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Abstract
Machining the surface of polymer composites is an inevitable task for components. Hole-making processes like milling or
drilling can be conducted to analyze a range of parameters concerning the polymer composite. Specific techniques have
revealed that machinability in polymers is challenging due to their high hardness. This research investigated thrust as well as
surface roughness measurements on jute fiber-reinforced polymer composites utilising different drill bit diameters, studying
parameter interactions via 3-D surface plots. In contrast, optimal process parameterswere predicted using theResponseSurface
Methodology (RSM), Grey Relational Analysis (GRA), Genetic Algorithm (GA), and Teaching learning-based optimization
(TLBO) curve. GRA-based RSM was instrumental in crafting optimal fitness regression models for the GA and TLBO of
polymer composites reinforced with jute fibers. Both, the RSM and TLBOmethods exhibited significant correspondence over
experimental results. According to these outcomes, thrust force was often shown to enhance with low spindle speed, high
feed rate, and small drill diameter. When spindle speed, feed, and tool diameter are reduced, surface roughness decreases.
This study holds practical significance by offering a clear pathway to minimize thrust force and surface roughness during
drilling operations, consequently enhancing process quality and efficiency.

Keywords Polymer composite · Response surface methodology · GRA · Optimization · Drilling machine performance

1 Introduction

Fiber-reinforced polymers (FRPs) represent a prominent
category of composites widely employed for structural appli-
cations owing to their favorable ratio of strength-to-weight
[31]. Recent advancements have seen the replacement of tra-
ditional biomaterials with synthetic fibers, aiming to bolster
mechanical properties. Drilling is essential to the manufac-
turing process, a procedure pivotal for creating apertures in
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structural components. Notably, research by Kumar et al.
[21] highlights the significant persuade of spindle feed rate
on thrust force as well as the drill diameter during drilling
operations. Moreover, feed rate and spindle speed exert con-
siderable impact on surface roughness. A comprehensive
understanding of drilling dynamics within natural fiber-
reinforced polymers was pursued by Vinayagamoorthi et al.
[41], who examined various parameters in particular tool
diameter, feed rate, point angle, and speed too. The study
elucidated crucial output parameters during drilling opera-
tions, including thrust force, torque, and deflection. A study
was conducted to establish an empirical model, employing a
central composite design, thereby contributing to the under-
standing and optimising of drilling processes in FRPs.

Heidary et al. [13] analyzed thrust action, delamination,
and residual flexural stability in drilling knit E-glass fiber-
epoxy matrices reinforced with functionalized multi-walled
carbon nanotubes. Consequently, the feed rate was the most
influential factor in thrust action and delamination, followed
by spindle speed. Paneerselvam et al. [29] demonstrated
a study on the effect of delamination during drilling on

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12008-024-01892-1&domain=pdf
http://orcid.org/0000-0001-8058-6790
http://orcid.org/0000-0003-3900-9048


International Journal on Interactive Design and Manufacturing (IJIDeM)

Sisal-Glass Fibres Reinforced Polymeric (S-GFRP) matter.
Taguchi’s approach was followed to investigate delamina-
tion. S/N ratios were utilized to refine the operating param-
eters for minimizing delamination. Two distinct approaches,
specifically profile projector and computational imaging,
determined the delamination, which yielded reliable results.

Antil et al. [1] discovered that grey rational analysis
(GRA) emerged as a convincing optimization technique,
significantly improving the manufacturing sector. They uti-
lized SiC-reinforced polymer to optimize process parameters
using the micro drilling process, resulting in enhanced qual-
ity, in particular, improvedmaterial removal rate (MRR)with
minimal cutting and taper. Soepangkat et al. [38] explored a
method aiming for diverse performance attributes, including
optimum torque (Mz), thrust force (Fz), delamination (D),
hole roundness (R) as well as hole surface roughness (Ra),
during the drilling of fiber-reinforced polymers. Through a
series of trials, they found that the BPNN-basedGAmaximal
evaluation strategy notably enhanced and predicted multiple
performance aspects, as confirmed by subsequent trials.

Maleki et al. [34] examined various attributes of woven
jute fiber-reinforced polymer through drilling process. Vari-
ous cutting parameters were examined and evaluated, includ-
ing drill bit types, thrust force, surface roughness, etc. A
statistical evaluation approach was used to determine the
proportional contributions of these factors. Finally, results
indicated that drill bit type affected other characteristics.
Kaviarasan et al. [17] aimed to investigate the dry-condition
characteristics of Delrin polymer to achieve a high surface
finish. They applied the L27 orthogonal array to drilling
conditions, wear mechanisms, types of wear, and wear mea-
surement techniques. As a result, this study has impacted the
comprehension of the long-term implications of composite
material machining wear and the identification of protective
measures against accelerated drill wear.

Ismail et al. [14] conducted a thorough investigation into
tool wear in fiber-reinforced polymeric composites. Their
study covered types and mechanisms of tool wear, drilling
environments, measurement methods, preventive measures
against rapid drill wear as well as the impacts on composite
material machining. The researchers also provided insights
into future perspectives on tool wear. Shunmugesh et al.
[37] employed Taguchi Grey Research Analysis for various
drill bits and conducted trials in order to increase machin-
ing conditions and reduce delamination factor. Results were
concluded by comparing percentage parts of selected factors.

