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Abstract

In the present era of artificial intelligence and machine learning, artificial neural networks (ANNs) have appeared as one of the
potent tools in modeling the complex nonlinear relations between the input and output parameters in many of the machining
processes, and helping the process engineers in predicting the tentative response values for given sets of input parameters.
This paper conducts a systematic and content-wise analysis of a considerable number of research articles available in some
of the reputed scholarly databases dealing with application of ANNs as effective predictive tools in three main machining
operations (turning, milling and drilling) with an aim to extract the relevant information with respect to types of the ANN, their
corresponding learning algorithms and activation (transfer) functions, optimal architecture, and statistical metrics employed
to evaluate their prediction performance. It is revealed that the past researchers have maximally applied those ANN models
in turning (42.07%), followed by milling (34.48%) and drilling operations (23.45%). In those machining operations, cutting
speed, feed rate and depth of cut have been treated as the most important input parameters, and surface roughness as the
predominant predicted response. Among different ANN models, feed-forward neural networks (94.44%) have been the most
preferred choice among the researchers mainly due to their simple topology and availability of well-structured experimental
datasets. On the other hand, Levenberg—Marquardt (58.3%), Sigmoid (31.6%) and mean squared error (47.2%) are identified
as the most favored learning algorithm, activation function and statistical measure, respectively. This review paper would act
as a ready reference to the process engineers in providing the optimal architecture of the ANNS, thus relieving them from
additional computational effort. Finally, advantages and limitations of ANNs are summarized along with future research
directions.
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1 Introduction

In most of the manufacturing industries, machining is one of
the indispensible processes, involving removal of unwanted
material from a given workpiece to provide it the desired
shape while meeting the requirements of close dimensional
accuracy and tolerance, and satisfactory surface quality. It is
a subtractive manufacturing operation, employing use of cut-
ting tools, discs, abrasive wheels, and more, making direct
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contact with the workpiece for removal of excess material
from it [1]. Depending on the type of the cutting tool and
shape of the workpiece to be generated, machining processes
are of various types, like turning, milling, drilling, saw-
ing, lapping, broaching etc. Among them, turning, milling
and drilling are the principal material removal processes
employed almost in every manufactured product. It has been
observed that in a typical manufacturing shop-floor, 40-50%
of the total workload has been catered by the turning pro-
cess, followed by drilling (30-40%) and milling (10-15%)
operations [2]. With the introduction of CNC technology, all
the movements, speeds and tooling changes have been auto-
mated, making these processes more productive, consistent
and precise.

Each of these machining processes has several input
parameters, like cutting speed, feed rate, depth of cut (DOC),
tool geometry, type and material of the cutting tool, cutting
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environment etc. which can be controlled or set depend-
ing on the machine specifications and requirements of the
process engineers. They have direct relationships with the
product characteristics and machining performance, in terms
of material removal rate (MRR), surface roughness (SR),
geometrical deviations, cutting force, power consumption
etc. It has been experimented that during turning operation,
although increasing values of cutting speed, feed rate and
DOC may enhance productivity with respect to higher MRR,
but they have detrimental effects on surface quality of the
machined components [3]. On the other hand, during drilling,
higher spindle speed, feed rate and DOC may have adverse
effects on the quality of the holes generated, although MRR
may increase [4]. Due to complex material removal mech-
anism and involvement of numerous input parameters, their
relationships with the conflicting process outputs (responses)
are often nonlinear in nature and difficult to model. The pro-
cess engineers are always in search of developing appropriate
predictive models helping them to envisage the possible out-
comes for given sets of input parameters. It would help
them to have an idea about the tentative values of differ-
ent responses under consideration for varying combinations
of the input parameters.

Predictive modeling is a form of data mining technique
which analyzes past data aiming to identify trends or pat-
terns and then generate the corresponding model to help
predict the future outcomes. Thus, in predictive modeling,
datais collected, amodel is formulated, predictions are made,
and the model is validated based on additional data. Regres-
sion analysis and neural networks are the two most widely
adopted predictive modeling techniques. Regression analysis
has the limitation of exactly depicting the nonlinear behav-
ior of a system in many of the real-time applications. On
the other hand, predictive models used in neural networks,
such as machine learning and deep learning, are the emerg-
ing fields in artificial intelligence, and have the ability to
extract nonlinear relationships between the input and output
variables, which would prove impossible for the human ana-
lysts. Machine learning deals with structured data, such as
spreadsheet or experimental results. On the contrary, deep
learning takes into account unstructured data, like video,
audio, social media posts or images, not involving numbers
or metric reads.

Artificial neural networks (ANNSs) are computational net-
works which attempt to mimic the network of neurons of
a human brain so that the computers can understand a sys-
tem behaviour and make decision in a human-like manner.
Similar to human brain, ANNs also have neurons linked to
each other in various layers of the network. A typical ANN
consists of an input layer, one or more hidden layers and an
output layer. Each layer has also several nodes (artificial neu-
rons), depending on the ANN architecture and complexity of
the problem. Each node connects to another node, and has an
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associated weight and threshold. If the output of any individ-
ual node exceeds the specified threshold value, that node is
activated, sending data to the next layer of the network. The
ANNS have several advantages, like learning ability and self-
adaptability, nonlinear relationships, fault tolerance, parallel
processing, and generalization ability. Overfitting, limited
interpretability, computational expensiveness, data require-
ments and sensitivity to noise are the major disadvantages of
ANNE.

Acknowledging the immense potentiality of ANNs in
effectively understanding the complex material removal
mechanism, and modeling nonlinear relationships between
various machining parameters and responses, the past
researchers have relied on them in predicting the achievable
responses based on the given sets of input parameters. In
earlier days, the optimal combination of input parameters to
attain the target response values had mainly been based on
trial and error method or expert opinions had been sought or
machining data handbooks had been consulted. Application
of ANNSs with appropriate architecture thus relieves the pro-
cess engineers in effectively predicting the responses of the
considered machining operations for various combinations
of the input parameters. Based on the randomly chosen real-
time experimental trials, those ANNs are usually trained and
their prediction performance is later validated with suitable
testing datasets using different statistical measures. The past
researchers have already surveyed the ANN applications in
different machining operations and proved their competency
as efficient predictive tools.

