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Abstract
Many critical components like turbine blades, and high-speed trains exposed to particle wear in the environment can be pro-
duced using metal additive manufacturing. This paper focuses on studying the particle erosion behavior of 316L stainless steel
components built by Direct Energy Deposition (DED) and subsequent precision machining using wire Electrical Discharge
machining (wire EDM). Focus on critical factors wire EDM speed, current, and wire diameter, the experiment is conducted
using the L9 orthogonal array generated and Minitab is used for statistical analysis. This statistical analysis aims to improve
the surface finish of the machined component. Further, the study is extended to analyze the material wear resistance using
a slurry erosion wear test on specimens cut by wire EDM. Initially wear analysis was performed using Minitab to find the
influential parameter on wear rate and then data analysis techniques such as Linear Regression, K Nearest Neighbor Algo-
rithm, and Artificial Neural Network were used to create a model that predicts the wear rate accurately which may reduce lot
of experimentation time and cost. This paper successfully analyzed the particle erosion behavior of 316L Stainless steel parts
manufactured through the DED technique and refined using the wire EDM machining process. The surface roughness of the
samples is improved by performing the statistical analysis using Minitab software. The developed machine learning models
demonstrated the potential in terms of reduction of cost and experimentation time by the accurate wear rate prediction.
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1 Introduction

3D printing or Additive manufacturing is a non-traditional
technique that is used to create 3D objects by adding mate-
rial layer by layer. Complex shapes and customization of
designwith different materials such asmetal, plastic, or com-
posite materials are possible with additive manufacturing
compared to conventional manufacturing techniques. Due to
the above advantages, the applications of 3D printing have
increased in different fields such as medical, defense, aero-
nautical, and automotive industries [1, 2]. DED is a metal
additive manufacturing technique suitable for many defense
applications such as repairing large components or parts for
aircraft and military vehicles [3–6] and non-structural appli-
cations [7]. Different difficulties of DED techniques while
producing large components with high deposition rates with
the minimum cost are discussed in [8, 9]. High precision is
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required to manufacture engineering structures which leads
to an increase in the application of Gas metal arc-based DED
[10–13].

SS316L is the highest used steel in many industrial appli-
cations such as the gas and oil industry, power plants, ships,
medical implants, chemical, automotive, and food process-
ing industries [14, 15]. Qualities of SS316L such as better
mechanical properties, weldability, resistance to corrosion,
and fabricability promote its use in nuclear reactors [16–19].
Characterization ofSS316L fabricated using Wire arc addi-
tive manufacture (WAAM) based on cold metal transfer
(CMT) in terms of microstructure study and mechanical
properties study [20]. The wear analysis of SS316L and
SS347 are reported to understand the wear characteristics
in terms of wear resistance and COF (coefficient of friction)
[21–23].

The applications of machine learning techniques [24–28]
for predicting the mechanical properties of materials like
aluminum composites and molybdenum-coated steel repre-
sents a significant advancement in materials science. These
techniques (Linear Regression, KNN, ANN, etc.) lever-
age data-driven approaches to model complex relationships
between input variables (e.g., composition, processing con-
ditions) and output properties (e.g., strength, hardness, wear
resistance).

Fundamentals of Slurry Erosion Wear Testing Slurry
erosion wear testing involves subjecting materials to con-
trolled abrasive conditions that simulate real-world operating
environments. The test typically consists of exposing a
specimen to a slurry mixture containing abrasive particles
under controlled flow rates, temperatures, and other rele-
vant parameters [29–34]. The erosive impact of the slurry
on the specimen surface leads to material removal, which
is quantitatively measured to determine the wear rate and
erosion resistance of the material. Various testing method-
ologies, including jet impingement, rotating cylinder, and
impeller erosion tests, are employed based on specific appli-
cation requirements and research objectives. The choice of
testing methodology and test parameters depends on factors
such as the intended application, material properties, and the
desired level of simulation fidelity. The schematic diagram
od slurry wear mechanism is shown in Fig. 1.