Ramesh et al. [32] employed thin laminated composites,
widely utilized in small-scale engineering tasks, and con-
trasted themwith thick laminated composites. Their findings
revealed that the blended drill bit surpassed standard drill
bit in performance. Feito et al. [10] investigated cutting tool
flaws in CFRP polymer through a three-step approach. The
initial phase involved conducting a complete factorial DOE

to assess importance of individual parameter of process and
the relations with additional criteria, notably delamination
at both positions, that is, hole entry and exit, as well as at
thrust force and torque. In subsequent phases, they employed
ANOVA and RSM, respectively, aimed to derive conclusions
with minimal possible cutting tool damage. Jayabal et al.
[15] studied the effect of cutting tool parameters such as
the diameter of the drill bit, feed rate, and spindle speed.
They employed Box–Behnken design, Nelder–Mead, and
GA techniques in the study, aiming to enhance the cutting
phase of the tool and reduce tool wear.

Mercy et al. [25] investigated a material’s capacity
for self-healing in the event of damage discovery. Glass
fiber-reinforced epoxy resin was mixed with microcap-
sules containing dicyclopentadiene-monomer to create
self-healing GFRP samples. Drilling was performed while
thrust force and temperature readings were being taken
simultaneously, and it was determined that the microcapsule
concentration had produced the required results for both
observed parameters. In many practices involving PA6 and
PA6-NC nanocomposites, Yazdi et al. [39] employed the
thrust force modeling approach to determine thrust force
values using a two mm-diameter high-speed steel drill
with a 118-degree point angle. The PSONN algorithm was
also used to create a thrust force prediction model, utiliz-
ing a particle-swarm-optimization-based neural network
(PSONN) with fine-high setup parameters for drilling PA6
nano clay (NC) nanocomposite material. The outcome
ultimately concluded that the amount of NC content in PAC
composite would significantly decrease the thrust force.

Uysal et al. [40] investigated tool wear conditions in a
sheet molding composite (SMC) consisting of 45 weight
percent calcium carbonates, 25 weight percent polyester, and
30 weight percent glass fiber in a study published in 2012.
Several feed combinations, drill point angles, and cutting
speeds were chosen during the drilling operation. Taguchi
DOE and ANOVAwere employed to find a best combination
of cutting parameters, including the investigation of conse-
quences of tool wear. Chip volume served as an additional
criterion for comparing the collected data. The results
evidenced that increasing feed and lowering the drill tip
angle lessened tool wear Babu et al. [3]. conducted drilling
trials on blended glass-carbon fiber-reinforced (GCFR)
epoxy composites via a manual layup process to evaluate
manufacturing attributes, including torque, thrust force,
delamination, and surface roughness. They investigated the
impact of spindle speed, drill diameter, and feed rate as
drilling process variables. The statistical analysis unveiled
drill diameter as the primary parameter of significance,
trailed by feed rate and spindle speed.

Pultruded glass fiber-reinforced polymer composite
(PGFRP) with hybrid filler, produced at optimal pultrusion
settings, was constructed by Gupta et al. [12]. The effects
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of drilling parameters, including feed rate, spindle speed,
and drill bit lip angle, on the delamination aspect of PGFRP
composites with hybrid filler have been examined. Taguchi’s
single-response optimization technique was utilized to deter-
mine the optimal drilling parameters. Upon synthesizing
PGFRP of a specific composition, it was discovered that
achieving the highest delamination aspect required a spin-
dle speed of 3000 rpm, a feed rate of 200 mm/min, and a
twist drill with a lip angle of 1000.

Saravankumar et al. [35] investigated the thrust force and
surface roughness of composites reinforced with snake grass
fibers.Drilling diagnostic procedureswere executed to assess
the factor effect on the thrust force of drilled unidirectional
snake grass fiber-reinforced synthetic materials. It was found
that a spindle speed of 1800 rpm, a feed rate of 10 mm/min,
and a drill diameter of 4 mm developed the maximal thrust
force value. Ramesh et al. [33] explored how different drill
bit coating materials, along with controlled variables such
as drill bit speed and feed rate, affected surface quality
in epoxy composites reinforced with glass fiber and nano
granite powder. The trials utilized the Taguchi L9 rotation-
ally symmetric array, and the statistical analysis employed
ANOVA to align the process’s response parameters with the
radial drilling criteria. The tests’ findings demonstrated that
the two significant aspects impacting the effectiveness of the
drilled hole are high spindle speeds and a drill bit coated
in bronze oxide. Niranjan et al. [26] examined how differ-
ent drill types (slot, twist, and braid) and process variables
(feed rate and machining speed) affected hole quality errors
in GFRP composite drilling. They assessed roundness error,
machined area roughness, delamination, and diameter devia-
tion. Using TOPSIS, they prioritized parameters to minimize
errors, finding that a spur-type drill with a broader spindle
speed range yielded superior hole quality.

Fedai et al. [9] employed the GRA technique to improve
various aspects of drilling in GFRP composites, includ-
ing the weight percentage of multi-wall carbon nanotubes
(MWCNTs), cutting speed, and feed rate, with a focus on
thrust force and delamination. Through statistical ANOVA,
they observed the impact of drilling parameters on multiple
responses. Subsequently, the optimal parameters were iden-
tified as 1% MWCNTs, a cutting speed of 25 m/min, and a
feed rate of 0.10 mm/rev, aimed at minimizing both thrust
force and delamination simultaneously. Consequently, they
emphasized the significance of the feed rate in the drilling
process.

Antil et al. [2] applied multi-objective particle swarm
optimization (MOPSO) to optimize parameters for electro-
chemical discharge drilling in SiCp and glass fiber-reinforced
polymer matrix composites (PMCs). The planned proce-
dure was centered on the central composite concept and
utilized RSM. Factors considered were electrolyte concen-
tration, interelectrode gap, duty factor, and voltage, while

objective quality characteristics (OQCs) comprised material
removal rate (MRR) and overcut. The empirical findings
underwent refinement through an RSM-based desirability
structure and were further optimized with MOPSO to attain
the most favorable MRR and minimal overcut. Comparative
analysis illustrated MOPSO’s efficacy in enhancing OQCs.

