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Abstract
This study focuses on leveraging CNC technology to enhance the face milling procedures’ surface quality. Determining
the success of machining outputs depends heavily on measuring surface roughness. In order to create an intelligent model
for forecasting surface roughness, the study gathered total overall vibration data in the X, Y, and Z directions throughout
face milling operations. The model’s effectiveness underwent a careful evaluation and assessment. As a result of predicting
surface roughness based on total vibrations in all three dimensions, the authors’ intelligent approach represents a substantial
advancement. This breakthrough has the potential to redefine efficiency and profitability standards, revolutionize production
processes, and optimize resource allocation. A number of models, including polynomial, decision tree, random forest, and
ANFIS models, were created to forecast surface roughness. After comparing these models to other machine learning models,
the evaluation revealed that the ANFIS model had a 98% prediction accuracy. This indicates that ANFIS is a better model
than other models for estimating surface roughness, particularly when using information from machine tool vibrations in all
three directions. The upcoming adoption of these cutting-edge technologies is anticipated to transform a number of industries,
underlining the authors’ ground-breaking contributions to the trajectory of industrial advancement.
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1 Introduction

It is conceivable to integrate cutting-edge computational
methods with CNC machines, however adaptive systems
that can handle required textural tolerance are uncommon.
The problem is even more difficult in general-purpose CNC
machining centers since these machines need several predic-
tionmodels for various tasks.Abetter surface finish tolerance
is required due to the current industry’s requirement for preci-
sion components. Themajority of surface roughness estimate
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is still done using conventional approaches, despite the exis-
tence of intelligent systems [1]. The assembly of components
and overall performance depend on obtaining high-quality
machined surfaces. On component service life, especially in
components with relative motion, surface texture tolerance
has a crucial role. Due to changeable factors like machine
condition and tool quality, it is difficult to meet particular tol-
erance requirements. Utilising stylus-based Talysurf contact
probes, conventional surface texture measuring techniques
are causing delays in manufacturing [2]. Benardos PG et al.
[3] developed artificial Intelligence techniques to optimize
cutting parameters and predict the roughness of a workpiece
surface during CNC face milling under different machining
conditions. The model has been created using the Artificial
Neural Networks method to map the relationship between
cutting parameters, vibration signals, and surface roughness.
The experimental data collected has been used to train the
neural network model. Input data is grouped and evaluated
by individual functional nodes using a polynomial function
before being passed on to the next layer. The machining pro-
cess used is CNCmillingwithAluminium regular grade. The
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Artificial Neural Networks model uses cutting parameters,
workpiece hardness, cutting time, and vibrations to predict
the roughness of the turned surfaces. The ANN model has
proven highly accurate in predicting surface roughness for
CNC face milling components. ANN design of experiments
has been used to perform several machining operations. Steel
bars undergo a turning operationwhere the surface roughness
and dimensional deviation are estimated through measured
cutting forces and vibrations [4]. The input factors consid-
ered for estimating surface roughness are cutting fluid, tool
holder vibrations, cutting speed, feed rate, and depth of cut.
The study shows that ANNs have the potential to predict
surface roughness through machine vibrations in CNC end
milling [5]. Researchers can choose the best structure and
model from various ANN structures, although designing dif-
ferent structures is time-consuming.

An experimental investigationwas conducted on the effect
of cutting parameters on cutting forces and surface roughness
in finish hard turning of steel plate number 1. A non-linear
quadraticmodelwas found to be highly accurate in predicting
surface roughness, with feed rate being the major contribut-
ing factor. The analysis of variance showed that interactions
containing cutting speed and feed rate, feed rate and depth of
cut, and cutting speed and depth of cut are crucial in altering
surface roughness. To predict surface roughness, accelera-
tion amplitude of vibration in the axial, radial, and tangential
directions were used. Multiple regression models using only
vibration signals were developed, but neither showed satis-
factory prediction ability. The Pearson correlation coefficient
was used instead to determine the correlation between surface
roughness and cutting parameters and acceleration amplitude
of vibrations. The multiple regression model was developed
using input parameters, namely feed rate, acceleration ampli-
tude of vibration in the radial direction, depth of cut, and
acceleration amplitude of vibration in the tangential direc-
tion. The neural network model was developed using the
same combination of input parameters. Both models were
validated with data not used in the development of mod-
els and showed reasonable accuracy in predicting surface
roughness. In-process surface roughness prediction can help
control the surface finish within the required limits [6].