Pontes et al. [5] reviewed 45 articles published during
2000-2009 on application of ANNs for modeling of SR
in turning, milling, grinding, electrical discharge machining
(EDM), abrasive flow machining, electrochemical machin-
ing (ECM), micro-end milling and water jet machining
(WIM) processes. The common approaches adopted by the
past researchers for the said purpose were identified, along
with model elaboration, fitting and validation. Chaudhari and
Gohil [6] performed a literature survey on applicability of
ANNSs to model SR during turning operations, and proved
their superiority over the conventional prediction models
while providing accurate relationship between the turning
parameters and SR. Through a literature review, Ranganath
et al. [7] proved the potentiality of ANNSs in accurately and
reliably predicting SR values during turning operations with
cutting speed, feed rate and DOC as the input parameters.
Garg et al. [8] reviewed the applications of regression analy-
sis, ANNs, fuzzy logic and support vector machines (SVMs)
for modeling of turning processes, and opined on the use of
ANNSs and SVMs due to their non-dependency on statistical
assumptions and ability to capture complexity of the turn-
ing operation. Dureja et al. [9] evaluated the applicability
and relative performance of several modeling and optimiza-
tion techniques, like linear, polynomial and fuzzy modeling,
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ANNSs, Taguchi methodology, response surface methodol-
ogy (RSM) and genetic algorithm (GA) for hard turning
applications. It was concluded that when regression anal-
ysis would fail in developing suitable models, ANNs could
be applied for predicting cutting force, tool wear and resid-
ual stress during the said machining operations. Jegan et al.
[10] reviewed 13 articles dealing with application of ANNs
in conventional (turning and milling) and non-conventional
machining processes (ECM, EDM, WIM and abrasive jet
machining), and advocated their use for prediction of the
best results. It was stressed that the performance of ANNs
would entirely depend on the availability and accuracy of the
training data. du Preez and Oosthuizen [11] emphasized on
the application of machine learning techniques in cutting pro-
cesses which could lead to cost and time savings, enhanced
quality and waste reduction, resulting in deployment of a
sustainable manufacturing environment.

Based on a review of 49 articles on ANN application
in milling processes, Al-Zubaidi et al. [12] concluded that
(a) back-propagation neural networks (BPNNs) had been
primarily adopted by the past researchers for modeling of
milling processes, (b) they had shown higher predictive accu-
racy than the traditional statistical approaches, (c) GA could
be coupled with BPNN for optimization of the milling pro-
cesses, (d) adaptive neural controllers could be integrated
with ANNs for online monitoring and control of SR, tool
wear and cutting forces through proper adjustment of the
considered milling parameters, and (e) SR had been treated
as the most important response directly related to the surface
quality of the machined components. Senthil Kumar and Ezi-
larasan [13] explored the contents of 33 research articles on
applications of RSM, ANNs and fuzzy logic for modeling
of the drilling operations on glass fiber-reinforced plastics,
and identified thrust force and torque as the two impor-
tant input parameters affecting delamination of the drilled
holes. In a recent paper, acknowledging the analytical and
predictive capabilities of ANNs, Mumali [14] reviewed 99
multi-disciplinary articles published during 2011-2021 in
the manufacturing sector, and identified product and process
design, performance evaluation and predictive maintenance
as the key areas for ANN adoption. Integration of ANNs with
fuzzy logic and GA was highly recommended to overcome
their slow convergence during training.

Based on the above literature review, it can be noticed
that the past researchers had already accepted ANNs as one
of the effective modeling techniques to identify the nonlin-
ear relationships between the input and output variables in
many of the machining processes. But, it is revealed that all
the literature reviews are back-dated and not exhaustive, and
only concentrate on some distinct applications of ANNSs in
different machining operations. A thorough analysis of the
above-cited literature review unveils the following research
questions (RQs):

RQ1: What would be the representative set of input param-
eters to model the behavior of the three main machining
processes, i.e. turning, milling and drilling?

RQ2: What would be the optimal set of responses to highlight
performance of those processes?

RQ3: Among various ANN techniques, which would be best
suited for modeling the nonlinear relationships between the
input and output variables for those processes?

RQ4: What would be the best architecture of the adopted
ANN models and how to achieve it?

RQ5: What would be the most suitable training algorithm
and activation (transfer) function?

RQ6: What would be the most appropriate statistical mea-
sures to validate prediction performance of the ANN models?
RQ7: How the training and test datasets are collected?

Based on a systematic and content-wise analysis of a con-
siderable number of research articles, available in the popular
Scopus, Sciencedirect and Google Scholar databases, on
application of ANNs for predictive modeling of turning,
milling and drilling processes, this review paper endeavors
to answer the above-identified RQs. It would assist the pro-
cess engineers or software developers in indentifying the
best representative sets of input and output parameters for
the considered machining processes, selecting the appropri-
ate ANN along with its optimal architecture, choosing the
most apposite training algorithm and activation function, sin-
gling out the best statistical metric for evaluating prediction
performance of the developed ANNSs, and choosing the opti-
mal training data based on real-time experiments. This paper
would thus act as a data repository to help the process engi-
neers and future researchers in effectively understanding the
complex material removal mechanism of any of the machin-
ing processes while extracting the nonlinear relationships
between the input and output parameters, and envisaging the
tentative responses for given combinations of the machin-
ing parameters without conducting real-time experiments.
It would ultimately help in achieving better product qual-
ity, higher process economy, reduced tool wear and energy
consumption, leading to sustainable and green machining
environment. The organization of this paper is as follows:
Sect. 2 provides a brief introduction of ANNs, and the sta-
tistical metrics considered for their performance analysis are
presented in Sect. 3. Applications of ANNs in turning, milling
and drilling processes are provided in Sect. 4 through suc-
cinct tables. Results derived from the literature are analyzed
in Sect. 5, and Sect. 6 concludes the paper along with future
research directions.
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2 Artificial neural networks

ANNSs are a fundamental concept in the field of machine
learning and artificial intelligence, based on a nonlinear map-
ping system inspired by the structure and functioning of
human brain [15]. They are a subset of machine learning
algorithms designed to recognize patterns, make predictions
or perform tasks by learning from data [16]. ANNs consist of
interconnected units called neurons, which are organized into
a minimum of three layers, i.e. an input layer, one or more
hidden layers and an output layer, as shown in Fig. 1. The
input layer receives raw data and sends them to the hidden
layer(s), the hidden layer(s) then retrieve information from
the data received and pass to the output layer, which ulti-
mately produces the final results [17]. The depth and number
of hidden layers determine the ANN’s complexity and capac-
ity to capture intricate patterns. All neurons in the network
are connected to each other via links referred to as weights.
Neurons in the input layer multiply each input data with its
weight and calculate their summation, which is then added
to a bias and transformed into an output using an activation
function, as presented in Fig. 1.

