics which can be obtained using an accurate mathematical model of the process [9].
This approach has been employed for the optimization of different ethanol fermentation
processes, including flash fermentation [6, 8–12]. However, the use of mathematical
modeling for the performance evaluation of ABE processes is scarce. Volesky and Votruba
[13] developed mathematical models for a fermentor operating in different modes and more
recently, Shi et al. [14] evaluated the performance of a continuous flash extractive process
in terms of productivity, energy requirement, and product purity. Other examples can be
found in Honda et al. [15] and Shukla et al. [16]. Furthermore, in the literature revised by
the authors of the present work, no study about the use of mathematical optimizers
employed to the ABE fermentation was found. For this reason, it is necessary to evaluate
the performance of mathematical optimization techniques for the ABE processes, which can
be a very useful tool in the search for economic feasibility of the biobutanol plants by
operating them in optimized conditions.

In the present study, the optimization problem is written as a nonlinear programming
problem and is solved with the sequential quadratic programming (SQP) technique. Two
approaches to model the system are evaluated when the process is optimized using the SQP
technique. The first one is a deterministic model with the kinetic parameters determined
experimentally by Mulchandani and Volesky [17], and the second one is a statistical model
obtained using the factorial design technique combined with simulation.
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Materials and Methods

Process Description

Figure 1 depicts the flash fermentation process, which consists of three interconnected
units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum
flash vessel. The process starts as a conventional continuous fermentation until steady state
is reached, then the flash tank separation system is turned on where a partial separation of
the solvents and water mixture occurs. The liquid fraction returns to the fermentor and the
vapor fraction (after condensation) plus the purge and permeate streams will compose the
final stream that is sent to distillation.

Originally, this process was developed for ethanol fermentation in laboratory scale at the
Laboratory of Bioprocess Engineering (FEA/UNICAMP). This laboratory has wide
experience in the study of ethanol fermentation processes. Among them, the process
developed using mathematical modeling by Andrietta and Maugeri [10] stands out. Later
this process was implemented in several large-scale Brazilian distilleries (Guarani, Costa
Pinto and others).

The efficiency of the flash fermentation process was experimentally validated for ethanol
fermentation [18] and these experimental results are in agreement with previous works
based on mathematical modeling and computer simulation that demonstrated the technical
feasibility of the continuous flash fermentation for ethanol fermentation [6–9].

In this study, the use of the flash fermentation technology is proposed for the ABE
fermentation. The study is carried out through computer simulation of a mathematical
model based on experimental kinetic parameters [17], thus ensuring the physical meaning
of the simulations.
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Fig. 1 General scheme
of the continuous flash
fermentation process
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Deterministic Model of the Process

Assuming constant volume, the mass balance equations for the fermentor are given by
Eqs. 1, 2, 3, 4, and 5 where the kinetic parameters were determined experimentally by
Mulchandani and Volesky [17], whose model was developed on the basis of the following
assumptions:

1. Carbon substrate (glucose) limitation only.
2. No nitrogen and nutrient limitation.
3. Product inhibition.
4. Acetic acid and butyric acid are intermediate metabolites and are reduced to acetone

and butanol, respectively.
5. Acetone and butanol are also synthesized directly from carbon substrate.
6. Ethanol is synthesized from carbon substrate only.
7. Fermentation is performed at (a) optimal temperature of 37 °C, (b) optimal pH of 4.5,

and (c) under anaerobic conditions.
8. All the cells (Clostridium acetobutylicum) are metabolically active and viable.

These experiments were carried out in steady-state mode in a cell-retention culture
apparatus (laboratory scale) which consisted of an in situ solid–liquid separation
mechanism [17]. Inlet substrate concentration (glucose) was 35.0 g/L and the dilution rate
was 0.089 h−1.

dX

dt
¼ rx � FPU þ Fð Þ

V
X þ Fr

V
Xr þ Fre

V
Xc þ F0

V
X0; ð1Þ

dS

dt
¼ rs � FPU þ F � Freð Þ

V
S þ Fr

V
Sr þ F0

V
S0; ð2Þ

dPi

dt
¼ rPi �

FPU þ F � Freð Þ
V

Pi þ Fr

V
Pri þ F0

V
P0i ð3Þ

where “i” stands for butanol, acetone, ethanol, butyric acid, and acetic acid.