Babu et al. [3] utilized a Taguchi L9 orthogonal array to
execute drilling endeavours in the design of scientific stud-
ies. A fuzzy logic optimization tool was implemented to
determine performance characteristics such as thrust force,
torque, and delamination factor in the drilling of CFRP com-
posite. There were signs of excellent accordance between
the fuzzy results and the experimental norms. As a result,
an ANOVA assessment was conducted to identify signifi-
cant criteria during the drilling of CFRP hybrid material.
Erturk et al. [7] investigated drillability using a range of
drill bits, feed rates, and spindle speeds. They modified
the tool-composite interface for dry drilling experiments
and employed image analysis to assess delamination. The
study found that tool coating influenced drilling mechanics,
with conclusions validated using response surface method-
ology. Optimal parameters identified were a feed rate of
0.13 mm/rev, spindle speed of 2425 rpm, and HSS-TiN drill
bit.

Jayaprakash et al. [16] investigated the impact of including
rice husk in epoxy-based composite plates on drilling speci-
fications. The findings demonstrated that inserting rice husk
substantially enhances the composites’ strength. In addition
to strengthening the matrix, rice husk functions as a lubri-
cant, facilitating machining. This investigation revealed that
organic fillers may be deployed to improve drilled hole qual-
ity at a lower expense. Palanikumar et al. [27] provided a
helpful strategy to maximize drilling configurations with dif-
ferent performance criteria. It used Gray relational analysis
and was based on Taguchi’s strategy. Taguchi’s L16, 4-level
orthogonal array was adopted in scientific research. While
optimizing the drilling parameters, consideration is given to
the delamination aspect, workpiece surface roughness, thrust
action, and other performance characteristics, including feed
rate and spindle speed. Thus, Gray relational grade analy-
sis shows that the feed rate has a much more significant
impact than the spindle speed. These results establish that
this approach can potentially increase the efficacy of drilling
activities.

Babu et al. [3] focused on the hand layup technique of
drilling hybrid glass-carbon fiber-reinforced (GCFR) epoxy
composites. An artificial intelligence or fuzzy inference sys-
tem was used to mitigate the precision effect caused by
individual optimal characteristics. Geier et al. [11] conducted
optimization of machining parameters through an evalua-
tion of the machinability of hand-laminated uni-directional
CFRP. This evaluation involved the utilization of a solid
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carbide endmill for helicalmilling and a distinctive diamond-
coated twist drill. They conducted experimental investiga-
tions on thin CFRP laminates using a K20 carbide drill, as
described by Krishnaraj et al. [19], altering drilling settings
based on a full factorial design. Peel-up, push-out, circularity,
and hole diameter were key metrics for hole quality exam-
ined. ANOVAdetermined contribution rates of thesemetrics.
The genetic algorithm (GA) approach facilitated objective
modifications to identify optimal cutting conditions for flaw-
less drilling.

Kharwar et al. [18] highlighted the crucial role of process
constraints and developing a potent optimization plan while
drillingmultiwall carbon nanotubes and epoxy nanocompos-
ites. Based on completed pilot tests and available literature,
the variables considered were MWCNT%, drill bit speed,
feed rate, and drill bit materials (HSS, carbide, and TiAlN).
Several researchers have encountered difficulties while try-
ing to manufacture polymer composites. It is challenging to
achieve boosted surface polish and other characteristics. The
present work aims to enhance the thrust force and surface
roughness duringmachining a polymer composite reinforced
with jute fiber. The drilling operation is carried out using
the BPNN model, which has been optimized by applying
response surface techniques and grey relational analysis to
determine the impact of process factors on responses. The
evaluation of substantial and insignificant criteria was also
done using the ANOVA strategy.

This study aims to enhance and analyze the drilling per-
formance of jute fiber-reinforced composites. Input variables
including drill bit diameter, spindle speed, and feed rate
were chosen, while drilling properties are evaluated based
on output responses such as thrust force and surface rough-
ness. ANOVA and RSM are utilized to analyze the drilling
variables, and experimental data are employed to determine
optimal parameter settings usingmachine learning. Finally, a
comparison is made between the experimental data obtained
from BBD and machine learning techniques.

Section 2 delves into the materials and methodology, out-
lining the experimental plan (2.1) and utilising GRA (2.2)
to analyze the correlation between various parameters and
drilling performance. In Sect. 3, results and discussion, the
analysis of thrust force (3.1) and surface roughness (3.3) is
presented, supplemented by ANOVA analysis for both thrust
force (3.2) and surface roughness (3.4). Regression equations
for thrust force and surface roughness are also established
(3.5). Furthermore, the section covers GA optimization (3.6)
and TLBO algorithm (3.7) applications to enhance drilling
performance. A comparative investigation of the projected
outcomes of GRA with GA and TLBO predicted outcomes
is also discussed (3.8). Finally, in Sect. 4, the conclusion and
recommendations are presented.

2 Materials andmethodology

The current experimental study conducted drilling operations
on jute fiber-reinforced polymer composites. Three twist
drill cutting tools made of HSS, with diameters of 6 mm,
7 mm, and 8 mm, were selected, along with varying spin-
dle speed combinations. The drilling operation took place at
the machine shop of Manipal University Jaipur, India, uti-
lizing a radial drilling machine. Input parameters included
drill bit diameter, spindle speed, and feed rate. A rectangu-
lar workpiece measuring 11.5 cm × 7.5 cm × 8 mm was
employed for hole fabrication in the jute fiber composites.
The chemical composition of the specimen comprises cel-
lulose (64.4%), hemicellulose (12%), lignin (11.8%), pectin
(0.4%), wax (0.5%), and moisture content (1.1%).

