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Abstract
Industrial robot positioning technology is a key component of industrial automation and intelligent manufacturing. Accurate
positioning can effectively promote industrial development. Existing positioning technologies such asMonteCarlo positioning
methods still suffer from inaccurate positioning in complex environments. Therefore, a localizationmethod for industrial robots
based on an improved Monte Carlo algorithm was proposed. Meanwhile, this method was optimized by combining scanning
matching technology. Finally, simulation experiments were conducted to verify it. These experiments confirmed that the
average positioning error of the proposed improved Monte Carlo algorithm in a simple environment was 1.55 cm. In complex
environments such as obstacle edges and narrow corridors, the optimization method combining scanning matching further
reduced the average positioning error to 0.35 cm, demonstrating superior positioningperformance. In addition, the optimization
method combining scanning matching maintained a positioning accuracy of over 95.00% in complex environments, far higher
than traditional positioning methods. Moreover, it maintained low error and high positioning accuracy when facing various
motion paths. Its error still did not exceed 1.00 cm, and the attitude angle error was less than 0.005 rad. In summary, compared
with the existing methods, the positioning accuracy and accuracy of the proposed industrial robot positioning method are
significantly improved, showing the positioning effect that is highly compatible with the target path. By providing more
precise robot positioning, the robot’s motion path and task execution can be optimized, reducing errors and collisions, thereby
increasing productivity. Therefore, the precise robot positioning technology proposed in this study has important strategic
significance for promoting the modernization of manufacturing industry, promoting scientific and technological progress and
realizing sustainable development.
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1 Introduction

In the era of Industry 4.0, the integration of artificial
intelligence and robotics technology is fundamentally chang-
ing traditional manufacturing. Industrial robots play a role
in industrial automation and intelligent manufacturing on
highly repetitive assembly lines. These robots also play a
crucial role in precisionmachining, quality inspection, mate-
rial handling, and even complex operational tasks [1, 2]. As
one of the key technologies in industrial automation, pre-
cise positioning of robots is crucial for achieving efficient
and flexible automated production [3]. In complex industrial
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environments, robots need to accurately perceive their own
position and posture to performprecise control and path plan-
ning [4]. However, with the increasing complexity of factory
environments and the increasing demand for production flex-
ibility and response speed, traditional positioning methods
are no longer able to meet the needs of modern industry [5].
For example, positioning systems that rely on preset markers
or infrastructure often lack the necessary flexibility and scal-
ability. These systemsmay require expensive reconfiguration
in the event of environmental changes or device upgrades [6].
Therefore, researchers have been exploring more advanced
and reliable positioning technologies. The technique of using
Monte Carlo methods to estimate the state of robots in the
environment has advantages in dealing with nonlinear and
non-Gaussian noise problems [7]. However, standard Monte
Carlo positioning techniques still have some limitations in
practical applications, such as particle degradation, limited
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positioning accuracy, and insufficient adaptability to com-
plex environments [8].