FP ¼ F0 � FPU � FV; ð4Þ

F ¼ FP þ Fre þ Fc: ð5Þ
The dynamics of the flash tank are much faster than that of the fermentation process, so a
“pseudo” steady state was assumed for the flash tank. The mass balance over the flash tank
is given by Eq. 6:

Fc ¼ FV þ Fr: ð6Þ

The modeling of the flash tank was based on the isothermal and isobaric evaporation
model proposed by Sandler [19] and a multicomponent system (water, butanol, acetone,
ethanol, acetic acid, and butyric acid) was considered. The vapor–liquid equilibrium of the
mixture was calculated by Eq. 7; the value of Psat

i was calculated by Antoine’s equation and
the value of the activity coefficient (γι) was calculated by the universal quasichemical
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(UNIQUAC) model. The results generated by the model of the flash tank were validated by
the HYSYS® simulator.

Ki ¼ yi
xi

¼ gi
Psat
i

P
ð7Þ

Eqs. 1, 2, 3, 4, 5, 6, and 7 were solved using a FORTRAN program with integration with an
algorithm based on the fourth-order Runge–Kutta method.

Figures 2 and 3 show the dynamic behavior of the flash continuous fermentation
process. At the time when the flash system is switched on, significant changes in the
process parameters are observed. The concentration of butanol in the fermentor lowers,
what represents a significant reduction in the inhibitory effect, and as a consequence,
biomass concentration increases, resulting in a higher conversion of substrate.

The operating conditions considered for the ABE fermentation are listed in Table 1. An
industrial process scale was taken into account for the design.

Statistical Model of the Process

Two statistical models of the process were obtained by simulating the deterministic model
(Eqs. 1, 2, 3, 4, 5, 6, and 7) following the factorial design of 24 plus star configuration (25
simulations) with the most relevant variables: inlet substrate concentration (S0), residence
time (tr), purge flow (FPU), and the inlet flash tank flow (Fc), determined by a previous
parametric analysis. The observed responses were steady-state butanol productivity and
yield and substrate conversion.

Table 2 shows the coded factor levels and real values for the variables considered in the
factorial design. Different operating ranges were considered for each statistical model in
order to evaluate the influence of the ranges on the performance of a statistical model in the
optimization problem. As the most attractive characteristic of the technologies for
continuous butanol recovery from the fermentation broth is the increase of productivity
by processing a concentrated feed stream, the range of the substrate concentration chosen
(120–160/170 g/L) was considerably higher than the typical maximum concentration found
in batch processes (60 g/L) [2].

In the simulations, the fresh medium flow rate (F0) was considered constant (100 m3/h),
so that variations in residence time led to variations in the fermentor volume.
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The performance of the SQP optimizer was evaluated for both statistical models. After
the solution of the optimization problem, the optimal values of S0, tr, FPU, and Fc were used
in the deterministic model to determine if the statistical predictions for optimal productivity
present deviations from the values calculated by the deterministic model.

Optimization of the Process

Two strategies were compared for the optimization of the process. In the first one, the
process was represented by the statistical model 1 or 2, and in the second, by the
deterministic model. For all cases, the optimization problem was solved with the SQP
technique.

The variables considered for optimization were the same as those considered for the
formulation of the statistical models: inlet substrate concentration (S0), residence time (tr),
purge flow (FPU), and the inlet flash tank flow (Fc).