In the present work, dry machining was employed dur-
ing hole fabrication, so no coolant is required because if
any coolant were used, the jute fibre would absorb it. Some
particles would adhere to the drill bit, creating uneven hole
surfaces. In this study, thrust force and surface roughness
were evaluated as response variables. Surface roughness was
quantified utilizingMitutoyo’s Surftest (SJ-210),while thrust
force was measured employing Unitech Scales Measuring
Equipment (Model 6340). The hardness of the specimen is
observed as 74 HRA at the Rockwell scale.

The process parameters have been selected based on trial
practices and review work, Palanikumar et al. [28]. Table 1
displays the various stages of process specifications.

2.1 Plan of experiments

Stiff clamping attachments were utilized to affix the
dynamometer firmly to the worktable of the machining cen-
ter, ensuring stability against vibrations. Subsequently, the
polymer composite material was securely strapped onto the
dynamometer. The experiments were conducted under natu-
ral cutting conditions (Tables 2 and 3). Throughout the study,
drilling thrust force wasmonitored using a dynamometer and
a synchronized charge amplifier. The collected signals were
then transmitted to data storage and acquisition software via
a well-insulated link employing an A/D card converter. Prior
to commencing any scientific investigations, all equipment

Table 1 Process specifications and their levels

Input parameters Levels

L1 L2 L3

Drill bit dia., (mm) 6 7 8

Spindle speed (rpm) 600 1000 1400

Feed rate, (mm/rev) 30 60 90
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Table 2 The L27 orthogonal
array and their responses S. no Drill Spindle Feed rate Thrust Surface roughness

(mm) Speed (mm/min) (Kgf) (µm)

1 6 600 30 8.37 10.258

2 6 600 60 9.02 12.95

3 6 600 90 8.66 8.48

4 6 1000 30 13.75 11.01

5 6 1000 60 11.48 13.125

6 6 1000 90 14.08 9.09

7 6 1400 30 10.32 9.123

8 6 1400 60 9.73 12.459

9 6 1400 90 9.56 11.375

10 7 600 30 18.96 13.623

11 7 600 60 19.43 9.22

12 7 600 90 20.28 8.694

13 7 1000 30 21.68 13.025

14 7 1000 60 21.12 12.937

15 7 1000 90 20.98 14.038

16 7 1400 30 19.93 17.072

17 7 1400 60 18.72 8.048

18 7 1400 90 20.41 10.203

19 8 600 30 7.69 10.023

20 8 600 60 8.07 9.983

21 8 600 90 9.13 11.863

22 8 1000 30 10.31 12.98

23 8 1000 60 9.83 11.479

24 8 1000 90 12.08 12.284

25 8 1400 30 6.92 9.623

26 8 1400 60 8.01 10.287

27 8 1400 90 7.33 11.294

underwent rigorous calibration. The experimental setup is
illustrated in Fig. 1, while Fig. 2 displays the fabricated spec-
imen.

2.2 Grey relational analysis

GRA is a statistical tool invented by Dr. Deng Julong in
1982. It analysed the relationship between the variables
and attributes. This have belonged to the multi-criteria
decision-making (MCDM) technique to evaluate the mul-
tiple attributes with experimental variables. Here, original
experimental data is transferred into a comparability series
showing the close or appropriate data value [22]. After that,
it was normalised by dividing the data in the original series
by 0 and 1. It shows the three quality criteria for attributes:
larger, better, smaller, better, and nominal, which give opti-
mal outcomes. In the present work, the smaller, the better

has been counted to observe the thrust and surface roughness
responses. Following steps of GRA have been considered:

Let m be the total number of listed projects and n be the
total number of impact factors. Next, an eigenvalue matrix,
a m x n value matrix, is configured. The grey relationship
methodology is depicted in Fig. 3.

X �

⎡
⎢⎢⎢⎢⎢⎣

x1(1), x1(2), ___x1(n)
x2(1), x2(2), ___x2(n)

___
___

xm(1), xm(2), ___xm(n)

⎤
⎥⎥⎥⎥⎥⎦

(1)

where xi (k) is the value of the number i listed project and the
number k influence factors.
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Table 3 Analysis of variance test
for thrust force Source Sum of squares D.F Mean square F-value P-value

Model 634.95 9 70.55 1204.56 < 0.0001 Significant

A-drill dia 8.22 1 8.22 140.37 < 0.0001 Significant

B-Spindle speed 0.3828 1 0.3828 6.54 0.0204

C-Feed rate 1.9 1 1.9 32.46 < 0.0001 Significant

AB 0.1482 1 0.1482 2.53 0.1301

AC 0.5184 1 0.5184 8.85 0.0085

BC 0.1764 1 0.1764 3.01 0.1007

A2 477.75 1 477.75 8157 < 0.0001 Significant

B2 31.51 1 31.51 537.94 < 0.0001 Significant

C2 8.42 1 8.42 143.79 < 0.0001 Significant

Residual 0.9957 17 0.0586

Lack of fit 0.9957 3 0.3319

Pure error 0 14 0

Cor total 635.95 26

Std. dev 0.242 R2 0.9984

Mean 17.83 Adjusted R2 0.9976

C.V. % 1.36 Predicted R2 0.9749

Adeq Precision 91.3378

The Predicted R2 of 0.9749 is in reasonable agreement with the adjusted R2 of 0.9976; i.e. the difference is
less than 0.2

Fig. 1 Experimental arrangement
used in present work, using drill
dynamometer

Step 1 Initially finding the S/N ratios from the original
data values.

S/N(SB) � −10log10
[(

1/n
∑

X2
ij

)]
(2)

where Xij—is the output value that is considered. SB- is
smaller the better criterion.