Özel T et al. [7] discusses the use of Analysis of Variance
(ANOVA) to predict surface roughness in hard turning based
on cutting parameters. Experimental cutting parameter data
is utilized to predict surface roughness using this model. By
combining Response Surface Methodology (RSM) with fac-
torial design of experiments, a small number of experiments
can provide valuable information used to predict roughness
equations. The primary contributor to surface roughness is
the feed rate, and it significantly influences the evolution
of surface roughness. Self-exciting vibrations and chatter-
ing were not observed during the experiments, indicating
proper machining operations. The quadratic effect of cutting

speed and feed rate, as well as their interaction, provides a
secondary contribution to the model. Vibrations have no sig-
nificant effects. Experimental models have been developed
to correlate surface roughness parameters with machining
ones and tool vibrations. The highest influence on surface
roughness is from the feed rate and cutting speed, while the
depth of the cut has no influence. The effect of vibration is
minimal. ANOVA provides high-accurate results. Upadhyay
V et al. [8] discusses the use of Artificial Neural Network
(ANN) to predict the tool wear, surface roughness, and vibra-
tion of steelwork pieces. During the boring of stainless steel,
the vibration of the boring bar affects the tool wear and sur-
face roughness. In this study, a boring AISI 316 steel with
cemented carbide tool inserts was used to examine the tool
wear, surface roughness, and vibration of the workpiece.
Experimental data was collected and input into ANN tech-
niques. Amultilayer perceptronmodel was used alongwith a
back-propagation algorithm, utilizing input parameters such
as nose radius, cutting speed, feed rate, and volume of mate-
rial removed. The ANN model was then used to predict
surface roughness, tool wear, and amplitude of workpiece
vibration. The Design of Experiments methodwith two-level
cutting parameters was applied, resulting in a strong cor-
relation between the dependent and independent variables
of different parameters. The ANN model was developed
and trained using cutting parameters as input data, result-
ing in less error between predicted and experimental data
and satisfactory results. The study concludes that ANN is
an acceptable model to determine surface roughness and
vibration. The study of surface roughness machining param-
eters [9] utilizes Artificial Intelligence techniques like ANN
and Genetic Algorithm. These models require sensor data as
input. Factors such as spindle unbalance, toolwear, andvibra-
tions can impact surface roughness. Feed rate and cutting
parameters have a significant impact on surface roughness.
Tool vibration is a major issue [10] that affects dimensional
accuracy and surface roughness. To produce minimal chat-
ter, ANN is used to forecast cutting conditions. The results
of this analysis are within acceptable limits. Khorasani AM
et al. [11] utilizes ANOVA to estimate the impact of pro-
cess parameters such as speed, feed, and depth of cut on
surface roughness. The authors implement a multi-objective
optimization approach to optimize these parameters and use
quadratic models to predict measurements with high accu-
racy. The results show that feed rate has a significant effect on
surface roughness, while the depth of cut has aminimal effect
and cutting speed negatively impacts it. This model can be
extended to optimize other machining processes as well. The
authors investigate the combined effects of process parame-
ters on performance characteristics usingANOVAandmodel
the relationship between process parameters and perfor-
mance characteristics through response surfacemethodology
(RSM). They use the composite desirability optimization
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technique with RSM’s quadratic models to find the opti-
mal values of process parameters simultaneously optimizing
performance characteristics. This experimental and statisti-
cal approach provides a reliable methodology to optimize
and improve the hard-turning process and can be efficiently
extended to other machining processes. Khorasani A et al.
[12] generated the data using DOE to establish relationships
among different parameters, and ANOVA results confirm the
adequacy of the approach. They find that feed rate influ-
ences surface roughness and is lower at higher speeds and
vice versa. Surface roughness is high for large depth of cuts,
and the authors use an optic system to avoid unwanted pro-
cesses damaging the surface during face milling on AISI
1040 carbon steel and aluminum alloy 5083 materials at dif-
ferent speeds and depths of cut. The surface roughness values
were obtained using a roughness tester. Khorasani AM et al.
[13] measured surface roughness during turning at different
cutting parameters such as speed, feed rate, and depth of
cut using full factorial experimental design. They use artifi-
cial neural networks and multiple regression approaches to
model the surface roughness of AISI1040 steel and compare
these models with statistical models. The results show that
both models can predict surface roughness, but the ANN
model has higher accuracy. The study introduces a novel
approach to surface roughness estimation in milling opera-
tions. It employs a Bayesian quantile model (BQR) that takes
into account information from several sources, such as mon-
itoring signals and cutting parameters. Model parameters,
which provide expected roughness values and confidence
intervals, are estimated via Gibbs sampling. According to
experimental findings, the prediction error is less than LSR,
BPN, and BLR, at 15.05%. BQR stands out for its ability to
analyze the effect of cutting parameters on roughness, despite
having a negligible advantage over BPN in prediction error
and a minor disadvantage to SVM. Operators can improve
milling procedures with the help of this useful knowledge. To
provide accurate predictions and analyses of surface rough-
ness, the suggested method integrates a QR model, MSH
data, and Bayesian theory [14]. In this study, surface rough-
ness is predicted using a novel “chatter stability feature”
generated frommilling stability analysis and a BP neural net-
work model for high-speed precision milling of aerospace
aluminum alloy 7075Al. Compared to a model that only
relies on cutting parameters, experimental results demon-
strate an improvement in accuracy of 7.8%. The method may
be applied to current machines with the aid of an optical non-
contact vibrometer and is also resistant to modal parameter
mistakes of up to 10%. Extending this process to various
cutting techniques is the goal of future study [15].