The objective of the optimization problem is to maximize butanol productivity for a
desired conversion. Productivity and conversion were defined as:

Butanol productivity g= L hð Þð Þ ¼ FPU � Pbut þ FP � Pbut þ FV � Pvbut

V
; ð8Þ

Conversion %ð Þ ¼ S0 � S

S0
100: ð9Þ

Parameter Value Unit

V 400 m3

F0 100 m3/h
S0 145 g/L
FPU 29 m3/h
Fc 400 m3/h
Tferm 37 °C
Tflash 37 °C
Pflash 6.50 kPa

Table 1 Operating conditions
of the continuous flash
fermentation process.
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The optimization problem can be written as follows:

Max Butanol produtivity Eq: 8ð Þð Þ ð10Þ

subject to:

Conversion � a desired value betwen 93% and 98%ð Þ; ð11Þ

120 < S0 < 200g=L; ð12Þ

3:0 < tr < 5:0 h; ð13Þ

25 < FPU < 33m3
�
h; ð14Þ

200 < Fc < 500m3
�
h; ð15Þ

Model equations : steady� state: ð16Þ
For the optimization of the statistical models, the constraints for the operating variables

(S0, tr, FPU, and Fc) are given by the upper and lower levels considered in the factorial
design (Table 2).

The optimization problem was solved with the subroutine DNCONF of the IMSL math
library of FORTRAN in a computer with an Intel Pentium 4 (3.0 GHz) processor and
1.0 GB RAM memory.

The SQP method is a known deterministic optimization method, based on iterative
formulation and on the solution of quadratic programming subproblems. The subproblems
are obtained using quadratic approximation of the Lagrangian and by linearizing the
constraints. The augmented Lagrangian is the objective function less the sum of the active
constraints multiplied by their respective estimated Lagrange multipliers. The Hessian of
the augmented Lagrangian and the Jacobian of the active constraints compose a linear

Table 2 Coded factor levels and real values for the central composite rotatable design—24+star
configuration.

Statistical model 1 Statistical model 2

S0 (g/L) tr (h) FPU (m3/h) Fc (m
3/h) S0 (g/L) tr (h) FPU (m3/h) Fc (m

3/h)

Level +2 170 5.0 33 500 160 4.500 30.00 500
Level +1 157.5 4.5 31 450 150 4.125 28.75 475
Central point (0) 145 4.0 29 400 140 3.750 27.50 450
Level −1 132.5 3.5 27 350 130 3.375 26.25 425
Level −2 120 3.0 25 300 120 3.000 25.00 400

Pflash=6.50 kPa
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system, whose solution determines the search direction (line search) and then the new point
(butanol productivity) [20].

Results and Discussion

Two statistical models (Eqs. 17, 18, 19, 20, 21, and 22) were obtained from the factorial
designs (Table 2) using the software Statistica (Statsoft, v. 7.0). They consist of second-
order algebraic equations (Eqs. 17, 18, 19, 20, 21, and 22) representing butanol yield and
productivity and sugar conversion where only the significant effects were considered
(significance level of 95%). The equations represent in a predictive way the process
performance as functions of S0, tr, FPU, and Fc, which are the variables to be manipulated.
Tables 3 and 4 show the analysis of variance (ANOVA) for statistical models 1 and 2,
respectively. They present high correlation coefficients (higher than 0.91) and the models
can be considered statistically significant according to the F test with 95% of confidence,
since the calculated values were at least more than six times greater than the listed value. As
a rule of thumb, a model has statistical significance if the calculated F value is at least three
to five times greater than the listed value [11, 21]. The very good prediction accuracy of the
statistical models can be visualized with the comparison between the yield, productivity,
and conversion predicted by the statistical models and that calculated by the deterministic
model (Fig. 4).

It is important to explain that the statistical models are in coded form for the factors, i.e.,
when yield, productivity, and conversion are to be calculated, coded values of S0, tr, FPU,
and Fc (values inside the interval [−2.0, 2.0]) must be used, and not the real (decoded)
values for these variables.

