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Abstract
Chatter is a phenomenon that occurs during machining operations, causing vibrations that can negatively impact the quality
of the machined surface. Detecting and avoiding chatter is crucial for efficient machining processes. Various strategies have
been developed to address this issue, including offline chatter prediction, online chatter detection and suppression, and the
use of artificial intelligence (AI) solutions in line with Industry 4.0 trends. However, the topic of chatter detection is partially
discussed as a section in some review publications, and it does not appear as a kernel focus. With the addition of the latest
development in chatter detection and suppression, conducting a rigorous review of chatter is critical. This work entails tracing
analytical chatter detection techniques (stability lobe diagram, Nyquist plot, finite element analysis), experimental chatter
detection techniques by using various data acquisition signals and from time–frequency signal processing methods (fast
Fourier transform, discrete wavelet transform, hilbert-huang transform, short-time Fourier transform, etc.), as well as the
most recent AI techniques (artificial neural network, support vector machine, hidden markov model, fuzzy logic, k-nearest
neighbor, etc.). A thorough investigation was conducted to determine the limitations of these various techniques and to provide
potential solutions for detecting chattering in machining processes. Moreover, The approaches for suppressing chatter (active
+ passive) during the machining process will also be thoroughly reviewed in this article.
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SLD Stability lobe diagram
FEA Finite element analysis
FFT Fast Fourier transform
DWT Discrete wavelet transform
HHT Hilbert-Huang transform
STFT Short-time Fourier transform
ANN Artificial neural network
SVM Support vector machine
HMM Hidden Markov model
DOC Depth of cut
MRR Material removal rate
OFRL Open-loop frequency response locus
SDF Single degree of freedom
TDS Time-domain simulation
OTF Oriented transfer function
CNC Computer numerical control
SFMC Servo feed motor current
AC Alternating current
DC Direct current
TD Time-domain
FD Frequency-domain
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TFD Time-frequency domain
WT Wavelet transform
PSD Power spectrum density
CNN Convolutional neural networks
KNN K-nearest neighbors
SOM Self-organizing map
TMD Tuned mass damper
DVA Dynamic vibration absorber
SSV Spindle speed variation
PD Proportional-derivative
CPU Central processing unit
GPU Graphics processing unit
TPU Tensor processing unit

1 Introduction

Machine tools are critical components in metalworking
industries, enabling the production of complex shapes and
precise components with high efficiency. However, their
operation often results in vibrations, which can lead to a
variety of machining issues such as tool wear, tool breakage,
machine spindle bearing wear, poor surface finish, decreased
product quality, and increased energy consumption. Exces-
sive vibration can lead to inefficiencies in operation, product
quality issues, and increased manufacturing costs. Conse-
quently, predicting cutting vibrations is crucial to reducing
machine idle time and workpiece material failure costs
[1–23]. Vibration in machine tools must be controlled to
achieve higher accuracy and productivity. Rigidity and sta-
bility are two important characteristics for analyzing the
dynamic behavior of machine tools [51]. There are typically
three categories of vibrations that arise during machining
procedures: (a) free vibrations (b) forced vibrations and (c)
self-excited vibrations (chatter). The chatter vibration type
is typically the most severe one. The primary cause of self-
excited vibrations (Chatter) is the dynamic instability of the
cutting [23, 111].

There are two types of chatter (self-excited vibrations):
primary chatter and secondary chatter. Primary chatter is
induced by tool-to-workpiece friction, thermomechanical
processes, or mode coupling. The regeneration of the wavy
surface on the workpiece causes secondary chatter. The most
harmful vibration is regenerative vibration [7]. The chatter in
a machine tool is a highly complicated phenomenon because
of the variety of elements that can comprise the dynamic
system and its behavior: the cutting tool, the tool holder,
the workpiece material, the machine tool structure, and the
cutting parameters. Chatter can also occur during milling,
turning, drilling, boring, broaching, and grinding, among
other metal removal procedures. Chatter has several undesir-
able consequences, including bad surface quality, inaccuracy,

excessive noise, inappropriate tool wear, machine tool fail-
ure, decreased material removal rate (MRR), and increased
expenses in terms of material removal, Material, and energy
impact on the environment, and costs of recycling reprocess-
ing, or dumping non-acceptable final parts to recycling points
[100]. Chatter is a serious problem for these reasons. To avoid
chatter, workshop machine tool operators typically choose
cautious cutting parameters, and in some situations, further
manual operations are needed to clear chatter marks left on
the object surface. This typical approach almost invariably
results in a reduction in output.