The positioning of industrial robots plays an important
role inmodernmanufacturing. Accurate positioning technol-
ogy enables robots to adapt to changing work environments
and task requirements, quickly adjust work strategies, and
enhance flexibility. In addition, robot positioning is a foun-
dation for achieving device interconnection, data analysis,
and intelligent decision-making. Therefore, numerous schol-
ars around the world conducted research on positioning
technology. Guan et al. proposed a loosely coupled visi-
ble light positioning inertial fusion method based on visible
light positioning technology to meet the demand for pre-
cise positioning in indoor positioning services and robotics.
By combining an Inertial Measurement Unit (IMU) and a
rolling shutter camera, the robustness of positioning was
improved in the event of insufficient or interrupted light
sources [9]. Kammel et al. proposed a method for deter-
mining position by integrating standard passive ultra-high
frequency radio frequency fingerprint recognition technol-
ogy with robot odometer data. This improved the absolute
positioning accuracy of the mobile robot platform in indoor
environments, effectively enhancing the robot positioning
accuracy [10]. Akai proposed a novel probability model to
address the uncertainty issue of regressing depth values from
camera images in mobile robot localization. This solved the
uncertainty of processing depth regression results while posi-
tioning the robot pose, thereby ignoring inaccurate depth
regression results and enhancing the robustness of position-
ing [11]. Li et al. proposed a method that combined global
visual and semantic information as landmarks in Bayesian
filter observation models. This solved the dependency on
local, global visual or semantic information in robot visual
localization. By introducing an improved Gaussian process
into an observation model with visual information, the local-
ization accuracy was improved [12]. Xu et al. proposed a
hybrid colored Kalman filter and a colored extended unbi-
ased finite impulse response filter to address the problems
of declining positioning accuracy and algorithm divergence
in indoor mobile robot positioning, and developed an adap-
tive filter algorithm using a filter bank combining the average
field of view, thereby improving the robot positioning accu-
racy [13]. Aiming at the challenge of real-time positioning
of human joint in dynamic environment, Jha et al. proposes
a human pose estimation method using Kinect depth sensor
and MediaPipe framework, calculates joint Angle through
inverse kinematics, and controls humanoid robot through
Python-Arduino communication. Thus, the real-time posi-
tioning accuracy of human joints is improved [14].

In mobile robot positioning, Kalman filters and particle
filters may perform poorly or exhibit divergence due to inter-
ference or measurement loss. Therefore, Lee et al. proposed
an improved nonlinear finite memory estimation algorithm

that reduced the adverse effects of interference, including
linearization errors, thereby improving the localization accu-
racy [15]. Nguyen et al. proposed an ultra wideband assisted
multi-robot positioning system that did not rely on loop
closure and only required odometer data from neighboring
robots to provide more accurate local and global position-
ing estimates. In wireless sensor networks, there are issues
with measurement data loss and robot abduction in mobile
robot localization [16]. Therefore, Suh et al. proposed a
limited memory interactive multi-model estimation algo-
rithm based on nearest finite measurements. This ensured the
positioning accuracy even when the mobile robot suddenly
changed speed and direction [17]. Güler et al. proposed an
onboard relative localization framework for multi-robot sys-
tems to address the issue that robot populations could not
rely on positioning infrastructure to obtain global positions.
This experiment introduced a filtering method to improve
the estimation accuracy of tag robots’ position. Meanwhile,
the maneuvering of tag robots was captured with accept-
able accuracy, achieving high-precision positioning [18].
Lajoie and Beltrame proposed an open source collaborative
simultaneous positioning and map building system designed
to be scalable, flexible, decentralized and sparse, aiming
at the key problem of multi-robot cooperative operation
in indoor, underground or underwater environments with-
out external positioning systems. It also supports LiDAR,
stereo vision, RGB-D sensing and a novel robot loop clo-
sure priority technology, thus realizing robot positioning in
special environments [19]. Gonzalez et al. proposed an adap-
tive deburring method based on industrial computer vision
to address the challenges of operator influence, workpiece
variability adaptation, and burr shape recognition during
mechanical deburring. By analyzing simple images in real
time, the path and conditions of machining tools can be
dynamically adjusted to rapidly and accurately locate and
detect edges and burrs. It provides a newperspective for robot
positioning [20].

In summary, the research on industrial robot positioning
technology is constantly advancing, improving the accu-
racy, robustness, and real-time performance of robots in
dynamic environments. However, few scholars have con-
ducted research onMonteCarlo localizationmethods. There-
fore, this study proposes an Improved Monte Carlo Local-
ization Algorithm (IMCLA). By adaptively adjusting the
particles, introducing random particles, and improving the
sampling strategy, the accuracy of localization is improved
combined with scanning matching. This study aims to pro-
vide new solutions for autonomous navigation and precise
control of industrial robots, promoting industrial automation
and intelligentmanufacturing. The innovation of the research
lies in its ability to dynamically adjust the number of particles
and introduce random particles to enhance the algorithm’s
recovery ability in the face of abnormal situations such as
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kidnapping. Meanwhile, combining with the map environ-
ment, while improving positioning accuracy, the algorithm’s
adaptability to complex environments is enhanced.