Statistical Model 1

Butanol yield ¼ 19:90� 0:050 S0 � 0:27299S20 þ 0:53333 tr � 0:09792 t2r

� 0:28333FPU þ 0:2333Fc � 0:17292F2
c þ 0:250 S0 tr

� 0:1375 S0 FPU þ 0:375 S0 Fc þ 0:0375 tr FPU � 0:125 tr Fc

þ 0:0625FPU Fc; ð17Þ

Butanol prod ¼ 7:21þ 0:58042 S0 � 0:09969 S20 � 0:70375 tr þ 0:05531 t2r

� 0:10708FPU þ 0:097083Fc � 0:062187F2
c þ 0:031875 S0 tr

� 0:059375 S0 FPU þ 0:148125 S0 Fc þ 0:031875 tr FPU

� 0:055625 tr Fc; ð18Þ

Conversion ¼ 92:5� 4:9333 S0 � 1:21875 S20 þ 2:04167 tr � 0:39375 t2r

� 1:08333FPU þ 3:375Fc � 0:86875F2
c þ 0:76250 S0tr

� 0:4125 S0 FPU þ 1:8125 S0 Fc: ð19Þ
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Statistical Model 2

Butanol yield ¼ 19:6þ 0:32083 S0 þ 0:20417 tr � 0:1375FPU � 0:07917Fc

þ 0:15625 S0Tr þ 0:09375 S0 Fc; ð20Þ

Butanol prod ¼ 7:32þ 0:64875 S0 � 0:652917 tr þ 0:053437 t2r � 0:040417FPU

� 0:017083Fc � 0:025625 S0FPU; ð21Þ

Conversion ¼ 95:6� 2:00417 S0 � 0:54687 S20 þ 1:05417 tr � 0:17187 t2r

� 0:47088FPU þ 0:72917Fc þ 0:49375 S0tr � 0:23125 S0 FPU

þ 0:43125 S0Fc � 0:15625 tr Fc: ð22Þ

Solutions of the optimization problem for both strategies: (1) SQP+statistical model 1 or
2 and (2) SQP+deterministic model, are presented in Table 5.

For strategy 1, the optimization problem was solved for each desired minimal conversion
(values between 93% and 98%) being the solutions extremely fast, demanding up to 1 s for
convergence. For the great majority of cases, the optimal values calculated were the same,
independently of the initial guesses tested. The unique exception occurred with statistical
model 2 for a conversion of 98%. For this case, Table 5 shows the results when the initial
guess was the lower bound (S0=120 g/L; tr=3.0 h; FPU=25 m3/h; Fc=400 m3/h). For the
other initial guesses, the results were: S0=144.2 g/L; tr=3.9 h; FPU=25 m3/h; Fc=500 m3/h;
Prod But=7.39 g/(L h); Rend But=20.0%; Conv=98%. However, these results present a
higher deviation from the values determined by the deterministic model (Prod But=7.31 g/(L h);
Rend But=19.8%; Conv=96.9%.) when fed with the values of the optimized variables
determined by the statistical model.

The dependence of the solution on the initial guess shows one of the disadvantages of
the SQP technique: the optimization algorithm can reach a local maximum [9, 22].
Nevertheless, the local optimizer SQP, benefited from the fact that the statistical models are
simple algebraic equations, had an excellent performance in finding optimal solutions
independently of the initial estimates for most of the cases evaluated.

Table 3 ANOVA of statistical model 1.

Source of variation Sum of squares Mean square Degrees of
freedom

F value

Yield Prod Conv Yield Prod Conv Yield Prod Conv

Regression 15.5 21.4 1,084.2 1.11 1.53 77.4 14 289.0 702.0 462.3
Residual 0.038 0.022 1.675 0.0038 0.0022 0.167 10
Total 15.53 21.45 1,085.9 24
Correlation
coefficient (R)

0.994 0.998 0.996

F listed value F14,10=2.86 (95%)
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For the sake of comparison, Table 5 also shows, in parenthesis, the process performance
calculated by the deterministic model when using as input values the optimized variables
(S0, tr, FPU, and Fc) determined by the optimization of the statistical models. The results for
productivity, yield, and conversion are very close, confirming the statistical significance of
the models.