There are several types of ANN, each designed for spe-
cific task and architecture. Most commonly used ANNs in
machine learning are [18]:

a. Feed forward neural networks (FFNNs): These are the
basic type of ANN where data flows in one direction
from input to output layer, without any feedback loop.
They are mostly employed for tasks, like classification
and regression.

b. Convolutional neural networks (CNNs): CNNs work best
on unstructured data, and are well-suited for image and
video analysis. They utilize convolutional layers that
automatically learn and extract features from visual data.
They are commonly used for image classification, seg-
mentation and detection.

c. Recurrent neural networks (RNNs): RNNs have con-
nections that loop back on themselves, allowing them
to process sequences of data. They are considered for
tasks involving sequential data, like language translation,
speech recognition and time series analysis.

d. Long short-term memory (LSTM): LSTMs, which are
specialized type of RNNs, are designed to better deal
with long-range dependencies in sequential data. They
are particularly suitable when memory of the past infor-
mation is important, such as in language modeling and
sentiment analysis.

e. Radial basis function neural networks (RBFs): RBF net-
works are a commonly used type of ANNs for function
approximation problems and SVM-based classifications.
They are distinguished from other ANNs by their fixed
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three-layer architecture, universal approximation and
faster learning speed.

Activation (transfer) functions play a crucial role in proper
functioning of ANNs. They introduce nonlinearity to the net-
work, determine the output of a neuron based on its input, and
greatly influence an ANN’s ability to learn and generalize.
The choice of activation function depends on the problem at
hand, architecture of the network and empirical experimen-
tation. They can generally be divided into two classes, i.e.
linear activation function and non-linear activation function
[19].

a. Linear activation function: The linear activation func-
tion, also known as ‘Identity function’ or ‘Straight-line
function’, is applied when the activation is directly pro-
portional to the input. The most commonly used linear
function is pure linear activation (Purelin) function. It
does not consider the weighted sum of the inputs and
simply splits the value which it has given. Its main prob-
lem is that it cannot be defined within a specific range.

b. Non-linear activation function: The problem with a lin-
ear activation function can be effectively overcome using
non-linear functions. This type of activations is normally
defined within a specific range which makes it easier
for ANNs to adapt to a variety of data and differenti-
ate between the possible outcomes. These functions are
mainly categorized based on their ranges. Table 1 pro-
vides the expressions of all the commonly employed
activation functions along with their ranges and advan-
tages/disadvantages.

The neurons in ANNSs learn by updating their weights and
biases iteratively to obtain the desired output. For learning to
take place, the network is first trained, based on a predefined
set of rules, known as training algorithm. They are crucial
in training ANNs to perform various tasks, such as classifi-
cation, regression, and other complex tasks, like image and
speech recognition. The frequently employed training algo-
rithms include [20]:

a. Gradient descent (GD): GD is the most straightforward
algorithm for ANNS, recommended for massive neu-
ral networks with many thousands parameters. Until the
error function is close to or equal to zero, it continues to
adjust its parameters to yield the smallest possible error.

b. Levenberg—Marquardt (LM): LM algorithm is specif-
ically designed to work with loss functions that take
the form of the sum of squared errors. It is a combina-
tion of GD and Gauss—Newton methods. It is the fastest
back-propagation algorithm and is highly recommended,
although it requires more memory than the other training
algorithms.
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Fig. 1 Architecture of a typical ANN

c. Scaled Conjugate Gradient (SCG): Based on conjugate
directions, it is a fully automated algorithm with no criti-
cal user-dependent parameters and unlike other conjugate
algorithms, it avoids a time-consuming line search.

d. Broyden—Fletcher—Goldfarb—Shanno (BFGS) quasi-
Newton: BFGS overcomes some of the limitations of
GD algorithm by seeking the second order derivative.
It necessitates complex computation and high storage,
for which it is mostly recommended for those networks
having small number of weights in the nodes.

e. Resilient Propagation (RP): It is very similar to com-
mon back-propagation except for weight update routine.
It does not take into account the error gradient, but consid-
ers only the sign of the error gradient to indicate direction
of the weight update, making it faster than other back-
propagation trainings.

f. Bayesian Regularization (BR): It incorporates Bayesian
principles into training and regularization of ANNs. Dur-
ing training, it seeks to find out the posterior distribution
of the weights given the training data and prior distri-
bution. It prevents overfitting and allows ANNs to make
more reliable prediction, and provides a way to quantify
uncertainty in the prediction process.

g. Nature-inspired metaheuristics: To overcome the prob-
lems of the conventional training algorithms with respect
to being trapped in the local minima and overfitting of the
training data, several nature-inspired metaheuristics, like
GA, artificial bee colony, particle swarm optimization,
cuckoo search algorithm etc. have also been proposed by
the researchers [21] for training of the developed ANNs
for enhanced convergence speed and higher prediction
accuracy.

3 Statistical metrics

It has already been stated that a typical ANN is usually fed
with appropriate set of training data, the corresponding model
is then formulated, predictions are subsequently made, and
the developed model is validated using additional (testing)
data [22]. To validate prediction performance of ANNSs, the
following statistical metrics are usually adopted [23]:

Sy (v = )
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(@))
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Relative error (RE) = 7)
l
n 5
Percent absolute error (PAE) = Ziali =31 o0
i
(3)
n s
Mean error (ME) = M &)
n
n FS

Relative absolute error (RAE) = w (10)

Z?:] lyi — ¥l

S (e = 3)
S i = )?
(11)

Root relative squared error (RRSE) =

All these errors, i.e. RMSE, MSE, MAPE, MPE, MAE,
RE, PAE, ME, RAE and RRAE measure deviations between
the values predicted by the adopted ANNSs and values that are
actually observed during real-time machining operations. As
a perfectly designed ANN model would be capable to almost
accurately predict values of the dependant variables based
on the given set of independent variables, it would be always
desired that values of these error measures should be nearer
to zero (their minimum values are thus preferred).