2 Methods andmaterials

Firstly, based on a detailed explanation of the Monte Carlo
localization method, this section proposes improvements to
its three shortcomings and proposes IMCLA. Then, IMCLA
is combined with scanning matching to perform secondary
optimization on the positioning method of industrial robots,
further improving the positioning accuracy. The technical
process of the study is shown in Fig. 1.

2.1 ImprovedMonte Carlo localization algorithm

Some traditional robot localization methods typically com-
bine Extended Kalman Filter (EKF) for nonlinear system
state estimation with IMU that provides raw data on robot
motion. However, this method does not consider external
environmental information and only relies on internal sensor
information of the robot as the localization basis, resulting in
low accuracy [21, 22].Monte Carlo can integrate laser data to
effectively consider the external environment. Therefore, the

study proposes IMCLA based on the improvement of Monte
Carlo. Monte Carlo represents the confidence of robot pose
as a set of particles, rather than a single estimate. Figure 2
shows the Monte Carlo localization method.

In Fig. 2, the Monte Carlo localization method mainly
consists of three steps, namely particle set initialization, par-
ticle sampling, and particle resampling.When initializing the
particle set, there are two situations: the initial pose of the
robot is unknown and known[23]. For unknown situations,
Monte Carlo localization uniformly distributes particles with
the same weight. For unknown situations, only a portion of
particles are randomly selected from the pose prior coins and
assigned the same weight. The initial pose x0 of the robot is
represented by Eq. (1).

x0 �
M∑

i�1

1

M
xi0 (1)

In Eq. (1), M represents the quantity of particles. xi0 rep-
resents the i th particle in the particle set representing the
initial pose. 1

M represents a particle weight. In particle sam-
pling, the Monte Carlo localization method adjusts the pose
of the robot at the next moment based on the control inputs
in the motion model. Therefore, the predicted pose particle
set and the weight of each particle are obtained, represented
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Fig. 2 Schematic diagram of the steps of the Monte Carlo localization method

by Eq. (2).

{
Xt+1 � sample(ut+1, Xt )

wi
t+1 � p(zt+1|Xt+1 )

(2)

In Eq. (2), Xt+1 and wi
t+1 represent the particle set and

weights at time t + 1, respectively. ut+1 represents the input
control at time t+1. Xt represents the particle set at time t . zt+1
represents the observation data at time t+1. sample(·) and p
( · ) represent the sampling function and likelihood function,
respectively. Particle resampling is performed on particles
in Xt+1 based on wi

t+1. Particles with higher weights have a
higher probability of being sampled. The result of resampling
is represented by Eq. (3).

X ′
t � resample

(
Xt , wi

t

)
(3)

In Eq. (3), resample( · ) represents the resampling func-
tion. X ′

t is the posterior particle set. The particles in this
collection integrate information from laser sensors, more
accurately reflecting the robot’s state in the environment. At
this point, the pose xt of the robot is represented by Eq. (4).

xt �
M∑

i�1

1

Wi
x ′i
t (4)

In Eq. (4), x ′i
t represents the i th particle in the posterior

particle set at this time. Wi represents the weight of x ′i
t . By

continuously applying motion and measurement models, the
Monte Carlo localizationmethod can dynamically update the
particle set, thereby tracking the state changes of the robot.
The improvement of Monte Carlo in research includes three
aspects in Fig. 3.

In Fig. 3, improvements were made in three aspects: par-
ticle quantity, kidnapping problem, and sampling error. The
particle quantity problem refers to the need for a large number
of particles inMonte Carlo to ensure the accuracy of localiza-
tion. However, it will increase the computational burden and
cause resource waste. The kidnapping problem refers to the
situation where the algorithm may not be able to accurately

track the pose of a robot when it is moved to a new posi-
tion, as resampling may result in the loss of correct particles
[24]. Sampling error refers to the limitation of positioning
accuracy on the accuracy of motion and measurement mod-
els. Moreover, errors in sensors such as odometers can affect
the final positioning results. This study proposes a method
of "adaptive particle quantity" to solve the particle quan-
tity problem. By adjusting the Kullback–Leibler Divergence
(KLD) of particles, the particle set can adaptively change as
needed. A histogram H is set to represent the occupied space
of particles. If the quantity of vacancies occupied by particles
in H is k, the upper limit of the particle set is represented by
Eq. (5).

