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Abstract

Titanium metal matrix composites (TiMMCs) are challenging to process because of hard Titanium particles. Increased cutting
speed results in lower roughness values and longer tool life when grinding or turning. To solve this issue, artificial neural
networks are employed in this study to forecast the geometrical properties of a microchannel created by abrasive water
jet machining titanium-metal matrix composites (AWJIM). This work determines the ideal values for four AWJM control
parameters for cutting TIMMCs: Water fly mass, distance from water and object, stream rate, and navigation speed. Artificial
Neuro-Fuzzy Logic Algorithm is used to achieve the desired process outputs (responses)—material ejection rate, cut surface
roughness, kerf width, and kerf point. Interaction plots are generated to examine further how changing one or more AWJM
process parameters affects the measured responses, and the analysis of variance is used to isolate the contributions of each
process variable. The roughness of the cut surface and rate of material ejection, which is predominantly influenced by standoff
distance, speed of navigation, and titanium nitride particles, were shown to be the AWJM variables that the proposed model
was most successful in predicting and optimizing. The abrasive machining and optimization outcomes give a data foundation
for many industrial applications. The results were validated by doing the confirmation test with optimized cutting parameters.
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1 Introduction it worthwhile in automobiles, renewable vitality, aviation,

therapeutic gadgets, etc. [3—6].

A titanium alloy matrix is the titanium metal matrix com-
posite (TIMMC) foundation. It is reinforced with fibers,
particles, or whiskers to give them extraordinary quali-
ties, including high specific strength, high specific modulus,
high-temperature resistance, and potential weight reduction.
TiMMCs have replaced Ni-based alloys in aerospace appli-
cations for 30 years [1, 2]. Waterjet machining is one of
the machining techniques that can process hard materials
and delicate components with great precision. This makes
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The development of exceptional, cutting-edge technol-
ogy for abrasive water jet machining (AWJIM) is receiving
much attention. As with any manufacturing process, there
are downsides to the creation of abrasive jets. These include
secondary erosive wear, abrasive fouling, taper profile, jet
diffusion, inappropriate kerf geometry, and so on [7, 8]. Water
fly mass, water jet angle of attack, angle of contact, feed rate,
abrasive particle density, machining time, abrasive particle
mass flow rate, and distance are the main determinants of
abrasive jet machining [9, 10].

2 Related works

The rate of material rejection (MRR), roughness of the cut
surface (Ra), kerf width, and kerf point are frequently used
to measure the performance of machining operations. The
performance of waterjet penetration in AWJM in alumini-
um-silicon carbide composites is primarily influenced by
the speed of navigation and waterjet pressure [11, 12]. As
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a result of being machined, TIMMCs likely emit particles
and severely wear down the tools. During the machining of
TiMMCs in various lubricated modes, a recent study exam-
ined dust formation at the micro- and nanoscale. Although
cutting speed has little effect on the specific surface con-
centration and mass concentration of ultrafine particles, it
significantly impacts the generation of fine particles (2.5 M
aerodynamic particle diameter or smaller) (size range of
0.1 M). Turning with lubricated tools reduces particle emis-
sion, as predicted, and coated inserts with high flow rates
(300 ml/min) emit less ultrafine particles than their uncoated
counterparts. [13, 14]. The roughness of the ground can also
be affected by the concentration of reinforcing particles in the
composite. The roughness of MMCs’ surface is influenced
by the number of reinforcing particles used [15-17]. The
roughness does, however, lessen with TIMMCs. The matrix
and particle composition likely contribute to the observed
asymmetry in the roughness trend. Titanium carbide (TiC)
particles are more durable than silicon carbide (SiC) parti-
cles, while titanium alloy (Ti6 Al4V) is more malleable than
an aluminum alloy (Al alloy). Grooves and clusters can’t
form on TiC particles’ surfaces. The rugged character of TiC
particles encourages detachment rather than breaking, which
helps to reduce roughness [18-23]—an analysis of how ANN
is used in traditional machining to forecast the roughness of
the cut surface.