For every solution, the value of the purge flow (FPU) was 25 m3/h. FPU is the variable
that directly influences the biomass concentration. Simulations of the deterministic model
show that for the operating ranges given by Eqs. 12, 13, 14, and 15, a maximum biomass
concentration of around 30 g/L (value recommended by Tashiro et al. [23] in order to avoid
bubbling and broth outflow) is achieved with a purge flow of 25 m3/h. Then, the purge flow
is decisive to keep the system running with an optimized biomass concentration, and once
the product formation is proportional to the number of cells present, the lower the purge
flow, the higher the volumetric productivity of the fermentor. Similarly, for most of the
cases, the values calculated for the feed flow rate of the flash tank (Fc) corresponds to
the upper bound of 500 m3/h. According to simulations of the deterministic model, the
extraction of butanol from the fermentor is maximized with this value of Fc. Varying it, for
example, to 450 m3/h, the concentration of butanol in the fermentor increases from 7.5 to
8.0 g/L (for an inlet sugar concentration of 155 g/L), thus intensifying the inhibitory effect
to the cells and consequently lowering productivity. It is important to stress that values of
Fc higher than 500 m3/h can cause the fermentor to empty, since for these operating
conditions, the resulting vapor flow plus the other outlet flows (Fp and FPU) can be greater
than the system feed flow (F0=100 m3/h).

Another point to be discussed is the difference between the solutions obtained with
statistical models 1 and 2 (Table 5). Although both models had statistical significance, the
solutions with model 2 are practically the same as those obtained with the deterministic
model (strategy 2), while the optimization with model 1 led to different values and lower
productivity. It demonstrates that the performance of a statistical model in an optimization
problem can be influenced by the choice of the bounds of the operating variables used in
the factorial design. Thus, the model built with the narrower bounds (model 2) had a clear
better performance.

The results of the optimization using the SQP technique with the deterministic model
(strategy 2) are presented in Table 5. Solutions were only obtained for minimal conversions
of 93% and 95%, and for these cases, convergence only occurred when the initial guesses
were normalized to the interval [0, 1] where 0 and 1 stand for the lower and upper bounds,
respectively. In relation to computational effort, the time elapsed for solution was around
20 min.

Table 4 ANOVA of statistical model 2.

Source of
variation

Sum of squares Mean square Degrees of
freedom

F value

Yield Prod Conv Yield Prod Conv Yield Prod Conv

Regression 4.8679 20.501 155.56 0.3477 1.4644 11.111 14 19.05 1,076.8 231.1
Residual 0.1825 0.0136 0.4808 0.0182 0.0014 0.0481 10
Total 5.0504 20.515 156.04 24
Correlation
coefficient (R)

0.913 0.998 0.993

F listed value F14,10=2.86 (95%)
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With two different initial guesses: [S0=156.7 g/L; tr=3.76 h; FPU=25 m3/h; Fc=500 m3/h]
and [S0=176.0 g/L; tr=3.60 h; FPU=28.2 m3/h; Fc=380 m3/h], the same solution for the
minimal conversion of 95% was achieved. This can indicate that the solution corresponds to a
global maximum. It is interesting to note that the first initial guess corresponds to the solution
obtained with statistical model 1. In the same way, the initial guess used in the solution for
the case of minimal conversion of 93% was the solution obtained with statistical model 2.
Unfortunately, this conjunction between the two strategies of optimization did not work out
for the other cases (Conv≥94%, 96%, 97%, and 98%), which would be very interesting once
the optimizer only accomplished convergence with the initial guesses listed in this paragraph.
For the other 30 initial guesses tested for each case and for attempts considering constraints
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Fig. 4 Comparison between yield, productivity, and conversion obtained by statistical models 1 (a, b, and c)
and 2 (d, e, and f) and the deterministic model
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with narrower bounds (Eqs. 12, 13, 14, and 15), the following fatal error occurred in the
calculations of the subroutine DNCONF: “Error 2: The line search used more than five
function calls,” thus stopping the optimization without any solution. An explanation to this
error is that the optimization strategy 2 is a problem of high dimension since its equality
constraints is composed of differential equations (deterministic model). The use of differential

Table 5 Process optimization using the SQP technique.