Mx � k − 1

2ε

{
1 − 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

}3

(5)

In Eq. (5), Mx represents the upper limit quantity of par-
ticles. ε represents the margin of error. z1−δ represents the
quantile of a normal distribution. 1 − δ represents the sam-
pling frequency of KLD. Specifically, when initializing, H
has more vacancies and k is larger, resulting in a larger Mx .
After determining the robot pose, the particle set converges,
resulting in fewer vacancies in H , smaller k, and a decrease
in Mx , avoiding wasting computing resources. This study
proposes to solve the kidnapping problem by introducing
random particles, which involves setting a probability c, rep-
resented by Eq. (6).

c � max

{
0, 1 − w f

ws

}
(6)

In Eq. (6), w f represents the long-term mean change in
particle weights. ws represents the short-term mean change
in particle weights. The updates of these two are represented
by Eq. (7).

{
w f � w f + α f

(
wa − w f

)

ws � ws + αs(wa − ws)
(7)

In Eq. (7), α f and αs represent the long-term decay rate
and short-term decay rate, respectively. wa represents the
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Fig. 4 Flow diagram of improved Monte Carlo localization algorithm

mean weight of particles. In each iteration of resampling, the
particles quantity increases by probability DD, rather than
increasing by a fixed value. This can introduce new pose par-
ticles when positioning fails, helping Monte Carlo recover
from incorrect poses and enhancing its stability. In response
to sampling errors, the study adopts an improved sampling
method. The traditional Monte Carlo positioning algorithm
uses wheel odometer data for sampling, resulting in signif-
icant errors. The improved sampling method also utilizes
LiDAR data to correct the predicted pose of EKF, achieving
the re fusion of pose data and laser data, thereby improving
positioning accuracy. Figure 4 shows the IMCLA process
proposed in the study.

In Fig. 4, after IMCLA initialization, an EKF motion
model is used to sample and process the robot pose informa-
tion from the previousmoment. Subsequently, the particle set
was updated with the data obtained from the laser data model
processing to obtain the robot pose information. Further-
more, IMCLAupdatesw f andws , determines the probability
c, and uses it for resampling to add random particles. After
adding random particles, IMCLA uses KLD sampling to
control the maximum number of particles in the particle
set. Finally, conditional judgment is performed. When the
particles in the particle set reach Mx , sampling is stopped.
Meanwhile, the robot’s optimal pose output at the current
moment is obtained. It is worth noting that IMCLA does not
stop after completing a robot pose update, but instead returns
to the prediction update step to cycle the entire process and
achieve real-time positioning of the robot.

Based on the above content, three optimization methods
are summarized as follows. Firstly, the adaptive particle num-
ber adjustment method is proposed to dynamically adjust the
total number of particles by KLD to adapt to the require-
ments of positioning accuracy in different environments.
This method increases the number of particles when the
initial pose of the robot is uncertain to ensure that a wider
search space is covered, and reduces the number of particles
when the pose information becomes clear to reduce the com-
putational cost, thus effectively balancing the positioning
accuracy and the use of computational resources. Secondly,
in order to solve the kidnapping problem, the concept of
random particles is introduced. In the resample process, a
new particle representing the possible pose is introduced
according to the set probability value to help the algorithm
recover quickly and maintain the accuracy of the position
when the pose of the robot changes suddenly. Finally, to
solve the problem of sampling error, the sampling strategy is
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improved, which no longer relies solely on wheel odometer
data, but integrates LiDAR data and extended Kalman filter
to predict the pose. This method of multi-sensor data fusion
improves the accuracy of robot pose prediction and reduces
the influence of sensor error and environmental factors on
the positioning accuracy.