The article highlights difficulties encounteredwithmilling
intricate freeform surface components, such as aeronau-
tical blades. It suggests a monitoring strategy employing
blade-root acceleration signals to create a spatial vibration

model for foretelling surface roughness. The method’s non-
interference with milling and capacity to forecast roughness
at different places make it useful for industrial product
inspection and risk reduction. In this paper, the surface
roughness of the aerospace aluminum alloy 7075Al is inves-
tigated in terms of accurate machining quality prediction,
and a unique “chatter stability feature” is suggested as a
means of improving forecast accuracy [16]. In order to
increase material removal rate (MRR) and surface qual-
ity during micro-electrical discharge machining (EDM), the
study looks at the usage of vibration support. An approach
for categorizing discharge pulses is suggested in order to
comprehend them better during traditional and ultrasonic
vibration-assisted EDM. Additionally, the research intro-
duces histograms for pulse analysis and real-time discharge
energy estimate. Increased discharge energy and less depth
inaccuracy result from the application of vibration aid.
Accuracy, surface quality, and the amount of tapering in
micro-holes are all increased by ultrasonic vibrations. The
results show that vibration support can increase the process’s
stability and efficiency [17]. The article provides details on
a remote surface roughness monitoring system. Through
the observation of spindle power, workpiece vibration, and
cutting parameters, the system indirectly checks roughness.
Support vector regression (SVR) creates prediction models
based on several variables, with the X-direction’s vibration
and spindle power displaying the highest results. Data aqui-
sition, cloud servers, and client-side components are used in
the configuration of the remote monitoring system. Remote
alarms are set off by anomalies, allowing users to track prob-
lems back in time and find the origin of processing anomalies
[18].

The article examines how ICT might be used in manufac-
turing to facilitate effective decision-making, with a focus
on cost containment and quality improvement. Monitoring
drilling activities and determining surface roughness are its
two main areas of emphasis. Surface roughness predictions
may not match actual results since drilling is different from
other machining techniques. Recognizing its significance in
product quality and industrial effectiveness, the study inves-
tigates non-contact methods for assessing surface roughness.
The paper offers a thorough analysis of different non-contact
methods for estimating surface roughness in machining [19].
In order to enhance the quality of end-milling by classifying
roughness, the study applies a transformer-based deep learn-
ing technique. The model includes methods for extracting
audio features that increase accuracy by using cutting force
and machining sound data. Studies show that models trained
on 10–40 s of machining data produce validation and test
accuracies of 90%, proving the advantages of steady-state
data. A comparison of DL models reveals how well the sug-
gested techniquepredicts the quality of themachining surface
and has the potential to save a lot of time and money during
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post-operations. In order to address current industrial issues,
the study offers a viable use of deep learning [20].

In this work, the authors simulate a dynamic monitoring
system for surface roughness prediction in milling opera-
tions using three components of workpiece vibrations to
enhance the performance of the monitoring system. The
authors have successfully pioneered an innovative approach
in the field of surface roughness prediction by harnessing
the power of intelligent systems. Through their meticulous
research and development, they have engineered a method
that capitalizes on the analysis of overall vibrations across
all three dimensions, enabling the accurate prediction of sur-
face roughness. This breakthrough not only expedites the
measurement process but also eliminates the need for direct
human intervention, ushering in a new era of efficiency
and productivity. They aim to develop an operator-friendly
performance enhancement model that generates the desired
output of roughness for given inline elements. The remaining
part of work are as follows: 2. Experimentation, 3. AIModel,
4. Model Evaluation and 5. Conclusion.

2 Experimentation

The use of CNC machines is gaining popularity in the man-
ufacturing industry due to their ability to minimize the risk
of human error and produce parts efficiently. With advanced
programming features, these machines are capable of han-
dling complex tasks, which is why they are being adopted in
various industries. The CNC JV-55 machine is used for face
milling operations with the following specifications: spindle
speed of 6000 rpm, table size of 900 by 340 mm, spindle
motor power of 7.5 kW, and spindle bore taper of BT40. To
determine the effects of cutting speed, feed rate and depth of
cut on aluminum alloy A96061-T6 flats of 10 by 5 cm, var-
ious experiments are conducted under different machining
conditions. The number of experiments required is deter-
mined using DESIGN EXPERT v10 software, which assists
with experimental design.

Table 1 displays the range of cutting parameters and its
corresponding surface roughness. To measure vibrations, the
tri-axial vibration measurement device was utilized. This
device is equipped with a PCB single axis accelerometer,
model number 352C03, with a sensitivity of ± 20% at
9.95 mV/g, a frequency range of 0.5–10,000 Hz at ± 5%, a
measurement range of ± 500 g Pk, and a resonant frequency
of ≥ 50 kHz. It weighs 5.8 g and can measure vibrations in
all three directions (x, y, and z). Table 1 outlines the cutting
parameters (Speed (S), feed rate (F) and depth of cut (DOC)),
overall vibration values and corresponding measured surface
roughness (SR). To measure vibrations, the sensor is placed
on the machine spindle, as shown in Fig. 1.