Pearson’s correlation coefficient (r)

Y — X0 — )
Y =Y i — V) (12)

where x; is the value of ith input variable, y; is the value of
ith output variable, and X and y are the mean values of all
x and y variables respectively. Its value ranges between — 1
and + 1, where + 1 indicates a perfectly positive correlation
between the considered variables, whereas, — 1 signifies that
they are strongly negatively correlated. Thus, its higher value
is always desired to show how strongly the predicted values
are correlated with the actual ones.

4 ANN applications in machining processes
4.1 Turning

In turning, a wedge-shaped cutting tool having linear motion
is strongly pressed against a rotating cylindrical workpiece
and the material is removed from its outer surface due to
shear deformation. The cutting tool may have movements
along all the three directions, making this process capable
of producing precise diameters and depths [24]. Besides
decreasing diameter of the workpiece, it can also perform

other operations, like parting, grooving, knurling, threading,
taper turning etc. This process has several advantages, like
interchangeable work materials, excellent dimensional tol-
erance, short lead time, higher MRR and no need of highly
skilled operator. But, it only permits machining of rotatable
components, often requires subsequent operations, generates
substantial amount of scrap and causes excessive tool wear.
Being the main machining operation in the manufacturing
industries, it is quite expected that the past researchers would
attempt to model them using ANNS, validate performance of
the adopted ANNSs and predict the unknown response values
for varying combinations of the turning parameters. Table 2
provides the ANN applications in turning operations which
reveals that almost all the authors have adopted FFNNs for
the said purpose.

Considering cutting speed, DOC, feed rate and average
grey level of the surface image of the machined compo-
nent (grabbed using computer vision system) as the turning
parameters, and SR as the response, Natarajan et al. [30] com-
pared the prediction performance of an FFNN, a differential
evolution algorithm (DEA)-based ANN and adaptive neuro-
fuzzy inference system (ANFIS) during CNC turning of steel
alloys. It was noticed that although all the adopted techniques
would be capable of envisaging the target SR responses
with satisfactory MSE values, but the convergence speed for
ANN-DEA had been higher than FFNN and ANFIS models.
A similar work had also been performed by Radha Krishnan
et al. [68]. Besides treating the primary turning parameters
(like cutting speed, feed rate and DOC), Radha Krishnan
et al. [68] also employed Fourier transformation to extract
the relevant features from the workpiece image (average grey
level, major peak frequency and principal component magni-
tude squared value) to achieve SR prediction accuracy above
95% and MSE below 5%. In an attempt to predict tool wear
during turning operation of EN9 and EN24 steel alloys, Baig
et al. [75] developed appropriate ANN models considering
types of the work material and tool insert, number of cuts,
cutting speed, feed rate, DOC, machining time and vibration
amplitude as the input parameters. It was claimed that the
developed model (having a R* value of 0.9964) would be
able to accurately predict tool wear without performing any
real-time experiment, thereby avoiding catastrophic tool fail-
ure. In a similar study, Rajeev et al. [58] developed an ANN
model for tool wear prediction during hard turning operation
of AISI 4140 steel, considering cutting speed, feed, DOC,
mean value of the forces in x, y and z directions, power spec-
tral density of vibration and machining length as the inputs
to the proposed model. Its application for online tool wear
monitoring was highly recommended. Nouioua and Bouha-
lais [79] explored the practicality of using root mean square
values and spectral centroid indicator of vibration signals as
suitable inputs to the ANNs for online monitoring of tool

@ Springer
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wear and SR during the turning operation on AISI 1045 steel
materials.

Lee et al. [80] developed an innovative RNN model for
flank wear and SR prediction during AISI 1040 steel turning
operation with cutting speed, feed rate, DOC and homo-
geneity extracted from the surface texture images based on
grey level co-occurrence matrix as the input variables. It was
shown that the adopted RNN model could achieve excellent
prediction accuracy of 97.05% and 96.58% for flank wear
and SR, respectively. A deep learning-based ANN model
was proposed by Patil et al. [84] for tool condition monitor-
ing during turning operation with respect to five distinct tool
faults, and a comparative study was later performed against
other machine learning-based classifiers to prove robustness
of the proposed model which had shown a prediction accu-
racy of 93.33%.

An analysis of the information provided in Table 2
reveals that while modeling turning processes and predicting
responses using ANNs, feed rate, cutting speed and DOC
have been treated as the most representative turning param-
eters, as shown in Fig. 2a. In this figure, ‘Others’ parameters
include axial defections, sound, number of cuts, position of
the cutting piece, machining length etc. On the other hand,
Fig. 2b singles out SR as the most favored response, followed
by cutting force and tool wear to symbolize performance of
the turning operations.

4.2 Milling

Milling employs a rotating multi-point cutting tool (cutter)
for the purpose of shaping the workpiece by advancing it
into the cutter. Although there are several variations of this
process, end milling and face milling are the most popular
choices in the manufacturing industries. End milling con-
sists of a cylindrical cutter having multiple edges on its
periphery and tip, permitting both end cutting and peripheral
cutting. On the contrary, face milling performs horizontal
cutting using the circular shape and edges of the cutter along
its circumstance [86]. Capability to generate complex shape
geometries with high precision, flexibility, versatility, low
downtime, increased productivity and reduced waste are the
major advantages of a milling process. On the other hand,
it suffers from some disadvantages, such as increased setup
time, higher space requirement, noisy working environment,
higher cost and requirement of skilled manpower. Model-
ing of milling processes and prediction of the corresponding
responses using suitably structured ANNs have also caught
attention of the past researchers, as noticed in Table 3.
After face milling operation of Al alloy 7075-T7351,
Muiioz-Escalona and Maropoulos [98] developed three ANN
models, i.e. radial basis NN (RBNN), FFNN and generalized
regression NN (GRNN) for prediction of SR values. Based
on the calculated MSE values, it was noticed that FFNN had

@ Springer

the best prediction performance. It was also observed that
among the considered milling parameters (cutting speed, feed
per tooth, axial DOC, chip width and chip thickness), there
had been strong correlation between the measured SR val-
ues and chip thickness, followed by cutting speed. Brecher
et al. [102] proposed a solution using global user data to SR
monitoring based on numerical control kernel and human—
machine interface. Several input parameters were taken to
develop the corresponding ANN models which would help
in online SR measurement and provide optimized parameters
to the machine operators.