Even though the regeneration effect, the fundamental
cause of chatter, was discovered and researched very early
on, predicting its occurrence remains a major research focus
[110]. Most of the study has emphasized preventing regener-
ating chatter vibrations by either predicting their occurrence
or recognizing them as early as possible. Chatter has been
studied for many years, with the oldest studies dating back to
1907 [90]. The examination of the chatter phenomenon first
focuses mostly on the chatter’s stability forecast. Numerous
conventionalmethods, including frequency and time-domain
techniques, have been proposed by researchers includingAlt-
intas [147, 6], Tlusty [153], and Insperger [139]. The major
goal is to build a dynamic model of the cutting system so
that the link between the DOC and spindle speed may be
determined by the solution of the kinetic equation. Stability
lobe diagrams (SLDs), which easily connect the crucial DOC
and spindle speed,were developed to better illustrate the link.
Because of the aforementioned, using SLDs to reduce chatter
is a difficult technological endeavor. Instead, chatter detec-
tion has been frequently used for the machining process as
sensor technology has advanced due to its advantages of real-
time and high precision. If chatter develops during the cutting
process, it can be determined with the help of the received
sensor signal, and effective methods, like active [153] or pas-
sive [139] reduction techniques, can then be applied as early
as practical to prevent the beginning of chatter.

There are some outstanding review studies on chatter in
milling operations [142, 6–110, 8–139]. However, in other
review papers, the topic of chatter detection is just briefly
treated as a section and does not appear as a core focus.
Furthermore, the existing review articles do not cover several
recent chatter detection and suppression strategies.

This research covers different methods for chatter detec-
tion, including analytical techniques like the SLD, Nyquist
Plot, and FEA. It also explores experimental approaches
involving various data acquisition signals and time–fre-
quency signal processing methods such as FFT, DWT, HHT,
andSTFT.Additionally, it delves into the latestAI techniques
like ANN, SVM, HMM, Fuzzy Logic, and KNN. A compre-
hensive analysis was carried out to identify the limitations
of these diverse techniques and propose potential solutions
for detecting chatter in machining processes.Furthermore,
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this article conducts an extensive review of approaches for
chatter suppression, which includes both active and passive
methods, during the machining process.

2 Detection/prediction techniques of chatter

Investigation of chatter prediction and detection can be
mainly classified into two broad categories, i.e., 1. Ana-
lytical techniques 2. Experimental Techniques.In field A as
shown in Fig. 1, the arrow indicates stable revolutions, suit-
able for milling. The left part of the graph is for turning.
The gaps between lobes are relatively small. Hence, instead
of pinpointing stable revolutions, adjusting the cutting speed
(revolutions) is employed as a method to mitigate chatter.
In the lower part of the graph, a curve depicting chatter
frequency is observed, and this frequency varies with rev-
olutions. Stable revolutions can be identified based on these
variations, constituting a specific series. Optimal cutting
speeds (revolutions) for different materials and tools can then
be selected by technologists. To generate specific diagrams,
measurements of the transfer function at the tool’s location
(for milling) or the workpiece’s location (for turning) are
employed in calculations. The procedure for deriving this
diagram is elucidated in paper [11].

Table 1 provides a comparison of analytical and experi-
mental techniques for chatter detection in machining, high-
lighting their key differences in terms of data sources,
real-time monitoring, accuracy, adaptability, cost, complex-
ity, and applicability. The choice between these techniques
depends on the specific requirements of the machining pro-
cess and the available resources Fig. 1, shows the details
of analytical and experimental methods for predicting and
detecting chatter so far in the literature.

2.1 Analytical techniques

There are several approaches documented for the analyti-
cal predictions of various conditions of chatter stability. The
creation of SLD, finite elementmethod/analysis, andNyquist
plots are three of them that are frequently used in the literature
andwill be discussed here. Due to ease and clarity in identify-
ing stable vs unstable cutting conditions, construction is the
most preferred technique among scholars. The SLD can be
created using mathematical models for any number of DoF
(degrees of freedom) slicing operations.