Fig. 1 Accelerometer placed on spindle for vibration measurement

3 AI model

3.1 KNN regressionmodel

The k-NN model, short for k nearest neighbor, is employed
for identifying novel records by amalgamating the most
recent historical data with K characteristics alongside earlier
records. This algorithm, applicable for both classification and
regression inmachine learning, operates on a non-parametric
basis. In the k-NN algorithm, the initial step involves deter-
mining the distance between a new data point and the training
sample, followed by identifying the nearest neighbor to that
point. Subsequently, the algorithm determines the category
to which the new data point belongs by considering the cat-
egories of its neighboring data points. If all the surrounding
data points share the same category, the new data point is
also assigned to that category. The value for the Euclidian
distance, also known as the distance of new data from the
training sample are given below.

ε
(
xi , yi

) �
√√√
√

k∑

i�1

ω2(xi − yi )2

In this context, ε denotes the total number of predictions
within the optimization set. The function ε

(
xi , yi

)
is recog-

nized as a distance function, used tomeasure the dissimilarity
between two distinct scenarios. Here, x and y denote matrix
scenarios containing k features, and w represents the weight
assigned to each dependent variable in the K-NNs. The ker-
nel function is symbolized by ‘k’. The order of the k-NNs
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Table 1 Cutting parameters,
vibrations and surface roughness Exp

No.
Speed
(rpm)

Feed rate
(mm/ min)

Depth of
cut (mm)

X-Axis
(mm/sec)

Y-axis
(mm/sec)

Z-axis
(mm/sec)

SR
(Microns)

1 1000 170 0.4 2.97 1.42 1.35 2.816

2 3000 150 0.6 2.7 1.33 1.17 0.42

3 1000 200 1 3.09 1.59 13.94 5.8

4 2000 200 0.6 2.94 1.3 13.82 1.153

5 4000 120 0.8 3.47 1.39 1.4 0.81

6 1000 120 1 2.86 1.56 1.21 2.91

7 2000 170 0.8 3.2 1.54 1.37 2.18

8 4000 170 0.4 3.25 1.3 1.28 0.353

9 1000 170 0.8 2.78 1.58 1.36 3.42

10 3000 170 1 2.89 1.39 1.24 0.29

11 2000 120 1 2.99 1.54 1.55 1.9

12 3000 170 0.6 2.61 1.27 1.23 0.34

13 1000 200 0.4 2.9 1.75 14.08 2.86

14 3000 200 0.6 2.69 1.51 13.2 0.35

15 2000 170 0.6 2.84 1.45 1.39 2.12

16 4000 170 0.8 3.34 1.34 1.38 0.363

17 1000 200 0.8 2.77 1.63 13.35 3.46

18 3000 120 0.6 2.78 1.29 1.28 0.22

19 4000 170 0.6 3.38 1.52 12.63 0.56

20 2000 170 1 2.9 1.47 1.3 2.49

21 4000 200 0.8 3.29 1.64 10.74 0.22

22 3000 150 0.4 2.56 1.52 1.36 0.32

23 1000 150 0.6 2.71 1.52 1.48 4.24

24 3000 170 0.8 2.52 1.49 1.24 0.38

25 3000 120 1 2.81 1.62 1.2 1.21

26 2000 150 0.8 2.91 1.4 1.36 1.91

27 3000 170 0.4 2.7 1.42 1.14 0.38

28 2000 150 1 3.02 1.38 1.29 2.1

29 4000 150 0.8 3.33 1.39 1.31 0.44

30 4000 150 0.8 3.18 1.4 1.22 0.98

31 3000 120 0.4 2.88 1.4 1.1 0.27

32 1000 120 0.6 2.81 1.39 1.21 2.98

33 3000 200 1 2.9 1.46 13.59 0.37

34 3000 200 0.8 2.61 1.33 1.19 0.24

35 2000 200 1 3.18 1.32 13.39 1.77

36 2000 150 0.4 2.78 1.29 1.22 1.44

37 4000 150 1 3.33 1.52 1.43 0.38

38 2000 170 0.4 2.9 1.24 1.15 1.88

39 2000 200 0.8 3.07 1.42 13.77 2.07

40 4000 120 0.6 3.44 1.56 1.22 0.62

41 2000 120 0.4 3.04 1.49 1.24 1.09

42 1000 150 0.4 2.81 1.36 1.06 3.41

43 2000 120 0.6 2.62 1.23 1.16 0.4

44 3000 120 0.8 2.84 1.42 1.09 0.43
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Table 1 (continued)
Exp
No.