2.2 Localization optimization combining IMCLA
and scanningmatching

The final output of IMCLA is the weightedmean of the parti-
cle set.However,when the robot is in a complex environment,
due to the influence of obstacles and other environmen-
tal factors, there is a certain deviation between the robot’s
pose obtained by IMCLA and its true pose. Therefore, for
positioning in complex environments, a method combin-
ing IMCLA with scanning matching is proposed to further
optimize positioning technology and improve positioning
accuracy. Before performing scanmatching, it is necessary to
first construct a map of the robot’s environment. Therefore,
this study chooses Gmapping to complete the establishment
of the map. Gmapping mainly includes four steps: particle
sampling, weight calculation, selective resampling, and map
updating. Figure 5 shows the specific process.

In Fig. 4, the particle sampling and weight calculation in
Gmapping are similar to IMCLA, and the particle pose is
updated using IMCLA. When performing selective resam-
pling, a parameter E is set in Gmapping to represent the
effectiveness of the particle swarm, represented by Eq. (8).

E � 1
∑N

i�1 w2
i

(8)

In Eq. (8), wi represents the weight of the i th particle in
the particle swarm. N represents the total number of parti-
cles. The threshold set for the study is N/2. When E is less
than N/2, resample the particle swarm [25]. On the contrary,
no sampling is performed. This approach can effectively
solve the particle degradation caused by frequent resampling.
Finally, the map is updated, represented by Eq. (9).

x̂ (i)
t � argmax

x
p
(
x
∣∣∣m(i)

t−i , zt , x
◦ )

(9)

In Eq. (9), x̂ (i)
t represents the map information around the

i th particle at time t . m(i)
t−i represents the motion data of

the i th particle at time t − 1. zt represents the observation
data obtained at time t . x◦ represents the initial value of the
particle set. The foundation of IMCLA implementation is
to configure laser scanning equipment for robots [26]. This
study uses the maps obtained from Gmapping to represent
them using a grid network map. Therefore, the positioning of

robots with laser devices in grid network maps can be trans-
formed into a matching optimization problem, represented
by Eq. (10).

ζ ∗ � argmin
ζ

[1 − M(Si (ζ ))]2

2
(10)

InEq. (10), ζ and ζ ∗ represent robot’s estimated and actual
pose, respectively. Si (ζ ) represents the coordinates of the
endpoint of the robot laser equipment’s radiation in the grid
network map. M(Si (ζ )) represents the occupancy probabil-
ity of the map at coordinate Si (ζ ). Si (ζ ) is represented by
Eq. (11).

Si (ζ ) �
(

ζx

ζy

)
+

(
cos θ − sin θ

sin θ cos θ

)(
xlaser + l cos θlaser

ylaser + l sin θlaser

)

(11)

In Eq. (11), ζx and ζy represent the coordinates of the
robot in the grid network map. θ represents robot’s head-
ing angle. xlaser and ylaser represent the laser equipment’s
coordinates on a robot. θlaser represents an angle between
the laser equipment’s heading angle and a robot. The goal of
scanning matching in the study is to minimize the deviation
�ζ between ζ and ζ ∗. The objective function F is repre-
sented by Eq. (12).

F �
N∑

i�1

(1 − M(Si (ζ + �ζ)))2 → 0 (12)

Gaussian Newton iteration is used to optimize F . The
weighted mean of the particle set output by IMCLA is taken
as ζ . The Taylor series expansion is used to approximate the
nonlinear regression model, ultimately achieving the mini-
mum. At this point, the laser beam endpoint can match the
edges of obstacles in the real map, thereby improving the
positioning accuracy of the robot in complex environments.
On this basis, the study introduces Discrete Fourier Trans-
form (DFT) to further eliminate errors caused by possible
measurement anomalies. Figure 6 shows the basic idea of
DFT.