2.1.1 Stability lobes diagram (SLD)

A stability lobe diagram (SLD) serves as a visual tool in
metal cutting processes, primarily aimed at assessing system
stability andmitigating chatter vibrations. This graphical rep-
resentation charts the stability of machining operations with

Table 1 Comparisonof analytical and experimental techniques for chat-
ter detection in machining

Aspect Analytical techniques Experimental
techniques

Basis of detection Based on
mathematical
models,
simulations, and
theoretical analysis
of machining
dynamics

Rely on physical
measurements,
sensors, and actual
machining tests

Data requirements Typically require
knowledge of
machining
parameters, tool,
workpiece
properties, and
dynamic models

Need sensors
(vibration,
acoustic, force,
etc.) and data
from the actual
machining process

Real-time
monitoring

Can provide real-time
monitoring and
prediction if
integrated with
CNC or control
systems

Primarily used for
offline analysis,
real-time
monitoring can be
achieved with
advanced sensors
and processing

Accuracy and
precision

Highly dependent on
the quality of the
dynamic models
and the accuracy of
input parameters

Provide accurate
and precise results
as they are based
on actual
machining
conditions

Early detection Can often detect
chatter at an early
stage if the dynamic
model is accurate
and parameter
inputs are correct

Detect chatter as it
occurs during
actual machining,
but early detection
depends on sensor
sensitivity and
sampling rate

Adaptability Require updating of
models and
parameters when
machining
conditions change
or new tooling is
used

Generally adaptable
to different
machining
scenarios and
setups, with
minimal model
adjustment

Computational
resources

Demand
computational
resources for
simulations and
modeling, which
may be
resource-intensive

Requires less
computational
power during
real-time data
acquisition but
may require
processing power
for analysis

Cost Generally less costly
once dynamic
models are
established. Initial
development may
be expensive

Sensors and data
acquisition
equipment may
have upfront
costs, but the
overall cost is
relatively lower
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Table 1 (continued)

Aspect Analytical techniques Experimental
techniques

Skill and expertise Require skilled
engineers with
expertise in
dynamic modeling
and simulation

Skilled operators
are needed for
sensor installation,
data collection,
and analysis

Complexity Complex and may be
challenging to
develop, but once
established,
operation is
relatively
straightforward

Relatively simple to
set up and use,
with most
complexity in
signal analysis
and interpretation

Applicability Suitable for situations
where accurate
dynamic models
and parameter
inputs are available

Applicable to a
wide range of
machining
operations with
sensor availability

Examples Stability lobes in
cutting diagrams,
analytical models
like the
Regenerative
Chatter Model

Sensors like
accelerometer or
microphone for
vibration and
acoustic signals,
force sensors, and
tool-wear
monitoring

respect to two critical parameters: spindle speed (or cutting
speed) and depth of cut. Tailored to the unique combina-
tion of machining parameters, tool geometry, and workpiece
material, the SLD assists operators and engineers in pin-
pointing optimal cutting conditions where the risk of chatter
is minimized. By offering a clear understanding of stabil-
ity characteristics, the diagram aids in refining machining
strategies to enhance performance and reduce the likelihood

of disruptive vibrations. Creating a stability lobe diagram
involves experimenting and analyzing data. Machining tests
are performed using various spindle speeds and depths of
cut, and the outcomes are then utilized to build the diagram.
Computer simulation tools can also be employed to gener-
ate these diagrams, taking into account tool, material, and
machine specifics. Figure 1, Illustrate the chatter SLD in
a machining operation in which the gray area corresponds
to unstable cutting conditions that lead to chatter. Chatter’s
amplitude increases during the cutting process within this
region. In contrast, the white area signifies stable cutting
conditions, including depth of cut andworkpiece or tool revo-
lutions, specifically the cutting speed. Chatter, once initiated,
dampens in this region. The boundary separating these two
areas is referred to as the chatter stability limit, which is
characterized by a consistent chatter amplitude. The graph
illustrates that the stable depth of cut experiences signifi-
cant changes with varying revolutions. Based on SLD, the
maximum MRR and the right choice of chatter-free cutting
settings can be foreseen prior to the machining operation.
In field A as shown in Fig. 1, the arrow indicates stable
revolutions, suitable for milling. The left part of the graph
is for turning. The gaps between lobes are relatively small.
Hence, instead of pinpointing stable revolutions, adjusting
the cutting speed (revolutions) is employed as a method to
mitigate chatter. In the lower part of the graph, a curve depict-
ing chatter frequency is observed, and this frequency varies
with revolutions. Stable revolutions can be identified based
on these variations, constituting a specific series. Optimal
cutting speeds (revolutions) for different materials and tools
can then be selected by technologists. To generate specific
diagrams, measurements of the transfer function at the tool’s
location (for milling) or the workpiece’s location (for turn-
ing) are employed in calculations. The procedure for deriving
this diagram is elucidated in paper [11].

