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now important to investigate a practical method for weld-
ing process parameter references in order to ensure as well 
as maximize the quality of the weld. This technique has 
great theoretical and practical relevance [5]. A few litera-
ture papers have been written about the process of modeling 
welding and developing mathematical models that estab-
lish a relationship between technological parameters and 
welding quality. These models make use of the Taguchi 
technique, response surface methodology, grey relational 
analysis, and soft computing [6–10].

Several destructive and non-destructive approaches uti-
lized to measure and manage the welding quality [11, 12]. 
Destructive examination techniques, including tensile shear 
testing and peel testing, are often used after welding and 
have a high degree of dependability in separating unqualified 
and expelled welds from all welding samples. Nevertheless, 
its poor productivity, offline control feature, and installa-
tion expense make it unsuitable as an evaluation technique 
for industrial output. On the other hand, the nondestructive 
examination approach uses a variety of procedure factors 
throughout the welding procedure to assess the welding 
process’s quality [13]. Several studies have processed and 
examined mechanical, electrical, online, ultrasonic, offline, 
and ultrasonic data to elucidate the links between the signals 
and welding quality [14]. These signals may be utilized to 

1  Introduction

The automotive, shipbuilding, chemical, and biomedi-
cal industries all heavily rely on resistance spot welding. 
Given its benefits of high productivity, low cost, and high 
efficiency, it is regarded as a promising welding technique 
[1–3]. Resistance spot welding, as all knows, it’s a com-
plex thermal-electrical process including thermal, electrical, 
mechanical, as well as metallurgical elements. The quality 
of the welding stays greatly impacted by noise, mistakes, 
and different process circumstances [4]. As a result, a vari-
ety of factors and their interactions affect welding quality. 
Acquiring good welding quality during practical produc-
tion is a difficult undertaking for experienced operators to 
choose the right combinations of process parameters. It is 
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monitor and evaluate the welding quality as the majority of 
their components change as the welding nugget forms and 
develops during the course of the welding operation.

On the other hand, sometimes, unqualified welds with 
incorrect welding process parameter combinations may also 
be used in the manufacturing line. An undersized nugget, for 
instance, with inadequate mechanical performance may result 
in catastrophic structural collapse [15]. Conversely, expulsion 
is the expulsion of melted metal from metal sheet edges or 
from electrodes to metal sheet interfaces. This causes a severe 
defect where the welding strength is destroyed due to inad-
equate nugget volume [16]. Additionally, because of the very 
high temperature dispersion throughout the electrode surface, 
it shortens the electrode life. As a result, ensuring the unifor-
mity of welding quality in welding production lines is crucial.

Since the artificial neural network can suit the complex 
nonlinear mapping connection, it is typically used to describe 
the welding process [17]. Zhao et al. [18] employed deuce 
regression methods and an artificial neural network model 
to calculate the welding quality of TC2 titanium alloy with 
a thickness of 0.4 mm. The study by Zhou et al. [19] inves-
tigated predictive quality monitoring in RSW using machine 
learning in conjunction have subject-matter knowledge. Then, 
they mostly disregarded the notion that welding is an ongoing 
process with predictable dynamics and production cycles trig-
gered by maintenance, seeing welding operations as singular 
events. In addition, it has been common practice in the indus-
trial sector to ignore model clarification based on technical 
skill, that is a substantial as well as pervasive repetition. Zhao 
et al. [20] examined 20 pertinent variables that were derived 
from the dynamic resistance signal of the welding process in 
order to explore the link between active resistance, welding 
quality, and welding parameters using the step-by-step regres-
sion approach. The qualifying qualities were then included 
into mathematical models that were created later. Dai et al. 
[21] have examined a quality evaluation system depend on 
dynamic resistance (DR) signals in an effort to precisely fore-
cast welding quality. The suggested method blends welding 
procedure constancy with deep learning methods.

2  Materials and methodology

2.1  Materials

Cold-rolled JSC980YL steel having a thickness of 1.6 mm 
was employed in this experiment. Table  1 displays the 
chemical compositions of the ferrite-martensite dual-phase 

steel, JSC980YL. The RSW experiments were achieved 
using Cu-Cr dome radius electrodes with a surface diam-
eter of 8.0 mm. Initial investigate was done to see how nug-
get growth would change when welding current increased 
from 4.5 kA to 10.0 kA, as shown in Fig. 1. The welding 
schedules are tabulated in Table 2. The joints were subse-
quently made using tierce welding currents: 5.0 kA, 6.5 kA, 
and 8.5 kA, which resembled to a petite nugget, a nugget 
have a diameter of 4

√
t  (t denotes sheet thickness), and an 

expanded nugget without ejection, respectively. It’s crucial 
to keep in mind that the selection of these welding currents 
aims to induce differences in failure mode and weld form.