Kothuru et al. [124] explored the applicability of deep
learning techniques for tool condition monitoring based on
the spectrogram features of the audible sound acquired dur-
ing end milling operations and employed a deep visualization
approach to have valuable knowledge with respect to the
inner workings of the deep learning models for tool wear pre-
diction. Finally, CNN models were developed for tool wear
monitoring and hyper-parameter tuning for increased pre-
diction accuracy. Using audible sound signals during milling
operations, Kothuru et al. [119] also employed SVM and
CNN models for prediction of tool wear and hardness varia-
tion of the machined workpieces.

Ong et al. [125] applied wavelet neural network (WNN),
a variant of ANN, to monitor tool wear during CNC end
milling operation of grade SS41 mild steel blocks. After
each milling experiment, the tool wear images were pro-
cessed and the corresponding descriptor of the wear zone
was extracted. It was noticed that the WNN model with cut-
ting speed, feed rate, DOC, machining time and descriptor
of wear zone would provide the most accurate prediction
of tool wear. A deep convolutional neural network (DCNN)
was proposed by Huang et al. [129] for monitoring of tool
wear condition during high-speed CNC operation under dry
condition, considering three-dimensional cutting force and
vibration as the tool health indictors. Its prediction accuracy
had been noticed to be significantly better that the other ANN
models. Sener et al. [134] also employed DCNN for chat-
ter detection during CNC milling operation and concluded
that when cutting speed and DOC had been considered as
the input parameters, the developed model could achieve an
average prediction accuracy of 99.88%.

Figure 3 depicts various input parameters and responses
considered by the past researchers for ANN modeling of
milling processes. It is revealed that cutting speed, feed rate
and DOC have been the most favored milling parameters,
while SR has been the most important response. In Fig. 3a,
‘Others’ parameters contain width of cut, type of insert,
sound pressure level, cutting section, length of cut, num-
ber of teeth, milling orientation, extension length, maximum
chip thickness, chip load, machined surface area, machining
time etc.
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Fig. 2 Input parameters and responses considered during ANN modeling of turning operations

4.3 Drilling

Drilling utilizes a multi-point cutting tool, in the form of drill
bit, to generate cylindrical holes in a solid material. In this
process, the rotating drill bit is perpendicularly fed to the
plane of the workpiece’s surface, making vertically-aligned
holes with diameters equal to that of the drill bit. The drill
bit has a pointed end which assists in easily cutting a hole in
the workpiece, and its typical double-helix structure allows
the debris material (chips) to fall way from the workpiece
[137]. Besides making holes, other operations, like reaming,
boring, counter boring, counter sinking, tapping, trepanning
etc. can also be performed employing a drilling setup. A
typical drilling process has several advantages, like higher
MRR, extreme adaptability, low maintenance cost, easiness
of use etc. But, limited size of the workpiece, generation of
rough hole, clogging of chips, drill breakage, use of coolant
etc. are some of its demerits. The performance of a drilling
process is often characterized with respect to surface quality,
delamination factor, geometrical deviations (cylindricity, cir-
cularity and perpendicularity), torque, thrust force etc. which
are noticed to be influenced by various input parameters, like
spindle speed, feed rate, DOC, drill diameter, drill material,
cutting environment etc. Table 4 exhibits the works carried
out by the earlier researchers on applications of ANNs in
drilling processes.

Efkolidis et al. [156] integrated ANN with GA to aid in
determination of the optimal ANN architecture while pre-
dicting thrust force and torque, treating cutting velocity, drill
diameter and feed rate as the major drilling parameters. It
was revealed that GA-ANN would perform more efficiently
as compared to the ANN with network architecture evalu-
ated based on trial and error method. Rao and Rodrigues
[152] performed a comparative study among five different

learning algorithms, like BFGS quasi-Newton, SCG, conju-
gate gradient with Powell-Beale restarts (CGPB), conjugate
gradient with Polak-Ribiere updates and LM, and revealed
the superiority of LM algorithm in perfectly predicting the
corresponding response values during drilling of glass fiber
reinforced polymer composites. Ramalingam et al. [170] pro-
posed an FFNN model to predict thrust force, torque, exit
delamination, hole diameter, cylindricity and SR while con-
ducting drilling operations on quartz cyanate ester polymeric
composite materials, and concluded that an optimal network
architecture of 3-45-15-10-6 would result in the minimum
MSE value of 0.0105. The developed network had also excel-
lent prediction accuracy (maximum error was 7.17%). Using
ANNSs, Kolesnyk et al. [169] investigated the influences of
number of holes, cutting speed, feed rate, time delay and hole
depth measuring point on drilling temperature, hole diameter
and circularity during drilling of carbon fiber-reinforced plas-
tic/titanium alloy stacks. It was concluded that ANNs could
be deployed to extract the nonlinear relationships between the
input parameters and quality of the drilled holes. In Fig. 4,
the drilling parameters and responses considered by the past
researchers for ANN-based modeling of drilling operations
are provided. It can be revealed from Fig. 4a that spin-
dle speed, feed rate and drill diameter have been the most
favoured input parameters. In Fig. 4a, ‘Others’ parameters
consist of thrust force, torque, number of pecking cycles,
hardness of the work material, time delay and hole depth
measuring point. On the other hand, Fig. 4b shows that SR,
followed by thrust force, torque, delamination and hole diam-
eter have been mainly chosen by the researchers to represent
performance of the drilling operations on different materials.