Speed
(rpm)

Feed rate
(mm/ min)

Depth of
cut (mm)

X-Axis
(mm/sec)

Y-axis
(mm/sec)

Z-axis
(mm/sec)

SR
(Microns)

45 4000 120 0.4 3.23 1.45 1.13 0.24

46 1000 200 0.6 2.97 1.58 13.88 3.52

47 2000 120 0.8 2.97 1.32 1.2 1.15

48 4000 150 0.6 3.33 1.59 1.24 0.54

49 1000 170 1 2.98 1.51 1.21 5.363

50 1000 150 0.8 3.09 1.59 1.43 2.63

51 4000 170 1 3.35 1.27 1.27 0.36

52 4000 200 0.6 3.32 1.36 13.63 0.23

53 1000 170 0.6 2.65 1.35 1.09 2.19

54 4000 200 0.4 3.3 1.58 13.42 0.2

55 1000 150 1 2.95 1.42 1.29 3.16

56 4000 200 0.6 3.35 1.4 14.03 0.23

57 3000 200 0.6 2.81 1.3 1.19 0.29

58 2000 200 0.4 2.75 1.45 14.01 0.65

59 2000 150 1 2.72 1.24 1.15 0.26

60 4000 120 1 3.12 1.51 1.28 0.43

61 1000 120 0.8 2.87 1.63 1.23 1.75

62 3000 150 1 2.6 1.36 1.12 0.22

63 1000 120 0.4 2.59 1.35 1.29 0.211

64 3000 150 0.8 2.7 1.33 1.12 1.67

is referred to based on their proximity to the current perfor-
mance condition, with the closest k-NN being labeled as I �
1, 2,… k.

3.2 Polynomial regressionmodel

Polynomial regression falls under regression analysis and
involves elevating each original predictor to a power while
introducing additional predictors. The objective is to model
the influence of predictor x on response variable y as an nth
degree polynomial in x. Polynomial regression is a useful tool
for assessing this relationship. For instance, quadratic poly-
nomial regression employs predictors x and x2, while cubic
polynomial regression includes x, x2, and x3 as predictors.
Consequently, polynomial regression is considered a sub-
set of multiple linear regression, providing a straightforward
approach to exploring the relationship between independent
anddependent variables.Buildingupon theprinciples ofmul-
tiple linear regression, the resulting Polynomial Regression
(PR) model is formulated.

Y � αo + α1x1 + α2x2 + . . . + αs xs + δ

whereαo, α1, α2, . . . . . . αn are knows as PR regression coef-
ficients, αo is the bias term, x1, x2, …, xs are denoted as
independent variables, Y is the dependent variable and δ is

represented as random error. Equation. _ can be rewritten as
follows if enough data points are collected:

Y � Xα + δ

where Y � [y1, y2, . . . . . . yn]T , α �
[αo, α1, α2, . . . . . . αn]T and δ � [δ1, δ2, . . . , δn]T and.

X �

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

1
1
...

x (1,1)

x (1,2)

...

· · · · · · x (s, 1)
· · · · · · x (s, 2)

· · · · · · ...
...

... · · · · · · ...
1 x (1, n) · · · · · · x (s, n)

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

The sum of squared errors can be determined by following
Equation.

Cost (αo, α1, α2, . . . , αs)

�
j∑

i�1

(
yi − αo − α1x1, i − α2x2, i − . . . xs, i

)2

The least-squares method is a method that can be used to
calculate an estimation of the regression coefficient vector α̂.

α̂ �
(
XT X

)−1
XT Y
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Following this, the PR model that was constructed based
on multiple linear regression is defined as:

y � αo +
s∑

m�1

(αmxm) +
s∑

m�1

s−m+1∑

n�1

(αmnxmxn)

+
s∑

m�1

s−m+1∑

n�1

s−n+1∑

o�1

(αmnoxmxnxo) + . . . + δ

where αmn and αmno are known as regression coefficients
which can be computed bymultiplying the values of the indi-
vidual variables.

Y � X PαP + δP

Where X P is the independent variable matrix and αP is
the corresponding regression coefficient vector and δP is cor-
responding error vector. Hence, the least squares estimation
approach can be used to estimate the regression coefficient
vector α̂P :

α̂P �
(
(X P )

T
X P

)−1(
X P

)T
Y

3.3 Decision tree

The growing popularity of Decision Trees (DT) can be
attributed to its simplicity, ease of comprehension, cost-
effectiveness, and its ability to be visually represented in
various forms. A Decision Tree is a set of conditions orga-
nized hierarchically, executed in a sequential order from the
tree’s origin to its final node or leaf. Unlike artificial neural
networks, the key advantage of employing a hierarchical tree
structure is its visibility, making it more accessible for under-
standing. Constructing the Decision Tree involves applying
an evaluation measure to each evidential attribute, enhancing
the variability between internal nodes. The construction pro-
cess includes multiple regressions and recursive partitioning
of the dataset. Data splitting occurs iteratively, starting from
the root node and continuing until a predefined termination
condition is met. The application scope of a simple regres-
sion model is limited to specified terminal nodes or leaves.
Pruning is performed to enhance the tree’s generalization
capacity by reducing structural complexity, considering total
occurrences in a node during the process.

To begin, the dependent feature, which is also referred to
as the parent node (root), is subdivided into binary compo-
nents. It is generally agreed upon that the child nodes are
“purer” than the parent node. During this phase, the DTs
search through all of the candidate splits in order to locate
the optimal split, denoted by the letter c*,which optimizes the

‘purity’ of the resultant tree while simultaneously minimiz-
ing the number of candidate splits. The following equation
provides the formula for the process of splitting.