Optimization strategy 1 Optimization strategy 2

SQP+statistical model 1 SQP+statistical model 2 SQP+deterministic model

Conv≥93%
S0 (g/L) 157.7 152.14 151.2
tr (h) 3.5 3.0 3.0
FPU (m3/h) 25 25 25
Fc (m

3/h) 500 500 500
Prod But g/(L h) 9.06 (9.10) 9.85 (9.91) 9.85
Rend But (%) 20.1 (20.2) 19.5 (19.6) 19.5
Conv (%) 93.0 (93.6) 93.0 (92.7) 93.0
Conv≥95%
S0 (g/L) 156.7 144.3 142.9
tr (h) 3.76 3.0 3.0
FPU (m3/h) 25 25 25
Fc (m

3/h) 500 500 500
Prod But g/(L h) 8.61 (8.49) 9.19 (9.33) 9.21
Rend But (%) 20.4 (20.4) 19.4 (19.4) 19.3
Conv (%) 95.0 (94.8) 95.0 (94.7) 95.0
Conv≥96%
S0 (g/L) 156.2 138.9 No convergence
tr (h) 3.90 3.0
FPU (m3/h) 25 25
Fc (m

3/h) 500 500
Prod But g/(L h) 8.34 (8.19) 8.81 (8.90)
Rend But (%) 20.7 (20.4) 19.3 (19.2)
Conv (%) 96.0 (95.3) 96.0 (95.7)
Conv≥97%
S0 (g/L) 155.7 134.4 No convergence
tr (h) 4.07 3.14
FPU (m3/h) 25 25
Fc (m

3/h) 500 500
Prod But g/(L h) 8.03 (7.84) 8.17 (8.17)
Rend But (%) 20.7 (20.5) 19.2 (19.1)
Conv (%) 97.0 (95.8) 97.0 (96.6)
Conv≥98%
S0 (g/L) 155.4 129.0 No convergence
tr (h) 4.26 4.44
FPU (m3/h) 25 25
Fc (m

3/h) 500 400
Prod But g/(L h) 7.66 (7.50) 5.64 (5.69)
Rend But (%) 20.8 (20.6) 19.9 (19.6)
Conv (%) 98.0 (96.2) 98.0 (97.6)

The values in parenthesis correspond to the process performance determined by the deterministic model
when fed with the values of the optimized variables determined by the statistical model
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equations as constraints in an optimization problem makes its solution by the SQP optimizer
difficult and increases the incidence of convergence problems [9, 22, 24].

The performance of the optimized process shows that the flash fermentation technology
is characterized by its high productivity when compared to traditional continuous processes,
as verified for ethanol fermentation via computational simulation and experimentally [6–9,
18]. For the case of the minimal conversion of 95%, simulation with the deterministic
model with optimized variables shows that the total solvents productivity (butanol plus
acetone and ethanol) is 15.5 g/L h, which is expressively higher than that obtained in other
processes such as batch ones with solvents productivity limited to less than 0.50 g/L h and
continuous ones with cell recycle, whose value is up to 6.5 g/L h [2]. Moreover, with the
final butanol concentration (sum of the outlet streams Fv, Fp, and FPU) achieved (27.6 g/L),
the energy costs in the distillation stage can be halved according to Phillips and Humphrey
[25]. However, for a higher degree of conversion such as 98%, the solvents productivity
drops to 9.36 g/L h (decrease of 39.6%), as determined by optimization strategy 1. This
significant decrease in productivity in order to guarantee a more restricted level of
conversion also occurred when the continuous flash fermentation was employed for ethanol
fermentation [9]. The decision on which operating conditions the process is more profitable
must be based on an economic analysis covering the raw material cost and the selling price
of the solvents, but this is beyond the scope of the current paper. In relation to the solvents
yield, the result was 31.8% (value obtained with the deterministic model for a minimal
conversion of 95%), which is inside the typical range of 29% to 34% for industrial-scale
processes found throughout the world in the last century [13, 26, 27]. These results indicate
that the flash fermentation process can be a promising technology for the biobutanol
industry.