The tensile shear test specimen was fabricated to a 
dimension of 100 mm by 30 mm and then welded to the test 
coupon with a 30 mm overlap. 50 welds were produced to 
condition the top and lower cap tips of a Cu-Cr dome-type 
electrode (cap tip) prior to the experiment. The electrode 
had a 40 mm tip radius and a 6 mm tip diameter.

2.2  Experimental setup

The testing was done using medium frequency direct current 
(MFDC) RSW equipment with a control frequency of 1.0 kHz 
and an extreme current of 20.0 kA. The welding gun utilized 
in the testing can withstand an extreme load of 6.0 kN. The 
National Instruments NI9229 voltage measurement module 
(NATIONAL INSTRUMENTS Corp., Austin, TX, USA) was 
used to measure the welding voltage, and a Rogowski coil was 

Table 1  JSC980YL steel’s nominal chemical composition (wt%)
C Si Mn P S Fe
0.15 0.44 2.36 0.013 0.003 Bal.

Table 2  Schedules for welding
Electrode force Welding current

(kA)
Welding time
(ms)

Cooling time
(ms)

6.0 4.5–10.0 1000 100

Fig. 1  Graph representation of diameter of nuggets in relation to weld-
ing current
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used to measure the welding current. The electrode move-
ment was determined utilizing a linear variable displacement 
transducer (LVDT). Fig.  2 depicts the method that enabled 
the computer to receive the signal for the welding process, 
which comprised electrode movement, current, and voltage. 
The LVDT utilized to measure the electrode displacement is 
the FP50L device, which has an error of 2–35 based on the 
height of the sensor and does pneumatic-type movement mea-
surements up to 10 mm. Both the welding voltage (between 
− 0 and 60 V) and welding current (between 0 and 15,000 A) 
may be detected. The MFDC inverter RSW machine utilized 
in the research featured a pulse width modulation (PWM) 
manage that was achieved once per half cycle and an inverter 
control frequency of 1.0 kHz (0.5 ms). The untreated current 
and voltage data were utilized to calculate the voltage, current, 

and dynamic resistance utilizing 25 data points every 0.5 ms, 
with the welding signal sampled at a rate of 50 kHz. Since 
the welding was being done in constant current control (CCC) 
mode, the welding current and voltage were determined using 
the average value approach utilizing 25 voltage and current 
data every 0.5 ms. The active resistance was measured using 
Eq. (1) by dividing the median voltage by the median current 
each 0.5 ms.

R =
V

I
� (1)

The electrode movement likewise estimated at the similar 
frequency period and recorded at the similar sample degree 

Fig. 2  (a) Resistance spot weld-
ing machine and (b) Diagram-
matic representation of the RSW 
process’s monitoring system
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functions as several functions, including welding current, 
welding time, electrode force, and steel thickness.

Layer 2  The output of every fixed node in this layer, 
∏

which is termed, equals the product of the input signals.

Layer 3  In this layer, every node is a fixed node that splits 
each input into its total input.

L3,n = w̄n =
wn

x∑
m=1

wm

n = 1, 2
� (4)

Layer 4  This layer consists of adaptive nodes, each of whose 
output is equivalent to:

L4,n = w̄ngn = w̄n (anr + bns + cn) ; n = 1, 2� (5)

Layer 5  This layer’s simple node is a fixed node named
∑

, and it computes the final output by adding the signals that 
enter it.

L5,n =
∑

n

w̄ngn =

∑
n
wngn

∑
n
wn

; n = 1, 2� (6)

NFCS needs to meet several requirements in order to sup-
port Sugeno-type systems:

	● be Sugeno-type first- or zeroth-order systems.
	● possess a solitary output that is the result of weighted 

average defuzzification. Every output MF needs to have 
the same type and be constant or linear.

	● Do not share any rules. The output MFs of different 
rules cannot be shared; that is, there must be an equal 
number of outputs MFs for every rule.

	● Assign a single weight to every rule.

All of the data falls between zero and one in this sense. Two 
categories should be created out of all the available data: train-
ing data and test data. One-third of the data are chosen for 
testing and two-thirds are designated for training in this study. 
The data was chosen in an entirely random manner. The NFCS 
model is trained using training data, and it is validated using 
test data. The kind of membership functions and the number 
of them in each entry, together with the number of repetitions 
in the training phase, are the most crucial design parameters in 
the neural fuzzy model that must be chosen to obtain the great-
est accuracy. The quantity of input parameters is the primary 
limitation in the development of the NFCS model. If NFCS 
inputs surpass five, it will not be able to develop model output 
in relation to inputs and will increase the number of rules and 

as the electrical signal in order to maintain synchronization 
with the voltage and current signals. The dynamic resis-
tance signals and the electrode displacement waveforms are 
shown in Fig. 3 respectively.