� j(c, x) � j(x) − QL j(xL) − QR j(xR)

This node x is divided by c into the left child node xL
with the proportion QL and the right child node xR with
the proportion QR . c is the candidate split at note z. The
amount of impurity before splitting is denoted by the symbol
j(x). After splitting, the measure of impurity is denoted by
the symbols j(xL) and j(xR). � j(c, x) results in a reduc-
tion in the amount of impurity from split s. The Gini index,
often known as JG , is the most popular measure used in
DTs, and it is calculated with the use of following equation.
In order to partition the decision tree, the attribute that has
the Gini Impurity Index that is the lowest possible valuemust
be selected as the dividing criterion.

JG
(
xz(z j)

)
� 1 −

n∑

i�1

f
(
xz(z j), i

)2 · · ·

f (xz(z j), i)
2 is the fraction of samples with the value z j

belonging to leave i as node x.

3.4 Random forest

The random forest regression method predicts or classifies
data points by amalgamating outcomes from multiple deci-
sion tree algorithms. This ensemble approach, grounded in
trees, overcomes limitations of traditional classification and
regression tree methods. To mitigate bias and variability,
Random Forest (RF) employs numerous weak decision tree
learners constructed simultaneously. Training involves col-
lecting N bootstrapped sample sets from the source dataset,
and unpruned regression or classification trees are built from
each set. Instead of utilizing all variables, a predetermined
number, K, of randomly chosen predictors is employed in
this phase. This process is iterated until T trees are formed.
Aggregating predictions from all T trees projects fresh data.
Through bagging, RF enhances tree diversity while reduc-
ing overall model variance by evolving trees from distinct
training data subsets.

f TRF (x) � 1

T

T∑

n�1

DTi (x)

where x is the vectored input variable, T represents the total
number of trees, and DT i (x) represents an individual regres-
sion tree.

The function is created by utilizing a subset of input
variables and bootstrapped sample data in its construction.
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Fig. 2 Basic structure of the
ANFIS model

Additionally, samples not utilized in training the DTth tree
during the bagging phase form a distinct subset known as the
out-of-bag sample collection. This subset allows the DTth
tree to assess system performance using these excluded com-
ponents. RandomForest (RF) inherently performs out-of-bag
error, providing an unbiased estimate of generalization error
without requiring an external test data subset, unlike other
methods. A key advantage ofRF lies in its ability to assess the
relative importance of input parameters, crucial for dimen-
sionality reduction and enhancing model performance on
large datasets. RF alters one input variablewhile keeping oth-
ers constant, evaluating the mean drop in model prediction
accuracy. The resultingmean decrease in prediction accuracy
assigns a relative relevance value to each input characteris-
tic. Another noteworthy feature of RF classifiers is that their
trees growwithout being pruned, making them computation-
ally efficient.

3.5 ANFIS model

The main goal of ANFIS is to integrate the strengths of both
neural networks and fuzzy systems. A key benefit of a fuzzy
system lies in its ability to define network topology based
on existing knowledge, potentially eliminating the necessity
for search space optimization. In contrast, backpropagation,
a technique successful in neural networks, is employed to
automate the training process for fuzzy control. The fun-
damental mechanism of a fuzzy inference system involves
establishing logical connections between input and output
spaces, primarily composed of membership functions, fuzzy
sets, fuzzy implication operators, and linguistic if–then rules.

A membership function is a graphical function that trans-
forms individual input values into corresponding degrees
of membership within the 0 to 1 range. Various types of
membership functions are utilized in FIS systems, and this

study involved a comparison of the effectiveness of trian-
gular, generalized bell, trapezoidal, and Gaussian functions.
The connection between input and output variables is articu-
lated through if–then rule statements. Generally, a first order
Sugeno fuzzy model was employed, as depicted below:

Rule-I: If (m is X1) and (n is Y1) then f1 � R1.m + S1.n + T1

Rule-II: If (m is X2) and (n is Y2) then f2 � R2.m + S2.n +
T2

Where m1, m2, n1, n2, o1, o2 are known as linear parame-
ters andX1, X2, Y1, Y2 are denoted as non-linear parameters.
The schematic representationofANFISarchitecture is shown
in Fig. 2. Basically,ANFIS comprises of five layers i.e., fuzzy
layer, product layer, normalized layer, de-fuzzy layer andout-
put layer.

In Fuzzy layer, the input variables are converted in to lin-
guistic labels i.e., X1, X2, Y1, Y2 which are actuated by
membership functions. The output of each node in the fuzzy
layer is determined by following equations:

O1, i � μPi (m) I � 1, 2, . . . , n

O1, j � μQi (n) j � 1, 2, . . . , n

where O1, i andO1, j are known as the output values of fuzzy
layer and μPi , μQi are represents the membership functions
used in the layer1. The signals received from the nodes of the
fuzzy layer is multiplied in product layer i.e., second layer.
Each node in the product layer is labeled as π function. The
output values of the product layer are calculated by following
equations:

O2, i � Wi �
∏(

O1, i × O1, j
)

I � 1, 2, . . . , n
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Fig. 3 Pair plot for surface roughness distribution

The output of the product layer is also implying that fir-
ing strength of the rule (Wi ). These firing strength values are
normalized in normalization layer. Each node of the normal-
ization layer is labeled by N. The following Equation is used
to determine the output value of the normalization layer.