Fig. 1 Illustration of the chatter
stability lobe(SLD) in a
machining [95]
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Fig. 2 The machining test setup (1-CNC lathe, 2-workpiece, 3-tool, 4-
flood cooling (wet machining) nozzle, 5-MQL nozzle, 6-accelerometer
in the feed direction, 7-accelerometer in the cutting direction, 8-
dynamometer, 9-charge amplifier, 10-DynoWare software [37]

Meritt [84] described stability conditions using stability
charts, allowing chatter to be predicted in terms of process
variables like spindle speed and DOC. This was an impor-
tant addition since, selecting the appropriate process settings,
permitted an increase in material removal rate without gen-
erating noise. Das and Tobias’ [30] linear chatter stability
models have taken into account how the dynamic force

is affected by the thickness of an immediate, regenerative
chip. The whole chip generation process was not included in
the stability models offered here. Tlusty’s [126]CIRP group
discovered that instead of negative dampening of the chip
production process, Self-excited vibrations induced by the
force–displacement interplay between cutting tools and the
cutting operation cause chatter in turning and other opera-
tions (Figs. 2, 3).

Various model parameters can be taken into account to
complete analytical modeling. The turning tool is modeled
in the bulk of these studies as an SDF(Single Degree of
Freedom) spring-mass system cutting a stiff material with
a cutting force proportional to the process variables. Linear
stability analysis, or theory, is the namegiven to research con-
ducted under such assumptions. To comprehend their impact
on chatter stability, themodels have taken into account factors
such as tool angles and wear. An SDF time delay-differential
equationwith terms for cubic and quadratic polynomials con-
nected to structural response and cutting force was presented
by [91]. Three levels of chatter stability have been predicted
by the model: unconditionally stable, conditionally stable,
and unstable.

Chatter stability is determined by the width of the cut.
Although the cutting process is believed to be stable, The
work makes it abundantly evident that the use of linear sta-
bility analysis in the industry is constrained byunstable cyclic
motions. Chandiramani & Pothala [21] used an oversimpli-
fied 2DF model of the cutting instrument to characterize the
dynamics of noise. It was found that increasing the cut width
led to more instances of the tool departing the cut and greater
chatter amplitudes.

Fig. 3 Experimental setup of
vibration assisted micro milling
having microphone for sound
signal [50]
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To comprehend the effects of the cross-transfer function
and the cutting force ratio on chatter stability, an analyti-
cal model with an SDF and a 2DF was provided by Suzuki
et al. [113]. Even when the other circumstances were iden-
tical, In the experiment, it was discovered that the critical
widths of cut for the clockwise and counterclockwise rotating
processes were significantly different. The solutions are the
same for analytical models based on SDF and 2DF systems.
To study large amplitude motions, Dombovari et al. [32]
introduced an SDF model of orthogonal cutting, which was
developed as a delay differential–algebraic equation. When
evaluating chatter vibration and estimating chatter stability,
relatively few researchers have considered the flexibility of
the tool and workpiece [22–14]. Moreover, much research
on analytical models by taking into account tool-wear and
process damping has been done in the past [27–141].

Following an examination of several analytical models
and approaches, an analytically calculated SLD was shown
to typically depend on the machine tool, work material, and
tool form. As a result, it is challenging to implement such
an SLD in practice because it varies in different situations.
Additionally, due to the employment of a statistical approach
to the cutting process, any analysis method used to generate
the SLD is unable to evaluate the high stability characteristic
at a lesser spindle rate.