According to the literature that is currently accessible,
ANN’s use for atypical machining processes is underde-
veloped, and its application to AWJIM is relatively limited.
ANN provides a better method for estimating the pro-
cess parameters based on the selection of the most crucial
and advantageous values of the parameters, as shown by
reports on the prediction of roughness of the cut surface
and jet velocity for a given pressure, rate of abrasive mass
stream, and thickness of the target material. With the help
of numerical models, Yang’s reports can be used to assess
the AWIM technique’s cutting capacity for a range of engi-
neering materials [24-28]. The report on granite machining
includes a study of the outcomes from empirical model-
ing and parameter optimization utilizing a hybrid strategy.
The effectiveness of abrasive waterjet machining was mea-
sured using ANN. Neural networks provide an overview of
unconventional machining techniques for abrasive waterjet
cutting. The application of micro-channel property predic-
tion at extremely high navigation speeds is covered in the
current work. The neural network systems mentioned are
versatile and can be used in different AWJM applications to
enhance machining performance and efficiency [29, 30]. The
utilization of high-pressure waterjet help has substantially
enhanced the longevity of tools [31]. In this paper, experi-
ments are carried out with AWJM to improve the tool’s life.
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Table 1 Properties of titanium

S.No Element properties Titanium
Physical state Solid
2 Melting point 1667 °C
Initial boiling point and boiling 3287 °C
range
4 Water solubility at20 °C
insoluble
5 Density 4,5 glem? at
20 °C

3 Proposed methodology

The AWJIM employed in the research projects is capable of
producing a maximum working pressure of 400 MPa and
a maximum pump capacity of 20 hp. The water jet travels
at a high velocity of 900 m/s, which is a 3 Mach number.
Figure 1a shows the experimental setup, and Fig. 1b shows
the machined components.

Sigma Aldrich purchases titanium, whose properties are
shown in Table 1. The material being utilized for the actual
product is a composite of TiMn metal hydrides. The mea-
sured dimensions of an 8-mm-thick TIMMC are 250 mm.
The AWJM method produced a clean 30-mm-long through-
cut.

Figure 2 shows four AWJM process control parameters,
including water fly mass, distance between water and object,
steam rate, and navigation speed, after a meticulous selection
technique.

The impact angle and focusing length have been held
steady at 90 degrees and 0.76 mm throughout the machining
process. The abrasive particle is a TIMMC with a mesh size
of 80 (or 165 mm in length). The cutting head has been moved
with a precision of 0.025 mm, and the nozzle has a diame-
ter of 0.70 mm. MARR, SUR, KEW, and KEA are the four
performance indicators chosen to assess the AWJM process’s
machining efficacy on TIMMC composites. Using Eq. (1), we
can determine that MRR equals the material removed from
the workpiece in one machining cycle. Using the roughness
of the cut surface tester, we determined the SR value by aver-
aging the results of three separate runs on the top, middle, and
bottom of the machined surface of TIMMC composites. Top
kerf width (TKEW) and bottom kerf width (BKEW) were
measured using a 100X optical microscope at three positions
along the cut length on both the top and bottom surfaces.
After determining the sum of the two, we have the KEW.
The Kerf taper, often known as KEA (®), is an essential
measure of the precision of machined parts, which has been
calculated using Eq. (2).

MARR=KEW xTUS xTH 1)
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Fig. 1 a Experimental setup of abrasive water jet machining. b Machined components
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3.1 An artificial neural fuzzy logic algorithm (ANFLA)

Developing a matrix of choices containing n criteria
(responses) and alternative answers is the first stage in the
ANFLA procedure. The methodology starts with experimen-
tal trials of the ANFLA. Figure 3 provides a comprehensive
breakdown of the ANFLA application procedure, detailing
each stage.

Step 1: Establishing a baseline for the matrix of choices.

Eliminating variability and making the dataset dimen-
sionless requires normalizing the elements of the matrix of
choices. Specifically, we need to put each component into a

range between 0 and 1 that is consistent with the remainder
of the range.

The following equations can be used, with care given to
the sort of quality feature being analyzed: For those of you
who believe the bigger, the better!

If the bigger-is-better kind.

C?}- = (C,‘j —minc,-j)/(maxc,-j —minc,-j) (3)

wherei=1,2,3...m;j=1,2,3...n.
To get the best results, go for the smallest size possible.

clfkj = (maxc,-j - cij)/(max cij —minc;;) )

Cij» c;‘j are the measured and normalized values for the ith
alternative for the jth criterion.
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Fig.3 A proposed ANFLA application process framework

Step 2: Calculation of relevant FRC (Fuzzy Relational
Coefficient) values.