O3, i � ⇀

Wl � Wi

W1+W2
I � 1, 2, . . . , n

where O3, i is denoted as output of the normalization layer

and
⇀

Wl is known as normalized firing strength value. After-
wards, in Defuzzy layer, these normalized firing strength
values are multiplied by first order polynomial equation. The
nodes present in this layer are adaptive nature which are
labeled by D. The following expression is used to compute
the output of the Defuzzy layer.

O4, i � ⇀

Wl fi� � ⇀

Wi × (Rim + Sin + Ti ) I � 1, 2, . . . , n
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Table 2 The Training and testing
data used for model generation Training data

Exp No. X-Axis (mm/sec) Y-axis (mm/sec) Z-axis (mm/sec) SR (Microns)

1 2.78 1.29 1.22 1.44

2 2.97 1.58 13.88 3.52

3 3.18 1.32 13.39 1.77

4 3.32 1.36 13.63 0.23

5 3.02 1.38 1.29 2.1

6 3.47 1.39 1.4 0.81

7 2.56 1.52 1.36 0.32

8 3.35 1.27 1.27 0.36

9 3.09 1.59 13.94 5.8

10 3.38 1.52 12.63 0.56

11 3.29 1.64 10.74 0.22

12 2.77 1.63 13.35 3.46

13 2.72 1.24 1.15 0.26

14 2.9 1.47 1.3 2.49

15 3.04 1.49 1.24 1.09

16 2.7 1.42 1.14 0.38

17 2.94 1.3 13.82 1.153

18 2.75 1.45 14.01 0.65

19 3.07 1.42 13.77 2.07

20 2.97 1.32 1.2 1.15

21 2.62 1.23 1.16 0.4

22 3.3 1.58 13.42 0.2

23 2.61 1.33 1.19 0.24

24 3.33 1.52 1.43 0.38

25 2.84 1.42 1.09 0.43

26 2.71 1.52 1.48 4.24

27 2.78 1.58 1.36 3.42

28 2.59 1.35 1.29 0.211

29 2.87 1.63 1.23 1.75

30 3.09 1.59 1.43 2.63

31 3.12 1.51 1.28 0.43

32 2.86 1.56 1.21 2.91

33 2.81 1.3 1.19 0.29

34 2.7 1.33 1.17 0.42

35 2.9 1.46 13.59 0.37

36 3.33 1.59 1.24 0.54

37 3.18 1.4 1.22 0.98

38 2.84 1.45 1.39 2.12

39 2.78 1.29 1.28 0.22

40 2.89 1.39 1.24 0.29

41 3.35 1.4 14.03 0.23

42 2.52 1.49 1.24 0.38

43 2.81 1.62 1.2 1.21
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Table 2 (continued)
Training data

Exp No. X-Axis (mm/sec) Y-axis (mm/sec) Z-axis (mm/sec) SR (Microns)

44 2.95 1.42 1.29 3.16

45 2.81 1.39 1.21 2.98

46 2.88 1.4 1.1 0.27

47 3.33 1.39 1.31 0.44

48 2.99 1.54 1.55 1.9

49 3.25 1.3 1.28 0.353

50 3.34 1.34 1.38 0.363

51 2.9 1.75 14.08 2.86

Testing data

1 2.7 1.33 1.12 1.67

2 3.44 1.56 1.22 0.62

3 2.97 1.42 1.35 2.816

4 2.6 1.36 1.12 0.22

5 3.23 1.45 1.13 0.24

6 2.65 1.35 1.09 2.19

7 2.81 1.36 1.06 3.41

8 2.98 1.51 1.21 5.363

9 3.2 1.54 1.37 2.18

10 2.9 1.24 1.15 1.88

11 2.61 1.27 1.23 0.34

12 2.91 1.4 1.36 1.91

13 2.69 1.51 13.2 0.35

where O4, i is denoted as output of the Defuzzy layer and
RiSi and Ti are known as linear parameters which is also
called as consequent parameters. Finally, the output signals
of Defuzzy layer are passed in to output layer where all these
signals are summed and gives the final output value. The node
present in this layer is fixed nature which are labeled by ∈.
The final output value is expressed in given equation:

O5, i �
n∑

i�1

(
⇀

Wl × (Rim + Sin + Ti )

)
I � 1, 2, . . . , n

where O5, i denotes the output of the output layer.

4 Model evaluation

In the present research mainly focus on predicting the sur-
face roughness of the machined samples. This prediction
relies on three key factors: X, Y and Z direction vibration.
To accomplish this, Python 3.10.5 software was employed
to develop machine learning models based on experimental
data, enabling to accurately predict the surface roughness of
themachined sample. A pair plot is generated to visualize the

Fig. 4 Pearson’s correlation coefficient for surface roughness

distribution of vibrational data acquired during the machin-
ing process. This plot helps identify the attributes that most
effectively elucidate the relationship between two variables
by considering both dependent and independent variables.
The relation between the surface roughness and other input
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Fig. 5 Interaction plots of surface roughness a x–y direction b y–z direction c x–z direction d variation of surface roughness for selected experiments

parameters such as directional vibration is shown in Fig. 3.
The training and testing datasets are presented in Table 2.