@ Springer
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a) Milling parameters
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Fig. 3 Input parameters and responses considered for ANN modeling of milling operations

5 Analysis of the obtained results
from the literature

Acknowledging application of ANN models to different
machining processes as a challenging task requiring a broad
range of domain knowledge, this paper critically and system-
atically reviews a considerable number of research articles
available in some of the most popular scholarly databases
for more than last 20 years focusing on ANN-based model-
ing and response prediction of turning, milling and drilling
processes. The extract of this review has already been pro-
vided in Tables 2, 3 and 4, with respect to input parameters,
responses, types of the learning algorithm and activation
function, network architecture, statistical measure and train-
ing datasets considered. It is noticed from Fig. 5a that turning
(42.07%) occupies the maximum share of ANN applications,
followed by milling (34.48%) and drilling (23.45%) pro-
cesses. In statistics, analysis of variance helps in identifying
the most significant input parameters affecting the responses,
which may not be the same for all the responses. Since, dur-
ing machining operations, each of the input parameters is
vital, there is a need to formulate an ANN-like model which
can predict the corresponding responses based on varying
combinations of the input parameters. This literature review
reveals that cutting velocity, feed rate and DOC have been
the most predominant parameters for both the turning and
milling operations; whereas, spindle speed, feed rate and drill
diameter have been maximally preferred during ANN mod-
eling of drilling operations. It is also interestingly unveiled
that SR and cutting (thrust) force have been the two main
responses representing the performance of turning, milling
and drilling operations. In some cases, the researchers have
grabbed images of the machined surface and captured vibra-
tion/sound signals for online surface texture analysis and tool

wear monitoring with the help of CNN, RNN and DCNN
models.

Selection of appropriate training algorithm and activation
function plays crucial role in achieving the desired predic-
tion accuracy of the adopted ANN models with minimum
computational effort. Figure 5b and ¢ show the distributions
of learning algorithm and activation function as considered
by the past researchers with respect to ANN modeling of
turning, milling and drilling operations. The most popular
learning algorithm has been LM (58.3%), followed by GD
(34.6%). The wide application of LM as an effective learning
algorithm may be attributed to its robustness, faster conver-
gence speed and ability to deal with ill-structured data. On
the other hand, Sigmoid (31.6%) and Tansig (27.8%) have
appeared to be the most favored activation functions. Both of
them are nonlinear activation functions, capable of providing
output values within specified ranges, with minimum chances
of the activations being blown up. To evaluate accuracy of the
adopted ANN models, the past researchers have employed
different statistical metrics, as shown in Fig. 5d, which
basically measure the goodness of fit, deviations between
the actual and predicted responses, and correlation between
them. It is unveiled from Fig. 5d that MSE (47.2%) and R?
(11.8%) have been the two most popular measures consid-
ered by the researchers. The MSE measures the mean of
the squared deviations between the actual and predicted val-
ues. Its smaller value is always preferred, and it ensures that
the trained ANN model has no outlier predictions with large
errors since it puts higher weight on those errors due to squar-
ing part of its equation. On the other hand, a higher R? value
(varies between 0 and 1) explains how excellently the non-
linear relationship between the machining parameters and
responses has been extracted.
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Table 4 Applications of ANNs in drilling

Author(s) Input parameters ~ Response(s) Training Architecture Activation Statistical Training
algorithm function metric(s) data
Karnik et al. [138] Spindle speed, Delamination 3-12-1 Sigmoid MSE, PAE 30
feed rate, point
angle
Rajmohan and Spindle speed, SR GD 3-4-1 Sigmoid R? 19
Palanikumar feed rate, wt%
[139] of SiC
Mayyas et al. [140] Cutting speed, Thrust force, LM 4-10-2 Sigmoid MSE 57
feed rate, % torque
volume of
AL O3, %
volume of
graphene
Gaitonde and Feed, drill Burr height, GD 3-13-2 MSE, PAE 27
Karnik [141] diameter, point burr thickness
angle
Neto et al. [142] Spindle speed, Hole diameter LM 4-5-2 Tansig, R?, MAE 45
feed velocity, Purelin
cutting
velocity, feed
Vijayaraghavan Speed, feed rate, ~ Mechanical LM 3-5-2 Sigmoid R?, MAE 45
etal. [143] temperature strength,
drilling time
Sanjay and Prithvi Cutting speed, SR GD 4-20-1 Sigmoid MSE 8
[144] feed,
machining
time, thrust
force
Kannan et al. [145] Spindle speed, SR, ovality 2-5-2 Sigmoid MAE 14
feed rate
Balaji et al. [146] Cutting speed, Thrust force, GD 3-4-5-1, Tansig R?, MAE 19
feed rate, drill delamination, 2-3-4-1,
diameter torque 3-4-5-1
Corne et al. [147] Spindle speed, Tool wear LM 2-5-1 Sigmoid RZ, MSE 26
feed rate
Behera et al. [148] Material Delamination, GD 4-13-13-3 Tansig, r 72
thickness, drill SR Logsig
diameter,
spindle speed,
feed rate
Dhawan et al. [149] Material, drill Thrust force, 5-36-1, 5-35-1 Sigmoid MSE, MPE 130
point torque
geometry, drill
diameter, feed
rate, spindle
speed
Cakiroglu et al. Cutting speed, Drill bit LM 2-5-2, Sigmoid RMSE, 9
[150] feed rate temperature, 2-2-4-3-2 MAPE,
cutting force R?
Hynes et al. [151] Spindle speed, Bushing length LM 3-10-1 Tansig MAE 19
point angle,
workpiece
thickness
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Table 4 (continued)
Author(s) Input parameters ~ Response(s) Training Architecture Activation Statistical Training
algorithm function metric(s) data
Rao and Rodrigues Speed, feed, drill ~ Flank wear GD 3-5-1 Tansig MSE, R? 60
[152] diameter
Kaviarasan et al. Spindle speed, SR GD 3-8-8-1 MSE 17
[153] feed rate, point
angle
Abbassi et al. [154]  Spindle speed, Circularity, LM 6-12-2 Sigmoid MSE, r 12
feed speed, cylindricity
drill diameter,
drill bit height,
number of
pecking cycles,
drilling depth
Murthy and Vijay Tool speed, feed,  Thrust force LM 5-9-1 MSE 170
[155] drill diameter,
point angle,
workpiece
thickness
Efkolidis et al. Cutting velocity, Thrust force, LM 3-6-1 Tanh MSE, MPE, 11
[156] drill diameter, torque r
feed rate
Belaadi et al. [157] Drill diameter, Delamination 3-10-1 Tanh R? 19
spindle speed,
feed rate
Tabacaru [158] Spindle speed, SR GD 4-7-7-1 Sigmoid RE, MSE, 18
feed rate, drill RMSE
diameter,
hardness
Krivokapi¢ et al. Drill diameter, SR GD 5-15-10-1 Sigmoid, MPE 36
[159] speed, feed, Purelin
installation
angle, torque
Efkolidis et al. Cutting speed, Thrust force, SCG, LM 3-8-1 MSE, r 18
[160] feed rate, drill cutting torque
diameter
Alajmi and Spindle speed, Thrust force, LM 3-6-3 MAE, R?, 49
Almeshal [161] drill diameter, torque, flank RMSE
feed rate wear
Zoghipour et al. % of Cu, helix Cutting force, LM 5-8-2-3 Sigmoid MSE 152
[162] angle, radial SR,
rake angle, dimensional
rotational accuracy error
speed, feed
rate
Singh et al. [163] Drill diameter, Thrust force, GD 3-11-9-20-1, Sigmoid R? 17
spindle speed, torque 3-52-1
feed rate
Alenzi and Spindle speed, Hole diameter, GD 2-7-3 Tanh MAE 11