2.1.2 Nyquist plots

The SLD serves as a valuable resource for predictingmachin-
ing stability and gleaning insights from empirical data and
cutting experiments. Nevertheless, it comes with notable
limitations. SLDs are specific to the conditions and tool-
ing used during their development, which constrains their
adaptability to changing machining scenarios, tool wear, or
material variations. Furthermore, SLDs are primarily used
as tools for post-processing analysis, limiting their ability to
make real-time predictions. To overcome these constraints,
machining engineers frequently explore alternative analyt-
ical techniques, with the Nyquist plot being a commonly
chosen alternative. The Nyquist plot offers a more versatile
and theoretical approach, making it an appealing choice for
real-time stability analysis in machining processes.

Certain scholars studied control theory to forecast chat-
ter by employing Nyquist plots. Nigm [64] suggested an
approach based on feedback control theory that is theoret-
ically the same as Merrit [84], however, it has the advantage
of considering cutting process dynamics. The analysis tech-
nique was strong enough to be applied analytically or
graphically and was able to account for all types of regen-
eration. The Nyquist criterion was applied by the author to
gauge stability. The Nyquist criteria demand that the open-
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loop frequency response locus (OFRL) be plotted, whereas
the approach just entails plotting the operational receptance.
Plotting the operative receptance is even faster than sketch-
ing the OFRL. Additionally, a stability study employing the
Nyquist criterion was carried out by Wang and Cleghorn
[136].

To forecast stability, Eynian and Altintas [38] modeled
the transfer matrix among displacements and cutting forces
and then presented an SDF and 3DF turning model. The
Nyquist criteria are then used to analytically predict sta-
bility. The chatter in orthogonal cutting using the SDF
rotatingmechanismwas expected bymodeling the procedure
using OTF (oriented transfer function) and t-decomposition
forms [129]. By using the Nyquist criteria for OTF and
t-decomposition form, the system’s stability was further
evaluated. TheNyquist analyticalmethod and theTDS (time-
domain simulation) method were contrasted.

The limitation of the Nyquist approach to assessing if the
cutting circumstances are stable is a downside. Therefore, the
TDS technique is better than the Nyquist technique because
it compares the width of the cut and cutting speed to provide
stable and unstable zones on SLDs. The TDS methodology
is a more effective method of analysis and has several dis-
tinctive features, such as nonlinear cutting properties.

2.1.3 Finite element analysis (FEA)

The Nyquist plot and the SLD provide valuable insights
into machining stability, but they come with distinct lim-
itations. Nyquist plots rely on linearized system analysis,
which can be challenging to apply to complex non-linear
and time-varyingmachining dynamics, thereby limiting their
predictive accuracy in such situations. Conversely, SLDs,
which are based on empirical data, are tailored to specific
conditions and tooling, making them less flexible when it
comes to accommodating variations in machining scenarios,
tool wear, or material properties. Additionally, SLDs are pri-
marily retrospective tools, which constrains their ability to
make real-time predictions. To overcome these constraints
and achieve a more holistic comprehension of machining
stability, engineers frequently employ FEA. FEA provides
a numerical simulation methodology that encompasses the
entire machining process, taking into consideration variables
such as material properties, tool geometry, and dynamic
behavior. Through the utilization of FEA, engineers can
attain a more profound understanding of the intricate interac-
tions between forces, vibrations, and thermal effects during
machining. This approach goes beyond linear analysis and
is better equipped to emulate the intricate real-world com-
plexities of machining systems, rendering it a valuable tool
for both the prediction and optimization of machining sta-
bility. Different strategies for the development of analytical

stability analysis have been provided in the literature includ-
ing FEM/FEA. Wang and Cleghorn [136] used the Nyquist
criteria to perform stability analysis on a spinning stepped
shaft workpiece using a finite-element beam model. Baker
and Rouch [12] used the FEM technique to assess the insta-
bility of a machining process utilizing commercial ANSYS
software to build a structural model, however, Experiment
results did not support the validity of their findings. With-
out considering the dynamics of the cutting process models,
the impact of structural parameters on machine instability
was investigated. Instead, the method provided allows for
the examination of both cutting tools as well as object flex-
ibility. Using ANSYS software and finite element analysis,
Mahdavinejad [81] projected the stability of a turning oper-
ation. This FEA model considers the flexibility of the tool,
workpiece, and machine structure. Brecher et.al [101] used
3 tetrahedral-shaped solid elements of type SOLID92 for
the workpiece when performing a FE model in ANSYS.
After considering several geometries, a final workpiece with
35,516 parts was produced. After that, A workpiece was
created using FE analysis, and the modal parameters of the
stabilitymethodwere often adjusted to account forworkpiece
variations during milling. Any FEMmodel has the limitation
of being unable to account for the quality of the interface
between the machine tool’s contact surface, as these features
are difficult to explain numerically. As computing power and
technology improve, FEM/FEA approaches are more likely
to be used to study futuristic analytical models.