Step 2 Normalized values S/N ratios to find Zik for thrust
and surface roughness.

Zik � max xi (k) − xi (k)

max xi (k) − min xi (k)
(3)
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Fig. 2 Fabricated specimen

Fig. 3 The emergence of grey relation degree for software

Step 3 Deviation sequence find out �xi j and give �xMin

� 0, �xMax � 1

�xi (k) � |x0(k) − xi (k)| (4)

Step 4 Determine the Grey relational coefficient ξ for the
normalized S/N ratios data and the distinguishing coefficient
value p is 0.5.

ξi (k) � �min +p�max

�xi (k) + p�max
(5)

Step 5 Originate the grey relational grade ri and rank.
Here, w (k) is the proportion of the number ‘k’ influence

factor to the total influence indicators.

ri �
∑

[w(k)ξ (k)] (6)

Step 6 Analyse the optimal setting was chosen directly
according to rank.

3 Result and discussion

3.1 Analysis of result for thrust force

Figure 4a depicts the spindle speed-drill interaction, reveal-
ing lower thrust force values with certain combinations. The
minimum thrust, i.e., 10 Kgf, was obtained at a lower spindle
speed and drill value, i.e., 800 rpm and 7 mm, respectively.
The possible reason may be the lower feed rate at a drill
value of 6 mm, 6.5 mm; hence, lower thrust force is attained.
However, at themidpoint of the feed rate, a parabolic curve is
shown due to a rise in higher spindle speed, which generates a
high temperature during drill cutting on polymer composites.
Beyond this, in Fig. 4b and c, higher thrust force has been
produced gradually as the feed rate and spindle speed rise,
indicating higher thermal energy losses at the interaction of
drill diameter and composite material. Therefore, these vari-
ous drill diameters in the initial drill stages (6 to 8 mm) have
been influential in gradually increasing the spindle speed and
feed rate, which depicted a lesser thrust force in Fig. 4. Due
to this, chip evacuation with a lower cutting drill diameter
showed regularity and smoothness in the drilling of com-
posite polymer, which directly controlled the hole surface
quality.

Figure 5 represents the cubic illustration of the thrust force
with three levels of input variables. It tends to keep one
input parameter varying while the other two input param-
eters remain constant at a cube plot of the response thrust
force. This means that the thrust force variation lies between
9.61 and 10.10 Kgf, which provides an optimal setting at dis-
tinct levels of inputs. However, these representations show
the increased or decreased median of thrust force on the cube
plot of the machining variable.

Figure 6 shows the predicted vs. actual plot of thrust force
(Kgf). The data lie straight, indicating that the model is
acceptable. The normal probability plot for thrust force is
also shown in Fig. 6. All of the residuals are presented as
being on a straight line. This might be regarded as the cur-
rent model’s fitness. It also indicates no residual clustering
and that all errors have a normal distribution. This suggests
that every variable chosen for the current investigation con-
tributes to the model.
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Fig. 4 3D surface plots for various parameters for thrust force

Fig. 5 Cube for identifying the various points

3.2 ANOVA analysis for thrust force

ANOVA was employed to identify primary factors and eval-
uate their statistically significant interaction at a confidence
level of 95%. A p-value threshold of ≤ 0.05 indicates signif-
icant effects of the main parameters (drill diameter, spindle
speed, feed rate, or their interactions) on both thrust force
and surface roughness. The p-value for the interaction term is
less than 0.0001, signifying a significant influence of the con-
sidered process factors on thrust force [23]. Here, the model
F-value is obtained as 1204.56,which is larger and highly sig-
nificant for thrust force, corresponding to a P-value less than

Fig. 6 Predicted vs actual values plot for thrust force

0.0001. Among other noise sources, the model shows values
of 140.37 for drill diameter and 32.46 for feed rate, which are
significant factors. Similarly, the nonlinear quadratic mathe-
matical model of A2, B2, and C2 leads to the most significant
contributing factors, shown in the F-value, compared to the
interactions AB, AC, and BC, which are non-significant. The
overall p-value, alpha, is less than 0.005, indicating statistical
significance. According to the ANOVA results, drill diame-
ter emerged as themost significant parameter, suggesting that
the proposed model holds substantial validity for predicting
thrust force.

The model variables denoted as A2, B2, C2, AC, A, B, C,
and D are noticed to have an evident effect on thrust force
due to their p-values being less than 0.05; on the contrary,
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Fig. 7 3D surface plots for various parameters for Surface Roughness

p-values more prominent than 0.1 indicate that the factors in
the portrait are not imperative, (it is also supported by Fedai
et al. [8]). R2 and adj. R2 was determined to have values of
0.9984 and 0.9749, respectively, close to unity. The minimal
deviation between R2 and Adj R2 indicates that the model is
suited for the current data andmaypredict future observations
(Antil et al., 2022).

3.3 Analysis of result for surface roughness

Figure 7 presents the synergy plot depicting the relation-
ship between spindle speed and drill. Examination of Fig. 7a
indicates that the amalgamationof spindle speed anddrill cor-
relates with reduced surface roughness values. Particularly,
the lowest surface roughness, falling between 11 and 12 Kgf,
was attained at elevated values of spindle speed (1000 rpm)
and drill diameter (8 mm). This observation is corroborated
by findings from Baraily et al. [4]. The possible reason may
be attributed to the fact that the higher feed rate at the drill
values of 6mmand 8mmhas gradually enhanced, and hence,
lower surface roughness has been attained. However, at the
central point of the feed rate, a curve is shown due to rises in
temperature at higher spindle speeds along with drill diam-
eter, which cut polymer composites. In these situations, the
surface removal chip of particles adheres to the drill diameter,
which does not correctly evacuate the surface hole quality of
the composite polymer material. Beyond this, in Fig. 7b and
c, lower surface roughness has been produced at the grad-
ual rises of feed rate and spindle speed, which depicted those
lower losses of thermal energy at the interaction of drill diam-
eter at a surface roughness value of 8 and 9. Figure 7a, b, and
c illustrate a decreasing trend in average surface roughness
with rising spindle speed and an increasing trend with higher

feed rate values. Thus, it is observed that increasing spindle
speed up to a certain threshold positively impacts the surface
quality of composite polymer holes [24].