Figure 6a shows that the robot is at the center of the
measurement environment. Figure 6b shows that the robot’s
pose has shifted, indicating that its estimated pose is moving
upwards to the right. The laser distance in Fig. 6a is set to dmn ,
which represents the distance obtained by the laser scanner,
i.e. the true distance. The laser distance in Fig. 6b is set to
dvn , which represents the virtual laser measurement value,
i.e. the estimated distance. The function f � dmn − dvn is
constructed, with a sine shaped curve. The distance offset
between the actual pose and the estimated pose is reflected
in the amplitude of the function f . The directional shift is
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reflected in the phase of the function f [27]. Furthermore,
the amplitude and phase of f are taken as the first input D1

of DFT, represented by Eq. (13).

D1 �
S−1∑

s�0

f exp

(
−2πsi

S

)
(13)

In Eq. (13), S represents the number of points scanned by
the laser. s represents the s th laser point. i represents imag-
inary units. Assuming that the error between the actual pose
of the robot and the estimated pose is small, it is represented
by Eq. (14).

S−1∑

s�0

(xvn + i · yvn) ≈
S−1∑

s�0

(xmn + i · ymn) + S · xerr + i · S · yerr
(14)

In Eq. (14), xvn and yvn represent the estimated pose. xmn

and ymn represent the true pose. xerr and yerr represent pose

errors. According to Eq. (14), Eq. (15) can be obtained.

D1 ≈ −S · xerr − i · S · yerr (15)

Therefore, according to Eq. (15), the pose offset of the
robot can be obtained, and abnormal measurement values
can be eliminated based on the pose offset. Figure 7 shows
a localization optimization method combining IMCLA and
scan matching.

In Fig. 7, the output of IMCLA, which is the weighted
mean of the particle set, is used as the input for the opti-
mization localization method. Meanwhile, the convergence
of the particle set is first judged. If it converges, scanning
matching is performed. Subsequently, after using Gaussian
Newton iteration to match the laser beam endpoint with the
edge of the obstacle, a preliminary estimate of the pose was
obtained. Further filtering operations are completed using the
DFTmodule to eliminate the deviation between the estimated
pose and the actual pose. Finally, the robot pose output at this
time is compared with the robot pose obtained by IMCLA.
If the former converges, the pose is optimized and used as
the final robot pose output. On the contrary, it indicates opti-
mization failure, and the results are abandoned.

3 Results

The proposed IMCLA localization method and the opti-
mized localizationmethod combining IMCLAwith scanning
matching were validated. The Robot Operation System
(ROS) was used as the software platform to conduct repeated
positioning experiments and motion positioning experi-
ments. The experimental results were analyzed in detail.
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3.1 Experimental and analysis of repeated
positioningmethods for industrial robots

ROS was chosen as the software platform for the study.
Gazebo 3D physical simulation platform was chosen to cre-
ate a simulated real environment. A robot with sensors,
LiDAR and other equipment was designed as the experimen-
tal object. The comparative methods selected for the study
are global positioning system-basedpositioningmethod, arti-
ficial sideline-based positioning method, and vision-based
positioning method. These three comparative methods were
named M1, M2, and M3 in sequence. A method combining
IMCLA with scanning matching was named IMCLA-Plus.
Based on previous experience, reference to existing litera-
ture, and continuous experiments, the algorithm parameters
were set as follows: the total number of particles was 500, the
initial weight of particles was 1/500, the sampling frequency
of KLD was 1 Hz, the error limit was 0.10 m, the probability
of adding random particles was 0.08, and the number of iter-
ations was 50. The convergence threshold is set to 10–4, the
number of laser scanning points and frequency range of DFT
are 200 and 1 Hz, respectively, and the matching threshold
of scanning matching is 0.05m.

In the repeated positioning experiment, three points were
selected as the target points in the simulated map, named
after points 1–3. Point 1 is located in an open and simple
environment, point 2 is located around obstacles, and point
3 is located in a narrow corridor environment. This robot
was controlled to start from the origin and pass through three
points in sequence, repeating 10 times. Figure 8 shows the
data for point 1.