2.2 Experimental techniques

The stability state in offline mode can be predicted using
experimental methods, and the chatter commencement in
online mode can be detected. These techniques have the
potential to create the same machining environment that is
not manned. Experimental strategies are classified in Fig. 1
and discussed below in terms of stability prediction and ver-
ification procedures (detection) of chatter.

2.2.1 Data acquisition

The first step in detecting chatter is always data collecting.
Figure 4 depicts a typical flowchart of the chatter detection
process. Before preprocessing with filters to eliminate the
unwanted components, the raw signals were first recorded
during the cutting process. The frequency spectra were then
obtained using FFT. Since the energy ratio was then evalu-
ated as a chatter indicator, its value can be used to gauge the
chatter’s intensity. Several machining circumstances are also
taken into account to acquire the steady and unsteady sig-
nals concurrently, including the geometry of the tool [132],
rotation of the spindle [57], the DOC [60], and the sam-
ple material. Acceleration signals [52–108], force signals
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Fig. 4 The chatter detection
process flowchart

[60–103], and sound signals [108, 45, 72–105], are the most
prevalent sensor signals, and these signals are known to be
themost ideal for chatter detection. Different signals used for
the detection of chatter include the following: Current signal
[83–9], image signal [4, 34, 65, 53, 114], and displacement
signal [89–44].

Force signal The force signal has been widely employed to
identify chatter. Themost common sensors used to obtain the
force signal are plate dynamometers [69, 45, 137], and rotat-
ing dynamometers [18], which are used. The feed force, feed

perpendicular force, and axial force are the three components
of cutting force that the plate dynamometer, which is always
set up on theworkbench, canmeasure. The torque and cutting
force can be measured by the rotating dynamometer, which
is typically clamped to the spindle [77, 103]. Fig. 2 illustrates
the experimental setup, which includes a dynamometer for
measuring the force signal.

Using the acquired force signal, Dunet al. [34], Yang et al.
[145], and Li et al. [69] later identified chatter in the milling
process. Detection of chatter in boring Wang et al. [137],
grinding Gradisek et al. [45], and turning activities Karam

123



International Journal on Interactive Design and Manufacturing (IJIDeM) (2024) 18:3751–3771 3759

and Teti [52], had been completed at the time of writing. The
results described that by utilizing the chatter output extracted
from the force signal, it is possible to monitor the start of the
chatter.

A problem for the industry is that the dynamometer is
always more expensive than other sensors. Furthermore,
using a spinning dynamometer may limit the alternatives for
cutting settings and reduce the rigidity of the cutting system.

Acceleration signal The acceleration signal is capturedby an
accelerometer as depicted in Fig. 2 during both themachining
process and the modal tap test. For machining activities such
as milling [4, 134], Although an accelerometer can be placed
on the workpiece or the spindle, it is always connected to the
tool for turning operations since chatter frequently happens
on the tool side [143]. Furthermore, researchers connected
the accelerometer to the live center [79]. Shi et al. [108]
made a comparisonbetween the acceleration signals acquired
concurrently from the spindle and workpiece accelerometers
using the same signal processing technique and chatter indi-
cations as before. According to experiments, compared to the
spindle, the tool’s acceleration signal, which is obtained per-
pendicular to the feed direction, is more chatter-sensitive and
is better at identifying chatter than the feed direction under
the same conditions.

Because the accelerometer was directly mounted to the
workpiece, the acceleration signal it produced was more sus-
ceptible to chatter. Themethod formounting the accelerome-
ter on the workpiece, however, lacks sufficient strength. Only
when the vibration is low may it be utilized for machining
without coolant. However, it is more practical to mount the
accelerometer on the spindle.

Sound signal To obtain the sound signals, a microphone
is required [31, 125]. The machining process is not greatly
impacted by the microphone’s regular distance from the
workpiece. Numerous researchers have employed sound sig-
nals to find chatter in a variety of machining operations,
including milling [108, 17, 105], grinding [59], and boring
[97]. Figure 3 demonstrates the utilization of a microphone
to detect the sound signal.