2.3  Methodology

2.3.1  Process parameter prediction using a neuro-fuzzy 
control system

In this work, the resistance spot welding weld strength was 
predicted using the NFCS model. NFCS has a reputation for 
being a useful model for dynamic, time-varying processes 
that are uncertain or nonlinear. Every neuron in the structure 
of this multilayer feedforward system must perform its job in 
response to received signals. It can be utilized to map a collec-
tion of rules to a set of output characteristics, a set of output 
characteristics to an output Membership function (MF), an out-
put MF to a single choice related to the output, and an output 
MF to a set of if-then rules. The functions of each NFCS layer 
are specific to the computation of the input-output parameter 
sets [22]. The function is explained as follows for each layer:

Layer 1  The adaptive type nodes at this layer serve the fol-
lowing purposes.

L1O = αX (r)� (2)

L2O = αY (r)� (3)

where X or Y are the fuzzy values associated with the node 
(such as huge, small, etc.) and r and s are the inputs to the first 
group. Put otherwise, L1O  is the degree of r and s’s mem-
bership at X and Y. It is possible to think about membership 

Fig. 3  Dynamic resistance and electrode displacement waveforms dur-
ing the welding process
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techniques (hybrid or back-propagation), and epoch counts 
are some examples of these settings.

Following simulations and modelling, it was shown that 
better results are obtained when Gaussian membership func-
tions are utilized in all inputs. Additionally, a more accurate 
model will be provided when there are two membership 
functions in each of the four inputs. It was also noted dur-
ing the design phase that a post-error technique is the best 
training algorithm for the neural fuzzy model, and that using 
the hybrid method might result in overlearning and unsat-
isfactory outcomes. Using data retrieved from studies, the 
minimal error of the test phase is used to establish the proper 
number of repetitions in the training phase. The best results 
for the current model are obtained after 15,000 repeats. The 
NFCS model’s basic layout and specifications are shown in 
Fig. 4. Taking into account the two membership functions, 
Fig. 4 illustrates that there will be 24 rules for every entry. 
The membership functions for the four inputs are shown in 
Fig. 5(a) and (b) both before and after training.

3  Results and discussion

The trials carried out by Darwish et al. provided the data 
utilized in this investigation [23] is tabulated in Table 3.

He tried aluminum plates with thicknesses of 0.5, 1, 1/5, 
2, and 2.5 mm in his experiments. Since the electrical resis-
tance of plates with thicknesses of 0.5 and 2.5 mm was first 
identified, the electrical resistance of plates with thicknesses 
of 1, 1/5, and 2 may be ascertained using the linear relation-
ship between them, hence facilitating the computation of 
welding energy consumption.

The primary design factors under investigation in this work 
are the welding duration, electrode force, and current inten-
sity. It is preferable to acquire any other three parameters by 
picking any thickness since the sheet’s thickness is fixed and 
depends upon the manner in which the parameter is applied, 
making it unsuitable for use as a design parameter. As said, 

computing time. The network’s accuracy, dependability, and 
error rate can all be improved by making the four required 
changes in order to identify the most significant NFCS model. 
The number of membership functions, MF types (welding 
current, welding time, electrode force, and steel thickness), 
MF types (tensile shear strength) for the output, optimization 

Fig. 5  Membership functions related to (a) Pre-training model inputs 
and (b) inputs after training

 

Fig. 4  Structure of Neuro fuzzy 
spot-welding model
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parameters also greatly decreased the amount of energy 
used.

Reducing test and training errors during model training is 
seen in Fig.  6. The Root mean square error (RMSE) is the 
error shown in this graphic. According to the figure, the test 
error is 0.0041 and the training error for the normalized output 
is identical to 0.0061 after 15,000 repetitions. These numbers 
may be multiplied by 1357.3, the maximum strength, to get 
the root mean of the square error. Given the magnitude of the 
output number, the test phase’s result, which is 59.85 N, is 
modest compared to the training value of 8.279 N. Neverthe-
less, it can be concluded that the model performed an excellent 
job of estimating the real values. The NFCS model’s output 
and the real data values for the training and test phases of the 
modelling process are shown in Fig. 7(a) and (b). Ten times as 
many populations as there are design parameters (30) and 100 
repetitions each population. For a thickness of 0.5 mm, Fig. 8 
illustrates how the cost function was reduced throughout the 
optimization process. As a result, this model will be used to 
maximize spot welding strength while minimizing energy 
consumption by optimizing the welding settings.