Comparing the solutions obtained with the optimization strategies (1) SQP+statistical
model 2 and (2) SQP+deterministic model (Table 5), for the two cases (Conv≥93 and 95%)
that strategy 2 achieved convergence, the results were practically the same. The
performance of the strategies were also compared for another optimization problem where
the operating variables found optimize productivity for a given inlet sugar concentration
(Table 6). Again, strategy 2 had problems of convergence, but for the only two cases whose
solutions were obtained, very similar optimized operating conditions were obtained with
both strategies, thus corroborating the capability of strategy 1 to solve the optimization
problem trustfully.

Once both optimization strategies presented very similar solutions, the problems found
with strategy 2 (SQP+deterministic model), such as lack of convergence and high
computational time, make the use of optimization strategy 1 (SQP+statistical model),
which showed to be robust and fast, more suitable for the flash fermentation process.

Fast optimization strategies with good prediction capabilities such as strategy 1 are
always welcome especially for real-time applications coupling optimization and control.
The time required to predict the values of the variables was extremely short with the
statistical model (since it is a simple algebraic equation), so that it may be used in
algorithms which require thousands of evaluations in a very limited time with low
computational burden. In this way, the real-time process integration could be carried out,
for example, with the two-layer approach where the optimization layer is responsible for the
calculations of the set points to the controller.

Finally, due to the renewed interest in the biobutanol fermentation caused by the “green
chemistry” movement and by the oil price rise, lately, this process has experienced
significant improvements, among them the development of new in situ product removal
technologies. Thus, in this context, mathematical optimizers can be an important tool to
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extract the maximum performance of these new processes, summing up the efforts to turn
the biobutanol industry commercially viable.

Nomenclature

F0 fresh broth flow rate, m3/h
F fermentor outflow rate, m3/h
Fc flash tank inlet flow rate, m3/h
Fp permeate flow rate, m3/h
FPU fermentor purge flow rate, m3/h
Fr flash tank liquid outlet flow rate, m3/h
Fre return stream flow rate, m3/h
Fv flash tank vapor outlet flow rate, m3/h
Ki equilibrium constant
Pflash flash tank pressure, kPa
Psat
i vapor pressure of component i, kPa

P0 inlet product concentration, g/L
Pi fermentor product concentration, g/L
Pr product concentration in the flash tank liquid outlet flow, g/L
Pv product concentration in the flash tank vapor outlet flow, g/L
rx rate of cell growth, g/L h
rs rate of substrate utilization, g/L h
rPi rate of products production, g/L h
S0 inlet substrate concentration, g/L
S fermentor substrate concentration, g/L

Table 6 Process optimization for different inlet sugar concentrations (S0) using the SQP technique.

Optimization Strategy 1 Optimization Strategy 2
SQP+statistical model 2 SQP+deterministic model

Conv≥95% for S0=140 g/L
tr (h) 3.0 3.0
FPU (m3/h) 25 25
Fc (m

3/h) 493 500
Prod But g/(L h) 8.89 (8.99) 8.98
Rend But (%) 19.3 (19.3) 19.2
Conv (%) 95.0 (95.3) 95.5
Conv ≥96% for S0=160 g/L
tr (h) 4.19 4.5
FPU (m3/h) 25 25
Fc (m

3/h) 500 500
Prod But g/(L h) 8.07 (7.93) 7.44
Rend But (%) 21.3 (20.8) 20.9
Conv (%) 96.0 (95.3) 96.0

The values in parenthesis correspond to the process performance determined by the deterministic model
when fed with the values of the optimized variables determined by the statistical model
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Sr substrate concentration in the flash tank liquid outlet flow, g/L
Sv substrate concentration in the flash tank vapor outlet flow, g/L
Tferm fermentor temperature, °C
Tflash flash tank temperature, °C
tr residence time, h
V volume of the fermentor, m3

xi liquid molar fraction of component i
X0 inlet biomass concentration, g/L
X fermentor biomass concentration, g/L
Xc biomass concentration in the flash tank inlet flow, g/L
Xp biomass concentration in the permeate, g/L
Xv biomass concentration in the flash tank vapor outlet flow, g/L
yi vapor molar fraction of component i
γi activity coefficient
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