In contour plots, Fig. 7, the interactions between spin-
dle speed and drill diameter show that the combination of
drill diameter and spindle speed can lead to the machined
hole being the worst due to the evacuation of fiber sticks
on the rake face. Thermal softening generates heat energy
on this rake face and gradually widens the machined holes.
Therefore, increasing the drill diameter while decreasing the
spindle speed produces uniformmachined holes on jute fiber.
However, it can be argued that achieving minimal surface
roughness entails using a larger drill diameter, a reduced
feed rate, and a lower spindle speed, which facilitates the
creation of uniform fiber holes. This, in turn, diminishes the
normal pressure applied to the rake face of the drill diameter
and enhances the surface finish of the holes in the jute fiber
composite.

Figure 8 displays the plot comparing predicted and actual
surface roughness (µm). The data exhibits a linear trend,
suggesting the model’s validity. Additionally, the normal
probability plots of performance attributes, as depicted in
Fig. 8, reveal that residuals conform to a linear pattern, indi-
cating a normal distribution of errors [36]. Furthermore,
Fig. 8 illustrates that most of the surface roughness pre-
dicted by the RSM aligns with the regression line, resulting
in an overall R-value of 0.8111. Consequently, the RSM
model effectively establishes the correlation between sur-
face roughness and drill process parameters. Nonetheless,
it demonstrates reduced predictive capability compared to
GRAandoptimizationmodels, as evidencedbyfindings from
Paturi et al. [30].
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Fig. 8 Predicted vs actual values graph for surface roughness

Fig. 9 Various points of Cube for surface roughness

In the recent investigation, drill experiments have been
carried out on polymer composites using BBD. BBD is a
response surfacedesignbroadly employed formanagingnon-
linear models. A one-factor-at-a-time response approach is
included to select the baseline levels for each aspect. The
cube plot in Fig. 9 shows the variation in Ra with all domi-
nant parameters. Examining the cube plot, it is observed that
with a 6 mm drill diameter and a spindle speed of 600 rpm,
increasing the feed rate from 30 to 90 mm/min results in
the Ra values rising from 9.50 to 10.90 µm. Therefore, the
cubic region indicates that all the tested points fall within
predefined boundaries. In cases where out-of-bounds trials

are prevented by virtual boundaries, the BBD technique is
suggested.

3.4 ANOVA analysis for surface roughness

Table 4 illustrates the statistical analysis using ANOVA for
surface roughness (SR). The regression framework term and
all other design factors significantly influenced the SR val-
ues [6]. In our study, the overall model for surface roughness
yielded an F-value of 8.11, with a p-value < 0.001, indicat-
ing statistical significance and the model’s importance. This
reaffirms the reasonable accuracy and overall effectiveness
of the nonlinear polynomial model.

The feed rate exerted the most substantial influence
(30.64%), followed by drill diameter (3.02%) and spindle
speed (1.46%), with the highest F-value recorded at 27.58.
The p-value of SR for LOF is 0.0101, affirming the model’s
adequacy, supported by findings fromKumar et al. [20]. Fur-
thermore, examining R2 values underscores the framework’s
suitability, withR2 and adjustedR2 for SR standing at 0.7111
and 0.8111, respectively. The noticeable deviation between
R2 and Adj. R2 suggests the model accurately fits the current
data and can reliably predict future observations. Addition-
ally, theminor standard deviation of 0.864 confirms that SR’s
maximum variation is 0.864 µm. In light of these SR results,
predicting response values within the selected range is fea-
sible using the regression equation provided in Eq. (8).

Equations (7) and (8) display the derived regression equa-
tion model for thrust force and surface roughness. According
to the ANOVA table, the suggested model is significant, with
feed rate and drill diameter being determined as the most
crucial parameters.

3.5 Thrust force and surface roughness—regression
models

The experiments were assessed using the BBD design in
conjunction with RSM, resulting in significant findings. A
second-order polynomial equation, incorporating all three
independent parameters and their interactions, was derived.
The resulting RSM equations, presented in Eq. (7) for
thrust force and Eq. (8) for surface roughness [30], depict
precise mathematical relationships that enable the predic-
tion of these parameters with known coefficients. Utilizing
regression equations facilitates the optimization of adaptive
evolutionary algorithms, namely GA and TLBO, providing
high-quality and global solutions. While GA relies on a ran-
dom search of historical data, TLBO operates iteratively to
enhance computational efficiency and expert consistency.
MATLAB Software version R2020b employs the problem-
based solver optimization tool for accurate and precise
computations, utilizing experimental variables, responses,
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Table 4 Analysis of variance for
surface roughness Source Sum of

squares
D.F Mean

square
F-value P-value

Model 54.5 9 6.06 8.11 0.0001 Significant

A-Drill dia 2.03 1 2.03 2.71 0.1179

B-Spindle
speed

0.9856 1 0.9856 1.32 0.2665

C-Feed rate 20.59 1 20.59 27.58 < 0.0001 Significant

AB 2.57 1 2.57 3.44 0.0811

AC 2.6 1 2.6 3.48 0.0794

BC 0.9712 1 0.9712 1.3 0.2698

A2 0.9925 1 0.9925 1.33 0.2648

B2 3.71 1 3.71 4.98 0.0395

C2 10.29 1 10.29 13.79 0.0017

Residual 12.69 17 0.7465

Lack of Fit 6.9 3 2.3 5.55 0.0101 Significant

Pure error 5.8 14 0.414

Cor total

Fit statistics 67.19 26

Std. dev 0.864 R2 0.8111

Mean 12.42 Adjusted R2 0.7111

C.V. % 6.96 Predicted
R2

−0.7409

Adeq
Precision

9.7897

and regression equations to construct the fitness function.