In Fig. 8a, the maximum absolute error of M1 positioning
reached 5.16 cm. The maximum absolute error of M2 posi-
tioning reached 4.02 cm.Themaximumabsolute error during
M3 positioning reached 3.94 cm. The proposed IMCLA
and IMCLA-Plus had an error range of within 1.00 cm. In
Fig. 8b, the localization accuracy of the proposed IMCLA
and IMCLA-Plus was both above 95.00%, while the three
comparison methods were all below 95.00%. Overall, for
point 1 in a simple environment, the positioning performance
of IMCLA and IMCLA-Plus was much better than the com-
parison method, but the difference was not significant. Table
1 shows the positioning results of point 2.

In Table 1, the average positioning error of M1 was
4.28 cm. The average positioning error of M2 was 3.64 cm.
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Table 1 Results of repeated
positioning at point 2 Number of experiments M1 M2 M3 IMCLA IMCLA-Plus

Error (cm) Error (cm) Error (cm) Error (cm) Error (cm)

1 6.40 1.88 2.96 1.06 1.00

2 1.70 4.43 3.38 1.89 0.09

3 1.09 6.69 4.84 2.92 0.12

4 0.57 4.91 4.57 0.63 0.07

5 6.65 0.89 0.23 1.86 0.38

6 4.73 6.27 4.43 2.21 0.03

7 5.78 3.04 3.95 2.00 0.41

8 1.73 3.22 1.12 2.15 0.47

9 7.89 2.44 2.23 0.15 0.11

10 6.25 2.63 2.78 0.62 0.01

Mean value 4.28 3.64 2.95 1.55 0.35

(a) Positioning results of Methods M1-M3

(b) Positioning results of IMCLA and IMCLA-Plus

M1 M2 M3

IMCLA IMCLA-Plus

Target point

Target point

Fig. 9 Positioning simulation of point 3

The average positioning error of M1 was 2.95 cm. The aver-
age positioning error of the proposed IMCLA was 1.55 cm,
which was significantly improved compared to the error in
point 1. The average positioning error of IMCLA-Plus was
only 0.35 cm, which was not much different from the error
in point 1. This indicated that the error of IMCLA in locat-
ing robots at the edge of obstacles was much lower than
the comparison algorithms’. After combining with scanning
matching, the positioning accuracy of IMCLA-Plus was fur-
ther improved, indicating the effectiveness of the research
content. Figure 9 shows the positioning simulation of point
3.

In Fig. 9a, the positioning distance of these three compar-
ison methods was relatively far from the target point. The
distribution of 10 positions was relatively scattered, with M1
being particularly prominent. This is because the global posi-
tioning system has weak indoor positioning capabilities, and

point 3 is located in a narrow aisle, resulting in poor posi-
tioning performance. In Fig. 9b, the localization effect of
IMCLA and IMCLA-Plus was significantly affected by the
three comparison methods. The overlap between IMCLA-
Plus and the target point reached 90%, further indicating that
after optimizing IMCLA, its positioning performance was
greatly improved in complex environments.

3.2 Experiment and analysis of motion positioning
methods for industrial robots

In the motion localization experiment, simple, pile around,
and complex motion paths were designed. In addition, based
on the results of repeated positioning experiments, the study
selectedM3 with better positioning performance as the com-
parative method. Figure 10 shows the localization results of
various methods on a simple motion path.

In Fig. 10a, the fit degree with the designed simple motion
path, from high to low, was IMCLA-Plus, IMCLA, and M3,
respectively. Figure 10b shows the positioning errors of three
methods with simple motion paths. The maximum error of
M3 was 2.98 cm, and the minimum was 1.27 cm. The error
of IMCLA was between 0.00 cm and 1.52 cm. The error of
IMCLA-Plus still did not exceed 1.00 cm. Figure 11 shows
the positioning results of various methods on the path of pile
movement.