2 Problem statement and objectives

The main problem faced by the critical components wear
behavior when exposed to the particle wear environment is
unpredictable which may lead to entire system failure. So,
the objective of this study is to investigate the wear behavior
of SS316L parts fabricated using direct energy deposition
(DED) and subjected to slurry erosion and also to find the

Fig. 1 Slurry wear mechanism

impact of process parameters such as speed, current, and off-
set on the microstructure and mechanical properties of the
fabricated parts. This analysis is quite challenging because
it has to consider many factors simultaneously which is
time-consuming. So, the machine learning algorithms are
proposed to reliability of the parts by proper prediction of
performance characteristics of the additively manufactured
components. The main objective of this paper is to predict
the wear behavior of SS316L parts fabricated using direct
energy deposition (DED) by achieving the following tasks.

• SS316L Specimen preparation using Direct Energy Depo-
sition method.

• Cutting of specimen using wire Electrical Discharge
Machining process.

• Optimization of Cutting parameters using wire EDM
method.

• Microstructure study of SS316L Specimen.
• Conduct slurry erosion wear tests to quantify erosion
rates andmaterial loss, examiningwearmechanisms under
varying slurry conditions.

• Study the microstructure of the specimen after the erosion
wear test.

• Prediction of wear rate usingmachine learning algorithms.
• Optimizing the slurry conditions.

3 Methodology

The methodology of this study is explained using a flowchart
which is shown in Fig. 2 that includes the following steps.

1. The dimensions of 30 mm*30 mm*6 mm SS316L alloy
samples are prepared using the Direct Energy Deposition
method.
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Fig. 2 Flowchart

2. The samples shown in Fig. 3 are cut into 9 pieces by
varying the process parameters speed, current, and offset
using an L9 orthogonal array. The surface finish of the
machined surface is measured which is shown in Table 1.

3. Statistical analysis of the wire EDM process parameters
to find the influential parameter on surface roughness
using the Regression equation and ANOVA table in
Minitab.

4. Then the samples cut by wire EDM used for slurry
erosion wear testing are shown in Fig. 3 by varying
the parameters speed, slurry concentration, and angle of
impact.

5. Collection of data for the statistical analysis and for the
machine learning model

6. Models using machine learning algorithms can be used
for prediction of wear rate which helps to enhance the
predictive maintenance of the critical parts for improving
the reliability.

4 Machine learning algorithms

ML-based Predictive maintenance is one the main appli-
cations of machine learning in mechanical science which
analyse the experimental data from machinery and equip-
ment using different machine learning algorithms. Machine

Learning algorithms classified as supervised and unsuper-
vised based on the data. If the data is labelled then list of
supervised algorithms are suggested otherwise unsupervised
algorithms are suggested for unlabelled data for clustering.
In this study the experimental data contains both input and
output and also output is a continuous value, so it is cate-
gorised as labelled data so the list of supervised regression
algorithms such as linear regression, K Nearest Neighbour
algorithm and Artificial Neural Network are used for the pre-
diction of wear rate.

4.1 Artificial neural network

Artificial neural networks (ANNs) shown in Fig. 4 imitate
the human brain; they create networks similar to the brain
neuron connections. ANN gives solutions for complex prob-
lems in different fields including mechanical engineering.
ANN network is organised by many layers interconnected
to each other through nodes. This network brilliantly learns
the relation between input and output parameters and makes
decisions based on the learning for the new inputs.

4.2 K-nearest neighbours algorithm

A classification problem solved using KNN is demonstrated
using Fig. 5. This algorithm makes predictions based on fre-
quent occurrence class or average of k nearest neighbours for
any new data input. Different equations such as Euclidean
distance, Manhattan distance or cosine similarity is used to
find the nearest neighbours. This algorithm is capable of
handling both classification and regression problems. The
frequent occurrence class of nearest neighbour is assigned for
classification problems and an average of nearest neighbours
is considered for the regression problems. The disadvantages
of these algorithms are computational complexity and mis-
predictions with noisy data.