Mohammed [164]

conical angle

bushing
height,
bushing
thickness
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Table 4 (continued)

Author(s) Input parameters ~ Response(s) Training Architecture Activation Statistical Training
algorithm function metric(s) data
Dedeakayogullari Drill type, feed SR LM 3-3-1 Sigmoid MSE 23
et al. [165] rate, cutting
speed
Kharwar et al. [166] % of SR, thrust force, LM 4-12-1 MSE 27
reinforcement, torque
spindle speed,
feed rate, tool
material
Abdelkawy [167] Tool Mean thrust LM 3-10-1 Sigmoid, MSE, R? 28
concentration, force, Max. Purelin
spindle speed, thrust force,
feed rate SR
Abd-Elwahed [168]  Feed rate, Torque, LM 3-6-1 Sigmoid, MSE, r 10
spindle speed, delamination Purelin
workpiece
thickness
Kolesnyk et al. Number of Temperature, GD 5-10-3 Tanh, MSE, r 9
[169] holes, cutting diameter, Exponential
speed, feed circularity
rate, time
delay, hole
depth
measuring
point
Ramalingam et al. Spindle speed, Thrust force, GD 3-45-15-10-6 Tanh MSE 21
[170] feed rate, point torque, exit
angle delamination,
hole diameter,
cylindricity,
SR
Belaadi et al. [171] Feed rate, Delamination LM 3-4-1 Tansig MSE, R? 19
spindle speed,
drill diameter
No. of holes ':] Bushing length -:
Drilling depth -:] Cutting force -:
Machining time ~:| Drill bit temperature -:]
Temperature _:] Burr characteristics -:]
Workpiece thickness -:] Circutarity { ]
Drill material -: Cyli(:::::r:y -::
% of reinforcement -: Yool _:
overs S Hole diameter JONN
Drill geometry - Delamination |
Drill diameter Torque
Feed rate ] Thrust force - |
Spindle speed - | SR : : : : i | ‘
0 5 0 15 20 25 30 3 0 2 4 6 8 10 1z
No. of observations No. of observations
a) Drilling parameters b) Responses

Fig. 4 Input parameters and responses considered for ANN modeling of drilling operations
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Fig. 5 Machining processes,
learning algorithms, activation
functions and statistical measures
considered by the past
researchers

(a) Machining processes

(b) Learning algorithms
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(c) Activation functions

(d) Statistical measures

Determination of the optimal architecture of an ANN is
a challenging task for achieving better prediction accuracy
during machining operations. A typical ANN contains one
input layer having number of nodes equal to the number of
machining parameters, one or more hidden layers and one
output layer with number of nodes equal to the number of
responses to be predicted. It is noticed that to estimate the
optimal number of nodes in the hidden layer(s), the past
researchers have mainly relied on trial and error method.
The architecture with a given number of nodes in the hidden
layer(s) providing minimum MSE value has been consid-
ered as the best choice. It thus indicates that some skills are
required to select the optimal architecture of an ANN for
faster training and better accuracy. Selection of appropriate
training and testing data has significant impact on the perfor-
mance of ANN models. The past researchers have conducted
machining operations using different design of experiments
(DOE) or Taguchi’s orthogonal arrays. From the experimen-
tal dataset, 70% have been utilized for training of the ANN
models, and the remaining has been used for validation and
prediction purposes. Those experimental data may often con-
tain noise and outliers which may adversely affect accuracy
of the ANNSs. Use of scatter plots, histograms, box plots or

various statistical tests can identify outliers or noisy samples,
thereby ensuring proper training of the ANN models. In some
cases, the experimental data has been simulated to provide
larger datasets while keeping the response values within their
achieved minimum and maximum observations.

5.1 Selection of the optimal ANN architecture

While training an ANN for modeling of any of the machin-
ing processes and prediction of the corresponding responses,
there are a number of hyperparamters to choose, including
the number of hidden layers, number of nodes in each of
the hidden layers, type of the learning algorithm and acti-
vation function, learning rate etc. Determining the optimal
intermix of those hyperparameters is thus a challenging task.
Therefore, a question always arises to the process engineers
and ANN developers that how can the optimal architecture
of an ANN can be achieved. An ANN architecture is simply
defined by the number of input nodes, number of hidden lay-
ers along with the number of nodes in each layer, and number
of output nodes. Selection of the optimal number of hidden
layers and nodes helps remove them from the hyperparameter
optimization search space, resulting in less hyperparameters
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to be optimized. For modeling any of the machining pro-
cesses, the number of nodes in the input layer should be
equal to number of input variables considered, whereas, the
number of output nodes would correspond to the number
of responses to be predicted. As there is no generic way to
determine a priori the optimal number of hidden layers for
a given ANN, trial and error method is still a viable option
for the said purpose (optimal number of hidden layers would
provide the minimum MSE value). In an ANN, if the opti-
mal number of hidden layers/nodes is used, better prediction
accuracy can be achieved with less time complexity. On the
other hand, if the number of hidden layers is increased, suit-
able accuracy can be obtained up to great extent, but the
ANN architecture would become more complex. Selection
of an appropriate learning algorithm would depend on several
factors, like interpretability, volume of training data and its
format, data linearity, training and prediction time, and mem-
ory requirements. The considered activation function must
be monotonic, differentiable and quickly converging with
respect to weights for the optimization purpose. In machine
learning, different optimization techniques, like stochastic
gradient descent, Adam, RMSprop etc. are employed to
adjust the ANN’s parameters during training to minimize
the corresponding loss function. They enable ANNs to learn
from the training data by iteratively updating weights and
biases.