We can derive the FRC values from the normalized data
for all responses by Eq. (5). They represent the relationship
between the optimal (target) and actual normalized results.

0ij = Vmin + ﬁymax)/(yi(j)‘ + ,BVmax) ©)

where 7’8‘ is the variation between c?j (ideal sequence) and
cl*] Contrarily, § is the differentiating coefficient, and it can
take on values between 0 and 1, with 0.5 being the most
optimal. To a large extent, it determines whether the range
for FRC values widens or narrows. In addition, y;,i, and Ypax
denote the global minimum and maximum values in a given
data set. A larger FRC number indicates a closer potential
solution.

Step 3: Determination of FRG values via calculation.

Now, we compute the FRG values by averaging the FRCs
for each criterion concerning each alternative, and the results
are shown in Fig. 4.

1 n
Fi=- X}pij (0)
/:
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Normalized value of the experimental results

CO0000000
oRNWwhUoNpOR

1 2 3 4 5

B MARR| O 0.575|0.8444| 1 0

HSUR 1 0.9416|0.9295(0.6376(0.8662
KEW 10.1287(0.4629|0.9523| 0.463 |0.2287

mKEA |0.3253| 0 |0.7633|0.6824|0.5099

Fig.4 Normalized values of the experimental results

For each given issue, the solution with the highest FRG
value stands out as superior to all others. The experimental
information needed to determine the FRC and FRG is shown
inFig. 5. The experimental findings are normalised to a range
of 01 using either Egs. (3) or (4), depending on the quality
feature being addressed. Figure 5 displays the results of cal-
culating the FRC and FRG for each experimental trial using
the normalised data and the corresponding Egs. (5) and (6).
The third experiment with the highest FRG value was chosen
as the optimal one. However, a fuzzy logic method boosts the
solution’s superiority and lessens the experimental findings’
uncertainty and fuzziness.

3.2 Modelling with fuzzy-based rules

The Fuzzy Set Theory was developed primarily to resolve
disagreements brought on by erroneous data when trying to
reach a consensus on a course of action. In this paper, we
combine ANFLA with fuzzy logic to remove the doubts that
arise while weighing the relative merits of higher and smaller
values for quality indicators. Fuzzy membership functions
translate qualitative phrases like “low,” “mid,” “high,” etc.,
into quantitative values for application in fuzzy set theory.
A fuzzy set can be considered a collection of membership
functions, where each membership function maps an element
x into a set of objects, X, and the resulting mapping is a
natural integer R between 0 and 1. Using fuzzy logic, the
ambiguity of neuro theory can be eliminated. In other words,
a fuzzy multi-performance instrument can be made using this
technique, also known as neuro-fuzzy logic. The fuzziness
near the center method is typically employed to convert the
multi-response fuzzy value to the crisp value of OFRG.

> Fur(F)

OFRG =
ZI'LFO(F)

(N
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Fig.5 Computation of FRC and FRG value

After, all uncertainties and ambiguities in the empirically
observed data have been removed, the OFRG values can be
rated from best to worst, with the best choice being selected.
Ultrasonic-assisted electrical release machining, warm pen-
etrating, and many others can all benefit from the ANFLA
method combined with fuzzy logic, as it is a straightforward
and effective strategy for addressing complex multi-criteria
problems involving the identification of optimal parametric
combinations. To find the perfect spot for all the variables
in the AWJIM process, this work uses a multi-response opti-
mization method, namely an artificial neural-fuzzy approach.

3.3 Artificial neural fuzzy approach

This article describes how an artificial neural-fuzzy system
was used to determine the optimal combination of processing
parameters for AWJM on TiMMCs. An analysis is carried
out to isolate the effect of each process parameter on the
OFRG results. Table 2 shows the calculated OFRG value of
the response.

In addition, the surface plots are created based on a regres-
sion equation that links the input parameters to the estimated
OFRG values.

The impact of the AWJIM process parameters on the results
is also shown through interaction plots, as shown in Fig. 6.