4.3 Linear regression

Linear Regression shown in Fig. 6, is a very old machine
learning technique used for prediction and understanding the
relationship between input and output variables. The objec-
tive of linear regression is to find the relation between one
dependent variable (output) and one or more independent
variables (input) by fitting the straight line (linear) through
the data points. The training of themodel involves the process
of finding the coefficients of the linear equation which min-
imizes the actual output with predicted output which can be
achieved by minimising the least square error. The obtained
coefficients represent the slope of the fitted line.
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Fig. 3 SS316L additive
manufactured sample and Eroded
samples

Table 1 Wire EDM process
parameters and surface
roughness

Sl. No Speed Current Offset Surface roughness

1 30 30 0.1 5.68

2 30 35 0.3 4.867

3 30 40 0.2 7.1705

4 35 30 0.3 4.2295

5 35 35 0.1 4.4335

6 35 40 0.3 9.241

7 40 30 0.2 5.572

8 40 35 0.1 5.0495

9 40 40 0.3 6.4415

Fig. 4 Layers of the artificial
neural network

Fig. 5 K-nearest neighbours algorithm
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Fig. 6 Linear regression

5 Results and discussions

The wire EDM process parameters and its measured sur-
face roughness values from Table 1 are analysed using the
statistical tool in Minitab. ANOVA table is created using
Minitab and shown in Table 2. By analysing the percent-
age contribution from the ANOVA tables, current has having
highest percentage contribution as 57% on surface rough-
ness whereas speed and offset have less contribution such as
0.8% and 0.9%. It observed that the current is highest influen-
tial parameter on surface roughness. Tool wear and stability
are highly dependent on current which leads to variation in
surface roughness. The excess wear in a tool affects the con-
sistency of machining and surface roughness (Table 3).

The interaction effect of speed, current and offset on sur-
face roughness is shown in Fig. 7. At the high current level,
there is no interaction effect on surface roughness. At middle
and low levels of current value, all the parameters have an
interaction effect on surface roughness. Itmeans that at a high
current level, the surface roughness is obtained by the current

Table 2 ANOVA table for
surface roughness Source DF Adj SS Adj MS F value P value Percentage contribution

Speed 2 0.1599 0.07997 0.03 0.971 0.8%

Current 2 11.4037 5.70184 2.10 0.322 57%

Offset 2 0.1767 0.08833 0.03 0.968 0.9%

Error 2 5.4180 2.70902

Total 8 19.9381

Table 3 Slurry erosion test
process parameters and wear rate Sample no Speed Slurry concentration Angle of impact Wear rate

1 1000 250 30 0.000147

2 1000 500 60 0.000041

3 1000 750 90 0.000011

4 1200 250 60 0.000015

5 1200 500 90 0.000052

6 1200 750 30 0.00004

7 1500 250 90 0.000038

8 1500 500 30 0.000038

9 1500 750 60 0.000022

10 1000 250 90 0.00015

11 1000 500 30 0.000147

12 1000 750 60 0.000011

13 1200 250 30 0.000038

14 1200 500 60 0.000042

15 1200 750 90 0.000012

16 1500 250 60 0.000014

17 1500 500 90 0.000052

18 1500 750 30 0.000042
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Fig. 7 Interaction plot for surface roughness

Table 4 ANOVA table for wear
rate Source DF Adj SS Adj MS F value P value Percentage contribution

Speed 1 6447 6447 3.84 0.070 17.26%

Slurry concentration 1 5808 5808 3.46 0.084 15.5%

Angle of impact 1 1564 1564 0.93 0.351 4.2%

Error 14 23,531 1681

Total 17 37,350

and other variables such as speed and offset do not have a sig-
nificant effect in altering the surface roughness. The result of
interaction plots again proves theANOVAanalysis as current
has the highest influence on surface roughness. The current is
directly proportional to the discharge energy, which leads to
more intense melting and vaporization of the material, which
has significant influence on surface roughness [30–38].

After the slurry erosion test, parameters such as speed,
slurry concentration and angle of impact are varied and the
wear rate is measured and analysed using ANOVA analysis
performed in Minitab which is shown in Table 4. From the
ANOVA analysis, it is observed that speed and slurry con-
centration have the highest influence on wear rate compared
to angle impact because of high F-value, P-value, and per-
centage contribution compared to angle of impact. In slurry
environments, the concentration of slurry particles is directly
proportional to wear rate because the frequency of slurry
particles affects the surface of the materials with increasing

concentration. The wear rate is directly proportional to wear
rate, due to improved mechanical interactions at the contact
surfaces, which leads to more material removal [37–44].