3.1  Prediction model for tensile shear strength 
(TSS) utilizing NFCS method

The estimation of the TSS prediction model likewise made 
use of the backward removal strategy of the multinomial 
regression method. The TSS prediction method is shown in 
equ.8. displays the anticipated value for the TSS. The pre-
diction model was constructed using the independent vari-
ables (i2, i3, i4, i6, i7, i8, i9, i10, i11)that remained after the 
correlation analysis eliminated those that proved to be unim-
portant. The findings of the analysis of variance (ANOVA) 
are shown in Table 6. The calculated model’s coefficient of 
determination

(
R2

)
 was 97.02%. Tensile shear strength, the 

dependent variable, may be substantially explained by the 
estimated model, according to the model’s value of 0.000.

optimization aims to increase strength while using less energy. 
As such, we need to work together to achieve two objectives. 
Determine the welding strength using the NFCS model; how-
ever, the energy required is determined by calculating the 
electrical power used. Power, time, and current are among 
the design factors in Eq. (7), along with R, since the electrical 
resistance of aluminium varies with plate thickness. Table 4 
lists the plates’ electrical resistance for a range of thicknesses.

P = R ∗ [I ]2 ∗ T � (7)

Table 5 displays the optimization results for a plate with a 
thickness of 0.5  mm from both the current work and the 
work completed in reference 1. The findings show that in 
addition to improving the weld strength, the derived ideal 

Table 3  Spot welding laboratory data [23]
Sample 
number

Current 
(A)

Electrode 
force(N)

Time 
(ms)

Thick-
nesses 
(mm)

Fracture 
resis-
tance (N)

1 15,236 1428.8 270 1 831
2 15,236 1428.8 140 1 705.3
3 17,988 980.7 270 2 737.7
4 17,988 1428.8 140 2 918.7
5 15,236 1204.7 140 1 855.7
6 15,236 980.7 140 2 973.3
7 17,988 1428.8 140 2 760
8 17,988 980.7 270 1 772.7
9 17,988 1428.8 270 1 927.3
10 15,236 980.7 270 1.5 369
11 13,860 1204.7 75 0.5 1053.3
12 16,612 756.6 205 1.5 681
13 16,612 1204.7 335 1 973.3
14 16,612 1204.7 205 2.5 705.7
15 16,612 1204.7 205 0.5 735.7

Table 4  Aluminium plate resistance at varying thicknesses
Thickness(mm) 0.5 1 1.5 2 2.5
Resistance (ohm) 3.651 3.662 3.671 3.677 3.688

Table 5  After optimization, the thickness is 0.5 mm
Thicknesses
(mm)

Current (A) Electrode force Welding time (ms) Energy consumption (J) Fracture resistance (N)

Proposed study 0.5 12,455 1651.2 72 5253.8 594
Reference study 0.5 17,604 1653 264 26,000 350

Fig. 6  Error pertaining to the test and training phases
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STs = −42.37 + 240.668i2 − 0.214i3 − 0.006i4−
0.04i5 0.045i6 − 0.01i7 − 13.100i9 + 0.006i10
−4.550i11 − 121.870i22 − 0.0003i24 68.000i

2
9

+0.201i2 ∗ i3 − 0.046i2i6 − 92.460i2i9−
0.00003i3i7 − 0.0025i3i11 + 0.182i4i9+
0.254i6i9 + 0.089i6i11 − 0.0001i7i10+o.215i7i11� (8)

3.2  Predicting weld quality using prediction models

Following the acquisition of 80 fresh welds, 80 input vari-
able data were attained. Tables 5, 6, 7 and 8, it was projected 
that 97.5%, 85.0%, 91.9%, and 94% of the total will experi-
ence the ejection incidence, failure mechanism, indentation 
depth, and tensile shear strength, respectively. Fig. 9 shows 

Table 6  ANOVA of the TSS prediction model
Term P value
constant 0.000
i2 0.000

i3 0.393

i4 0.000

i6 0.456

i7 0.000

i9 0.000

i10 0.183

i11 0.515

i22
0.076

i24
0.000

i26
0.001

i29
0.000

i2.i3 0.000

i2.i6 0.000

i2.i9 0.000

i3.i7 0.045

i4.i9 0.000

i6.i11 0.065

i7.i10 0.002

i7.i11 0.003

Table 7  Confusion matrix for the expulsion event prediction outcome
Predicted class Positive Negative
Positive 16 0
Negative 2 55

Table 8  Failure mode prediction outcome confusion matrix
Predicted class Positive Negative
Positive 16 2
Negative 8 46

Fig. 8  During the optimization process, the cost function shifts

 

Fig. 7  Comparison analysis of real values and model output for (a) 
Training data and Testing data (b) Allowable Quality Limit

 

Fig. 9  Confusion matrix of the proposed prediction model
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used to predict the compressive strengths of the resistance 
spot welding.
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