Table 3 displays the results of variance analyses performed
on the calculated OFRG values. A factor’s p-value must be
less than or equal to 0.05 (p 0.05) to be considered statisti-
cally significant. With 60.8% of the variance in OFRG values

FRC KEW

FRC KEA

Series4 m Series 5

1
0.328

Levels

O B N W A~ O

Water Standoff Abrasive Traverse
Jet distance mass  speed
pressure flow rate

Process Parameters

==@==Max-Min «==@==Rank

Fig.6 Interaction plots of the calculated OFRG value

attributable to the traversal speed, it is evident that this is the
most crucial control parameter.

3.4 Validation test
To verify whether the Neurofuzzy method-based approach

is successful in determining the optimal parameters for the
AWIM process under discussion, we calculate the predicted

@ Springer
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Table 2 Response table for the
calculated OFRG value

Process parameter Levels Max-Min Rank
1 2 3

Water fly mass 0.741 0.687 0.588 0.265 2

Standoff distance (mm) 0.645 0.644 0.728 0.194 4

Steam rate 0.608 0.599 0.699 0.199 3

Speed of navigation (mm/min) 0.567 0.666 0.784 0.328 1

Table 3 Analysis results of OFRG values

Process parameter F value p value % contribution
Water fly mass 7.47 0.176 36.67
Standoff distance 2.95 0.358 8.5
Steam rate 1.13 0.905 10.4
Speed of navigation 13.76 0.135 60.98
80
70 6691
60 7
50 7
40 /
30 /
20
10 _4;,544_0_9_4_6_03%*_
0 —*
(=%
= =0==0FRG

Predicted
Experimental

% of improvement

Optimal parameters

Optimization results using OFRG

Fig. 7 Optimization results using OFRG
OFRG (OFRGp) value for this combination using Eq. (8).

n
OFRG, = OFRG, + Y (OFRG; — OFRG,) (8

i=1

OFRGi denotes the ideal level of the examined process
parameters. The mean OFRG value is OFRGy,, where n is
the total number of experimental trial runs, and OFRG; is the
mean OFRG value.

OFRG is higher than in Fig. 7, established for the first

@ Springer

machining condition. This step involves running a test to
verify the derived optimal parametric blend.

Table 4 shows how the measured responses differ between
the default and best parameter values. Using the data in the
table above, we can see that increasing the parameters of
the water fly mass to 165 MPa, the distance from water and
object to 3 mm, the steam rate to 200 g/min, and the speed
of navigation to 50 mm/min results in increases of 67.8%
in MARR, 3.61% in SUR, 30.24% in KEW, and 86.86% in
KEA. The proposed OFRG technique has improved 66.91%
compared to the first machining.

4 Conclusion

This study analyses an AWJM method for machining OFRG
composites using water fly mass, distance from water and
object, steam rate, and navigation speed as inputs and MARR,
SUR, KEW, and KEA as outputs. The following conclusions
are drawn. Navigation speed is the most influential process
parameter, contributing 60.98% of OFRG values, followed
by water fly mass.

e There is a maximum improvement of 86.86% in MARR,
3.61 times improvement in SUR, 30 times improvement
in KEW, and 3.61 times improvement in KEA when using
the ideal parametric mix.

e Fuzzy systems demand less information to analyze an
unknown process’ behavior while delivering an unbiased
estimate. Because fuzzy neural model generation requires
minimal data, it may need to describe system dynamics
fully. Fuzzy logic is used to improve the fuzzy system’s
capabilities. Other evolutionary algorithms often deter-
mine optimal parametric mixtures that aren’t fixable in
AWIM. Tuning parameters (Speed) affect the optimiza-
tion performance of these methods.

e AWJM can machine thin, non-corrosive, difficult-to-cut
materials. Therefore, it’s used in manufacturing, coal min-
ing, automotive, and aerospace industries. Thus, applying
an artificial neuro-fuzzy method-based approach with a
solid mathematical basis can enable process engineers to
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Table 4 Comparison of response
values

Response Input Parametric combination Optimal parametric combination
Predicted Experimental % of improvement
MARR 352 - 497.5 67.8
SUR 2.64 - 2.50 3.61
KEW 2.16 - 1.90 30.24
KEA 0.649 - 1.236 86.86
OFRG 0.644 0.946 0.942 66.91

derive the ideal parametric mix for the AWJM process
while exploring its full cutting potential.
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