(7)

Thrust f orce � 21.119999999999997442 +

−1.0137499999999926015 ∗ A

+ 0.21875000000000155431 ∗ B

+ 0.48750000000000032196 ∗ C +

−0.19250000000000699885 ∗ AB

+ 0.36000000000000131894 ∗ AC

+ −0.21000000000000051958 ∗ BC

+ −9.8762500000000077449 ∗ A2

+ −2.5362500000000007816 ∗ B2

+ 1.3112499999999989164 ∗ C2

Sur f aceRoughness � 13.24079999999999302

+ 0.50312500000000326406 ∗ A +

−0.35099999999999687006 ∗ B +

−1.6043750000000001066 ∗ C +

−0.80125000000000690115 ∗ AB

+ 0.80599999999999949463 ∗ AC

+ 0.49274999999999957723 ∗ BC

+−0.45015000000000210401 ∗ A2

+−0.87090000000000256097 ∗ B2

+ −1.4496499999999978847 ∗ C2

(8)

3.6 Genetic algorithm optimization

The regression modeling equations generated by the nonlin-
ear method for the reactions are refined using the MOGA
process. The findings of Pareto analysis using the MOGA
technique are shown in Fig. 10. The minimization equations
for thrust and surface roughness responses are represented by
functions 1 and 2. The data were entered into the GA’s opti-
mization toolbox, accessible through MATLAB, by creating
fitness functions. According to the specifications, a problem-
based solver was chosen, and MOGA was selected for this
investigation. All required data were input into the Graphi-
cal User Interface (GUI) window for the present work. After
choosing the population size in MATLAB, the Solver was
run, results were plotted, and the data were exported into the
Workbench window of the MATLAB.

Figure 10 displays the function values and decision vari-
ables acquired by the MOGA technique. The comparison of
the outcomes using various strategies is shown in Table 5.
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Fig. 10 Best fitness, Current best
individual response plot in GA
optimization for Thrust

Table 5 Comparison sheet for
process parameters at Min
(Thrust and SR) Predicted by
GRA, GA and TLBO

Comparison sheet Composite polymer

output Algorithm Optimal process parameters

Drill
µs

Spindle speed
Rpm

Feed rate
Amp

Fitness function (Min.)

Thrust (Kgf) GRA 8 1400 30 6.92

GA 6 600 30 −9.1589e + 05

TLBO 8 1400 90 −4.989 × 10–6

SR (µm) GRA 7 1400 60 8.048

GA 6 600 30 −3.0758e + 05

TLBO 8 1400 90 − 1.696 × 10–6

The default value and configuration are maintained for all
GA parameters, including population type and size, creation,
crossover, selection, and mutation. After 50 iterations, the
fitness function’s lowest value was found; this number is
indicated for ease of visualization because the fitness func-
tion’s value remains roughly constant after this point. After a
thorough estimation, the ideal configuration for the drill step
variables emerged, and the related outcome was recorded.
The convergence plot of thrust and SR in GA is depicted in
Fig. 11, where the best means for thrust are at−9.15912, and
the best means for SR are at −3.07592.

Solve for:
A, B, C

Where, A: Drill, B: Spindle, C: Feed rate

(9)

Fitness f unction(minimizeT hrust)

� −9.8763 ∗ A2 − 2.5363 ∗ B2 + 1.3112 ∗ C2

− 0.1925 ∗ A ∗ B − 0.21 ∗ B ∗ C + 0.36 ∗ A ∗ C

− 1.0137 ∗ A + 0.21875 ∗ B + 0.4875 ∗ C + 21.12

Fitness f unction(minimizeSR)

� −0.45015 ∗ A2 − 0.8709 ∗ B2 − 1.4496 ∗ C2

− 0.80125 ∗ A ∗ B + 0.49275 ∗ B ∗C + 0.806 ∗ A ∗C

+ 0.50313 ∗ A − 0.351 ∗ B − 1.6044 ∗ C + 13.2408

(10)

The chosen GA setting that is subject to limitations is:

123



International Journal on Interactive Design and Manufacturing (IJIDeM)

Fig. 11 Best fitness, Current best
individual response plot in GA
optimization for Surface
roughness

constraint1: A < � 3; constraint2: B < � 600 con-
straint3:C < � 30

variable bounds : 3 <� A <� 9 (11)

600 <� B <� 1400 (12)

30 <� C <� 90 (13)

3.7 Single objective optimization using TLBO
algorithm

The TLBO algorithm is executed by treating each response
as a positive integer. Limits were applied to the parameters
of the drill process after machining, and then the algorithms
were executed.