Thus, while choosing the optimal ANN architecture, the
following factors need to be considered, i.e. (a) type of the
data (like structured data, image data, sequential data etc.),
(b) complexity of the task (binary classification, image or
speech recognition, natural language processing etc.), (c)
availability of the labeled data (data with specific informa-
tion, such as categories or labels), (d) volume of training
data (a complex ANN trained using a small dataset may
often lead to overfitting, where the model fits too closely
to the training data, showing poor performance on new,
unseen data), (e) requirement for transfer learning (it can
significantly reduce volume of training data as well as time
complexity while improving overall prediction accuracy), (f)
evaluating the importance of sequential data (using CNNs or
RNNG), (g) consideration of the importance of layers (mainly
number of hidden layers and nodes in each layer, while
making a trade-off between performance and complexity),
(h) existence of benchmark models, and (i) selection of the
appropriate statistical metrics for evaluating the ANN’s pre-
diction performance.

5.2 Critical analysis of the literature
Keeping in mind the potentiality of ANNSs in effectively
exploring the nonlinear relationships between the input and

output parameters, and predicting the response values, the
past researchers have successfully deployed them in many

@ Springer

of the conventional machining processes (turning, milling
and drilling). For the said purpose, they have mainly relied
on real-time experimental datasets which are occasionally
smaller in dimension, leading to overfitting of the devel-
oped models and poorer prediction performance. Although
there are several learning algorithms, activation functions
and statistical metrics, in most of the cases, those have been
arbitrarily chosen without any valid justification. It is also
noticed that due to availability of structured experimental
datasets, the earlier researchers have maximally preferred
to focus on the application of only FFNNSs, although CNNs
and DCNNs, developed based on vibration or acoustic sig-
nals, may result in better prediction of surface texture and
tool wear. Use of simulated data [172], development of
dimension-reduced ANNs [173], accessibility to advanced
computational resources, integration of ANNs with meta-
heuristics [174—176] and seeking expert’s opinions for selec-
tion of appropriate learning algorithm, activation function
and network architecture may fruitfully overcome the limi-
tations and challenges encountered by the earlier researchers.

6 Conclusions and future scopes

In this paper, a systematic literature review of a consider-
able number of research articles published in the top-peer
reviewed journals (written in English and publication status
‘Final’) available in some of the popular scholarly databases
is conducted on ANN applications in three of the major
machining processes (turning, milling and drilling). It is
noticed that among those machining operations, ANNs have
found maximum application in turning operations for their
modeling and optimization. The researchers have mainly pre-
ferred to model those processes using FFNNs due to ready
availability of structured experimental data and their abil-
ity to provide higher prediction accuracy than the traditional
statistical approaches. In few cases, CNNs and DCNNs have
also been adopted for on-line surface texture and tool wear
monitoring. While modeling the considered machining oper-
ations using ANNS, cutting speed, feed rate and DOC have
been treated as the most representative input parameters
for turning and milling; and spindle speed, feed rate and
drill diameter for drilling. With respect to output parame-
ters, most of the researchers have concentrated on prediction
of SR, followed by cutting force and tool wear. Prediction
of SR is important for having better surface integrity of
the machined components to minimize frictional and energy
losses; while achieving minimum values of cutting force and
tool wear would help in attaining economical and sustainable
machining environment. As there is no strong mathemati-
cal foundation for deriving the optimal ANN architecture,
the researchers have relied on trial and error method for the
said purpose. It is unveiled that LM, Sigmoid and MSE have
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mostly been employed as the learning algorithm, activation
function and statistical measure, respectively. In the reviewed
articles on ANN applications in machining processes, there is
almost no mention about any specific optimization algorithm
considered to adjust the ANN’s parameters during training to
minimize the corresponding loss function. Very few authors
have acknowledged application of Adam algorithm for this
purpose. For training and testing of ANNS, the databases
have mainly been generated recording real-time experimen-
tal observations based on DOEs and Taguchi’s orthogonal
arrays, and a 70-15-15% rule has been followed for train-
ing, validation and testing of the ANNSs. It is also noticed
that most of the authors have considered an MSE value of
0.0001 and 5000 epochs during ANN training. Thus, it is
concluded that any of the machining processes can be effec-
tively modeled with the help of suitably developed ANNs
and the important responses can be predicted for varying
combinations of input parameters without conducting real-
time experiments, thereby saving machining time and cost.
Therefore, the machining processes under consideration can
be optimized with respect to higher productivity and pro-
cess economy, better product quality, reduced tool wear
and energy consumption, resulting in sustainable and green
machining environment.

This review paper also proposes multiple future research
directions. It is highly recommended to adopt CNNs and
DCNN:s for surface texture or online tool wear monitoring
through analysis of the captured images of the machined
components or vibration/sound signals during real-time
machining operations. For this purpose, suitable adaptive
neural controller supported by ANNs may be developed. It
would effectively lead to cost and time savings, enhanced
product quality and waste reduction. Instead of black-box
models, like ANNs, use of decision tree or fuzzy logic is
encouraged to understand the inherent relations between the
machining parameters and responses. Instead of traditional
techniques, use of gene expression programming is highly
desired for empirical modeling of the machining processes.
It does not require any assumption with respect to model
structure, automatically evolving the optimal model struc-
ture and related parameters. To overcome the problems of
slow convergence speed and overfitting of training data, the
ANN architecture may be optimized with the help of different
metaheuristic algorithms. Adaptive neuro-fuzzy inference
system, based on Takagi—Sugeno fuzzy system may be used
for faster data extraction and process behavior realization.
The developed ANNs should be reusable based on uniformly
distributed training and testing datasets. Performance of the
ANNSs can be enriched through establishment of standard-
ized databases and data-sharing platforms. Moreover, to deal
with small volume of training data, transfer learning and data
augmentation techniques may be utilized. Future works may

be more deeply directed towards application of neurocom-
puting concepts, network optimization, validation of results
based on firmer statistical techniques and finally, visualiza-
tion of the derived results. This literature review may also
be extended to include ANN applications in other machin-
ing/joining processes, like casting, grinding, welding, and
many of the non-traditional material removal processes.
Due to paucity of space, this review paper has some
limitations, like relying on only three scholarly databases
for availing the published research articles, consideration
of articles in only top-peer reviewed journals and written
in English, taking into account only three major machining
processes, not depicting the achieved values of the predicted
responses and corresponding statistical measures etc.
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