The cutting state is determined using many parameters
collected from the acoustic signal, including frequency [65,
42], and variance [106]. The force signal may recognize the
change in cutting state before the sound signal [45], The
results show that sound signals, like force and acceleration
signals, are suitable for chatter detection [125]. Additionally,
the microphone has a wider bandwidth than other sensors,
making it more versatile in most circumstances [10], except
for low-frequency machining.

Current signal For the detection of chatter, current signals
are classified into spindlemotor current and servo feedmotor

current (hereby called SFMC). According to Liu et al. [105]
analysis of the acceleration signal’s performance in compar-
ison to the SFMC signal gathered throughout the grinding
process, the current signal is more sensitive to cutting cir-
cumstances as compared to the acceleration signal. Liu et al.
[42] came to the same conclusion from the turning process.

The current signal’s most evident advantage is that it may
be acquired from CNC commands without the use of an
external sensor [9]. However, because the machining pro-
cess gathers current signals using alternating current (AC),
It must first be converted to direct current (DC). The current
signal also has the following issues [124].

Image signal The off-line image signal [4, 34] and the online
image signal [53, 114]. are two more ways to partition the
picture signal. A microscope is used to gather the offline pic-
ture signal, which can be used to determine whether or not
chatter occurs intuitively. Many investigators have attempted
to employ online image signals to detect chatter, as well
as a symbolic experiment design for online picture collec-
tion based on machine vision development. Lei and Soshi
[65] successfully identified the commencement of chatter in
milling and Khalifa et al. [53] identified the same for turn-
ing operations, by combining the acquired visual information
with the texture analysis approach. Their respective findings
demonstrate that by using their techniques, it is possible to
accurately identify the surface flaws caused by cutting pro-
cedures. However, using an image signal to detect chatter
has significant drawbacks. The image’s resolution, which
directly affects the outcomes of the detection, is the most
important component. Generally speaking, the image’s res-
olution should be high, but it also means a high processing
expense. As a result, it will take longer to calculate, mak-
ing it more challenging to identify noise in the early stages
of pregnancy. Additionally, the workpiece surface imperfec-
tion, camera vibration, and lighting conditions all affect the
detected results.

2.2.2 Signal processing

After data collection, signal processing is done tomake sense
of the signals that the sensors are receiving. Traditional signal
processing methods, such as time-domain (TD), frequency-
domain (FD), and time–frequency domain (TFD) analysis,
are frequently studied. In his assessment of these signal pro-
cessing methods, Heyns [48] discovered that the estimation
of tool wear and chatter mostly relies on the TD and FD
approaches. TheWavelet transform (WT), among other TFD
techniques, has a higher potential that hasn’t yet been fully
explored. Time-domain techniques are frequently employed
in TCM, according to Zhu et al. [154], however, they do lose
some time-domain signal information.
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Table 2 Summary of the most common signal processing techniques. [139]

Method Merits Limitations Literature

Time
Domain(TD)
method

Raw signals
Resample
Techniques
Time series
Model

A small calculation There is no frequency data
Bad robustness

[61]
[56, 151]
[127, 135]

Frequency domain
(FD)method

FFT
Spectra analysis

Provide frequency information
Identify the core of chatter

No time information
Poor real-time performance

[79, 26]
[125]

Time-
frequency domain
(TFD)method

STFT
DWT
HHT

Simultaneously acquire
the time
and frequency information

Fixed resolution
Wavelet fundamental function
selection might be challenging
Mode mixing problem

[4, 22]
[44, 117, 146]
[132, 137]

When the WT and Fast Fourier transform (FFT) were
examined, it was discovered that the WT’s localization
and scarcity properties made it far more efficient than the
FFT. WT produces time-localized frequency information. In
TCM, WT has a high sensitivity to quickly changing tool
circumstances. It resists modifications to the working envi-
ronment.

Table 2 provides a summary of the most popular sig-
nal processing techniques. Whether the signal is unfiltered,
resampled, or raw can all be used to determine the fea-
tures of the time-domain approach. Accordingly, the features
can be used to determine the cutting status, although they
only reflect the signal’s temporal domain information. In the
case of mutative machining conditions, certain properties
could not be valid. To retrieve the frequency information,
the frequency-domain approach converts the signal from the
TD to the FD. However, without knowing when they first
appeared, only the emerging frequencies may be realized. In
contrast, the information included in the TFD technique also
contains information that is in the FD. For a thorough analysis
of signal processing techniques, the author cited [139].