With the main effect, it is important to find the interac-
tion effects between speed, slurry concentration, and angle
of impact. Sometimes, the interaction effect may be different
from the individual effect which is explained in Fig. 8.

After the ANOVA analysis and interaction effect analysis,
the machine learning models are trained and tested using the
sklearn library in Python 3.0

Training and validating machine learning models is a
structured process that ensures the models accurately cap-
ture the underlying patterns in the data and generalize well
to new, unseen data. This process involves several key steps,
including data preparation, model training, validation, test-
ing, and final selection. First, the ANN model is trained and
the actual versus predicted values are plotted in Fig. 9. It is
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Fig. 8 Interaction plot for wear rate

Fig. 9 Actual Versus Prediction of wear rate using ANN

observed that more outliers are present in the ANN model
which indicates less accuracy of an algorithm.

Then the Linear regression model is trained and the actual
versus predicted values are plotted in Fig. 10. It is observed
that less outlier are present in the Linear regression model
compared to ANN model which indicates linear regression
models have a better accuracy compared to ANN model.

Finally, the KNN model is trained and the actual versus
predicted values are plotted in Fig. 11. It is observed that
very few outliers are present in the KNNmodel compared to
ANN and Linear regressionmodel which indicates that KNN
models have high accuracy compared to ANN and Linear
regression model.

Fig. 10 Actual Versus Prediction of wear rate using linear regression

The same observations confirmed by performance met-
rics such as R-Square, MAE, MSE & RMSE value which
is shown in Table 5. KNN regressor has the high values of
R-square as 0.916 which is near to 1, which indicates the
highest accuracy of the model whereas all other errors such
as MAE, MSE, and RMSE values are lesser compared to
linear Regression and ANN. KNN model performs better
at some specific conditions like data with nonlinear rela-
tionships, small and medium size data, and where quick
implementations are needed [45–49]. The curse of dimen-
sionality, the performance of algorithm decreases as the data
size increases, making KNN algorithm more suitable for
small-size data [50–53].
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Fig. 11 Actual Versus Prediction of wear rate using KN

Table 5 Comparison of linear regression, KNN and ANN algorithms

Algorithms R-Square MAE MSE RMSE

ANN regressor 0.486 15.017 230.80 15.19

Linear regressor 0.718 0.3031 0.1317 0.3628

KNN regressor 0.916 0.1266 0.0389 0.1974

6 Conclusions

In this paper, the erosion behavior of 316L stainless steel
specimens, prepared using Directed Energy Deposition
(DED) and subsequently precision-machined using wire
Electrical DischargeMachining (EDM), is thoroughly inves-
tigated. The study begins with the optimization of surface
roughness by analyzing key parameters wire EDM speed,
current, and wire diameter using Analysis of Variance
(ANOVA) in Minitab. Following this, the erosion behav-
ior is examined, and the wear rate is optimized based on
Speed, Slurry concentration, and Angle of impact using
ANOVA. Threemachine learningmodels Linear Regression,
k-Nearest Neighbors (k-NN), and Artificial Neural Network
(ANN) are developed and validated for future prediction of
wear rate.

Key findings include:

• k-Nearest Neighbors (k-NN) and Artificial Neural Net-
work (ANN) Models: These models are employed to
predict wear rates accurately, significantly reducing the
need for extensive experimentation, thereby saving time
and cost.

• k-NN as the Preferred Model: The k-NN algorithm is
identified as the best-performing model, with the high-
est R-squared value of 0.916. This high R-squared value

indicates that k-NN effectively captures the underlying
structure and relationships between input variables and the
wear rate, making it a robust choice for predictive model-
ing in this context.

Future work could explore a broader range of materials,
different cutting environments, and the long-term effects of
wear over extendedmachining periods. It can be extended by
identifying additional parameters that influence performance
characteristics and exploring their impact using other super-
vised regression algorithms. The methodology can also be
applied to other non-traditional machining processes, such as
3D printing, to develop more robust and effective predictive
models that meet real-world application demands across var-
ious industries. The insights obtained from this research help
in selectingoptimalmachiningparameters and toolmaterials,
ultimately leading to improved tool life, reduced downtime,
and cost savings in manufacturing processes.
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