InFig. 11a, in thepositioningof themotionpath around the
pile, the IMCLA-Plus was positioned close to a straight line,
and its attitude angle changed less. M3 and IMCLA both had
varying degrees of angular displacement in positioning, and
their paths exhibited curves. Figure 11b shows the attitude
angle error. The average attitude angle error of M3 reached
0.034 rad, IMCLA was 0.13 rad, and IMCLA-Plus was less
than 0.05 rad, making its positioning of robot posture more
accurate. Figure 12 shows the result in complexmotion paths.
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Fig. 10 Positioning results of
each method on the simple
motion path
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Fig. 11 Positioning results of
each method on the motion path
around the pile
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Fig. 12 Positioning results of each method on the complex motion path

In Fig. 12, when facing complex motion paths in a
complex environment, the positioning effect of M3 was
greatly reduced, and even a significant positioning devia-
tion appeared in the upper right corner, which did not match

the path. IMCLA improved positioning performance com-
pared to M3, with its positioning path following the target
path and the deviation occurring within the acceptable range.
The positioning effect of IMCLA-Plus was the best, and its
positioning path fit was almost the same as the target path,
whichmatched the previous experimental results. This is due
to the addition of Gmapping, matching scanning, and DFT
modules on top of IMCLA.

4 Discussion and conclusion

There are problems with low accuracy of industrial robot
positioning in complex environments and the number of
particles in Monte Carlo positioning methods. Therefore,
the study improved the Monte Carlo method using three
methods: “adaptive particle quantity”, “introducing random
particles”, and “improved sampling method”. IMCLA was
proposed and combined with scanning matching to further
optimize the robot positioning method. These experiments
confirmed that in the repeated positioning experiment at point
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1, the error range of IMCLA and IMCLA-Plus was within
1.00 cm,while the errors of traditionalmethodswere5.16 cm,
4.02 cm, and 3.94 cm, respectively. At point 2, the average
positioning error of IMCLAwas1.55 cm,while IMCLA-Plus
was reduced to 0.35 cm, which was significantly improved
compared to traditionalmethods. In the narrow corridor envi-
ronment at point 3, IMCLA-Plus had the best positioning
effect, with a 90% overlap with the target point. In addi-
tion, for simple motion paths, the maximum error of M3 was
2.98 cm, theminimumwas 1.27 cm.The error of IMCLAwas
between 0.00 cm and 1.52 cm. The error of IMCLA-Plus still
did not exceed 1.00 cm. For the path around the pile, the aver-
age attitude angle error of M3 reached 0.034 rad, the average
IMCLA was 0.13 rad, and the average IMCLA-Plus was
less than 0.05 rad. For complex motion paths, the position-
ing results of IMCLA-Plus were more closely aligned with
the target path. Overall, IMCLA and its optimized version
IMCLA-Plus have practical application value in improving
the positioning accuracy of industrial robots and adapting to
complex environments. Further exploration can be conducted
on the application of this method in real industrial scenarios.
Integration with other sensor technologies can be considered
to achieve wider applications and higher positioning perfor-
mance.

Highlights of the study are as follows:
1. An improved Monte Carlo positioning algorithm is

proposed, which effectively solves the limitations of tradi-
tional Monte Carlo algorithm in positioning accuracy and
adaptability through adaptive adjustment of particle num-
ber, introduction of random particles and improvement of
sampling strategy. Where, adaptively adjusts the number
of particles so that the size of the particle set ADAPTS to
changes as needed. When positioning fails, adding random
particles can introduce new attitude particles that helpMonte
Carlo recover from the wrong attitude. The improved sam-
pling strategy uses liDAR data to correct the EKF predicted
attitude, and realizes the fusion of attitude data and laser data,
thus improving the positioning accuracy.

2. Combining the proposed improved Monte Carlo posi-
tioning algorithm with scan matching optimization method,
Gauss–Newton iteration and DFT module are used to fur-
ther improve the positioning accuracy of robots in complex
environments.

3. Compared with traditional methods, the proposed
method has shown higher positioning accuracy and real-time
performance in repeated positioning and motion position-
ing experiments. In addition, the study also explores the
application potential of improved Monte Carlo positioning
algorithms in real industrial scenarios, and proposes the
prospect of integrating with other sensor technologies to
achieve a wider range of applications, providing important

technical support for the development of industrial automa-
tion and intelligent manufacturing.
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