Furthermore, Fig. 4 presents a Heatmap diagram illus-
trating the relationship between surface roughness, which
has been analyzed using the Pearson correlation coefficient
(PCC) to evaluate the connections between dependent and
independent variables. The PCC, ranging from−1 to 1, quan-
tifies the linear correlation between these variables.When the
PCC coefficient approaches 1, it signifies a strong direct lin-
ear relationship, while values near −1 indicate a significant
inverse linear connection. A PCC coefficient near 0 suggests
a lack of a substantial linear association between the inde-
pendent variables. Upon close examination of the Heatmap
diagram for surface roughness, it becomes evident that the
PCC values for all independent variables are relatively low.
A deeper analysis of the PCC results reveals an inverse linear
relationship between vibration in x-axis. Consequently, these

findings suggest that y and z-axial vibration also exhibit an
linear relationship.

Figure 5a illustrates the relationship between spindle
vibration along the X-axis and Y-axis, aiming to assess their
impact on surface roughness. Upon examination, it is evident
that an increase in both X-Axis and Y-Axis vibrations results
in irregular surface roughness, making it challenging to draw
any definitive conclusions. Moving on to Fig. 5c, which
explores the connection between X-axis and Z-axis vibra-
tions, an elevation in X-axis vibration doesn’t significantly
affect surface roughness. However, Z-axis spindle vibration
shows a notable correlation, indicating that an increase in
Z-axis vibration leads to a corresponding rise in surface
roughness. In Fig. 5b, depicting the relationship between Y-
axis and Z-axis spindle vibration, an increase in both values
corresponds to heightened surface roughness. The presence
of a conical shape in red suggests an upward trend in surface
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Fig. 6 Interaction plots of surface roughness a speed versus feed rate b feed rate versus depth of cut c speed versus depth of cut

roughness. Consequently, the influence of Y-axis and Z-axis
vibrations appears to have a substantial impact on surface
roughness. During experiments with higher machining feed
rates (200mm/min), specifically at experiments numbered 3,
4, 13, 14, 17, 21, 33, 35, 39, 46, 52, 54, 56, and 58, as shown
in Table 1, the Z-axis spindle vibrations exhibit elevated lev-
els. Figure 5d illustrate the correlation between experiment
numbers and their respective surface roughness values.

Figure 6a illustrates the relationship between spindle
speed and feed rate, aiming to assess their impact on sur-
face roughness. Upon examination, it is evident that lower
speed and higher feed rate leading to increase the surface
roughness value. However, Fig. 6b, c illustrates the relation-
ship between depth of cut versus feed rate and speed versus
depth of cut, aiming to assess their impact on surface rough-
ness respectively. From the plots, it can be observed that the

lower speed, higher feed rate and higher depth of cut leads
to increase the surface roughness value.

The comparison between experimental and predicted sur-
face roughness of variousmodels is shown in Fig. 7. From the
visual inspection of this figure, it can be observed that, among
all machine learning models, the predicted outcomes of the
ANFISmodel were very close to the experimental outcomes.
Figures 8 and 9 shows the regression plots and comparison
plots of the optimum ANFIS model. From this plots, it is
observed that the optimal ANFIS model well predicts the
experimental results.
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Fig. 7 Comparison between surface roughness of experimental and var-
ious predicted models

Fig. 8 Regression plot between actual and ANFIS model

5 Conclusion

A new intelligent system has been developed to predict sur-
face roughness based on overall vibrations in all directions.
This breakthrough technology integrates Python 3.10.5 soft-
ware andmachine learningmodels, promising transformative
impacts on industrial practices.

• Utilized Python 3.10.5 software and machine learning
models to predict surface roughness.

• Machine learning models, such as polynomial regression,
decision trees, random forests, and ANFIS, were devel-
oped to predict surface roughness.

Fig. 9 Comparison between surface roughness of experimental and
ANFIS models

• Upon evaluation against other machine learning models,
the ANFIS model demonstrated an exceptional prediction
accuracy of 98%.

• This finding establishes ANFIS as the superior model for
surface roughness estimation, especially when leveraging
data from machine tool vibrations across all three direc-
tions.

• Employed pair plot and Heatmap diagrams for visual rep-
resentation and correlation analysis.

• Highlighted the significant correlation between Z-axis
vibration and surface roughness.

• Explored relationships between spindle speed, feed rate,
and depth of cut on surface roughness.

• Demonstrated the effectiveness of the ANFIS model in
accurately predicting surface roughness.

The developed intelligent system not only optimizes
resource allocation and efficiency but also streamlines qual-
ity control and manufacturing processes. By eliminating the
need for conventional measuring instruments, it paves the
way for a more automated and productive future in various
sectors. The ANFIS model’s reliability underscores its sig-
nificant contribution to machining optimization and quality
control, marking a notable advancement in surface roughness
prediction technology.
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