(Drill): 6 mm ≤ Drill ≥ 8 mm
(Spindle Speed): 600 rpm ≤ Spindle ≥ 1400 rpm
(Feed Rate): 30 mm/min ≤ Feed rate ≥ 90 mm/min
Single-objective optimization of response characteristics

occurred with a TLBO approach to minimize thrust and SR.
It was investigated whether three machining variables—feed
rate, spindle rate, and drill rate—affect the expected response
parameters. Table 5 provides the effects of optimization.
Single-objective optimization findings indicate that a min-
imum thrust of −4.99 × 10–6 Kgf and a minimum SR of −
1.695 × 10–6 µmwere generated within the preferred range

of machining characteristics. The results clearly show that
as the thickness and surface roughness increase, the thrust
and surface roughness also attain minimum values, which
is desirable. However, the minimum viable values for drill,
spindle, and feed rates have been set at 8 and 90, respec-
tively. However, this compromises both thrust and SR, as the
lowest possible values achieved are −4.99 × 10–6 Kgf and
−1.695 × 10–6 µm. Therefore, it can be seen that there is
a conflict between the response parameters, and the single-
objective optimization result enables the user to choose the
machining variables to minimize one of the response param-
eters. Trade-offs between these aspects must be resolved to
arrive at an advantageous set of parametric parameters that
can be employed for drill technology. Amulti-objective opti-
mization strategy can tackle the problem and eliminate such
complexity. The MOTLBO strategy has been used to con-
duct simultaneous optimization by assigning equal weights
of 0.50 to the finalized responses. A population size of 27 and
several iterations of 50 are specified, and these are accom-
plished after executing a few trials to attempt to achieve
the ideal setting for individual responses utilizing the TLBO
algorithm. Table 5 illustrates the optimum scores for thrust
and SR. As seen in Figs. 12 and 13, a convergence graph is
drawn amid the response variables (thrust and SR) and the
number of iterations. The algorithm has been accomplished
50 times to assess the stability of the TLBO anticipated
results. Next, the standard deviation and average findings
are documented. For thrust, the average result after 50 trials
is −4.989 × 10–6 Kgf; for surface roughness , it is −1.696
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Fig. 12 TLBO Convergence curve for composite polymer a Thrust

Fig. 13 TLBO Convergence curve for composite polymer a Surface Roughness
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× 10–6 µm. The average of 50 runs is closer to the optimal
consequence for both scenarios.

3.8 A comparative investigation of the projected
outcomes of GRAwith GA and TLBO predicted
outcomes

The effectiveness of theTLBOalgorithm is validated through
five repetitions, matching the experimental configurations
outlined in Table 5. Minimal disparities between the exper-
imental and TLBO-predicted outcomes are noted, with
experimental discrepancies of 4.63% for thrust and 3.45% for
surface roughness (SR). These discrepancies, falling below
5%, are considered noteworthy [36]. Comparative evalua-
tion of output responses, as illustrated in Table 5, indicates
a close correspondence between the TLBO-predicted results
and experimental observations.

In comparison, the fitness function sheet responds to the
availability and functionality relationship between parame-
ters and features by employing MCDM of GRA and global
optimization of GA and TLBO. Here, the GRA technique
is mainly used to make decisions involving multiple criteria
rather than directly optimizing complex objective functions.
It can deal with high-dimensional and nonlinear optimization
problems. Furthermore, GA and TLBO are suitable for com-
plex optimization problems involving ample search space
and non-linear relationships [5]. They employ population-
based strategies and stochastic operators to explore the
solution space effectively.

4 Conclusion and recommendations

The study performed on the polymeric composite showed
that using drilling operations on different diameters signif-
icantly plays a significant role in machinability and tool
wear. It further emerged that the thrust force value may
be decreased even more by employing the proper settings.
The integrated technique is relatively broad with numerous
machining characteristics applied to GA and TLBO opti-
mization. It may be utilized as a potent prototype for the
modelling and optimization of any drilling and machining
operation. The optimal GA and TLBO results produce the
best fitness statistic, and its validation reveals the closer out-
come. The following determination has been reached:

1. The study investigated the impact of process parameters
(drill diameter, spindle speed, and feed rate) on response
characteristics (thrust force and surface roughness).
ANOVA regression analysis highlighted the significance
of these factors, with p-values < 0.05 for both thrust
force and surface roughness (SR). Notably, drill diam-
eter and feed rate demonstrated significant f-values (37

and 32.36, respectively) for thrust force, while feed rate
(27.39) was influential for surface roughness. Residual
plots confirmed the robustness of multivariable relation-
ships and the reliability of ANOVA statistics, enhancing
future result prediction.

2. Optimization studies aim to collectively enhance eco-
nomic, environmental, and social considerations to define
the optimal process parameters for sustainable compo-
nent manufacturing. In this context, in the scenarios
involving a 6 mm drill diameter, a spindle speed of
600 mm/rev, and a feed rate of 30 amp, the GRA
outcomes yield superior results compared to GA. The
optimal response parameters are thrust force -9.1589 e +
05 Kgf and Ra � −3.0758e + 05 µm. A 4% discrepancy
in the confirmed GA results validates the algorithm’s
effectiveness and enhances its convergence capabilities.

3. The single-objective optimization results from TLBO
show a minimum SR of 1.696 µm (responses with a drill
diameter of 8 µs, spindle speed of 1400 rpm, and feed
rate of 90 amp). Similarly, single-objective optimization
successes from TLBO predict a minimum thrust of 4.989
Kgf at the same input responses.

4. It was identified that the measured responses were well
within a 5% fluctuation, and the experimental results
agreed well with the optimization results. The statistical
regression model and the TLBO strategy are effective
when there is the slightest error between anticipated and
accurate data.

5. Based on the DoE strategy, the current effort is con-
centrated. Additional methods for advanced hybrid opti-
mization can be employed for future research projects,
including manufacturing advanced composite polymers.

6. A parallel approach can explore the impact of drill
machining parameters like tool geometry and feed rate.
Future investigations could delve into statistical variables
and additional responses, such as delamination at entry
and exit, as well as temperature and pressure exerted on
the drill tool, across advanced reinforced jute and glass
fiber composites. Moreover, comprehensive experimen-
tal studies are necessary to assess the applicability and
effectiveness of various multi-optimization techniques.
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