2.2.3 Chip analysis

To ascertain stability parameters and identify chatter occur-
rences, several researchers have examined the chips produced
during a turning operation. However, they think that studying
chip development can only reveal chatter-related information
after it has already happened. Because of this, this method is
unable to foresee when chatter will start.

Tangjitsitcharoen [115, 116] presented a method for mon-
itoring aCNC turningmachinewhile it is in use and detecting
cutting states. The technique makes use of the power spec-
trum density (PSD) of the dynamic cutting force. When the
cutting conditions are chatter, broken chip formation, and
continuous chip creation, the experimental findings showed
three types of PSD patterns. The PSD derived from chat-
ter is greater than that from continuous and broken chip

formations. Using a scanning electron microscope (SEM),
researchers examined chip top and sectional views and dis-
covered that chips created while turning and thread cutting
have the same consistently spaced sharp teeth along the chip’s
free edge [98]. Following a study of chatter amplitudes, it
was discovered that chatter occurs when the chip serration
frequency is similar to or an integer multiple of the system’s
constituent parts’ dominant natural frequencies.

2.2.4 Feature selection

Following the use of various signal processing techniques,
feature selection is always carried out. It is a crucial phase in
the chatter detection process and serves the aim of choosing
the features that are chatter-sensitive. It is possible to deter-
mine the correspondingmachining state by keeping an eye on
changes in these indications. The steps of feature generation
and selection can be separated into two categories. First off,
not all features are chatter-sensitive, although many features
are created using the statistical method or othermethods. The
selection of characteristics is critical for achieving a compro-
mise between computation performance and classification
accuracy in chatter detection. The approach of feature selec-
tion is most frequently employed as described by [139].

2.2.5 Classification

Establishing a categorization system is the next stage after
choosing the right features, and using this system, the cutting
statusmay be quickly determined. The two categories of clas-
sification methods that are most frequently employed are the
threshold approach and the intelligent recognition algorithm.
For chatter identification, both of these techniques have been
widely applied. [139] provides an overview of themajor clas-
sification schemes.
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Fig. 5 Summary of AI techniques
used in tool condition monitoring

2.2.6 Artificial intelligence (AI) techniques

Artificial intelligence (AI) is the concept of developing
intelligent machines that can emulate human thinking and
behavior. Machine learning is an AI application that enables
machines to learn from data without being explicitly pro-
grammed. With the advancement of AI-based systems,
machine tools may be successfully monitored by anticipat-
ing tool wear kinds, remaining useful life, and high-quality
machining [99]. The summary of AI techniques used in the
machine tool condition monitoring is depicted in Fig. 5.

Chatter detection using AI techniques The recurrence of
chatter can be predicted and detected by classifying signal
properties gleaned from sensory data using AI techniques
i.e. artificial neural networks (ANN) [14, 64, 108–118],
the Hidden Markov model (HMM) [150], and Fuzzy logic
[113–121]. A fuzzy system’s decision-making is speedy due
to its simplicity, however, choosing the appropriate algo-
rithms for the planned system is challenging. Themajority of
identification algorithms used in automatic chatter use detec-
tion,which depends ondeep learningmodels likeCNN,SVM
[152], andANN [117–19]. TheANN techniquewas shown to
be superior and more popular overall than HMM and Fuzzy
techniques for its accuracy trainability, increased signal fea-
ture prediction, classification, massively parallel structure,
speedier adoption, and ANN hardware and software that is
commercially available. ANN considerably minimizes the
computational time required for simulation studies, pattern
identification, and decision-making.

As machine learning has advanced, noise in the cutting
process has been identified using evermore intelligent recog-
nition algorithms. Support vector machine (SVM), k-nearest
neighbors (KNN) [108], convolution neural networks (CNN)
[102, 107], and their variations are some of the regularly used
supervised learning algorithms [22]. Additionally, classifica-
tion systems use unsupervised learning methods such as the

self-organizing map algorithm (SOM) [19] and the K-means
clustering algorithm (K-means) [34]. SVM is themost exten-
sively used for classification systems because it has the best
generalization ability, excellent durability for small data, and
an easy computation method.

One of the first experiments to utilize machine learning
to recognize chatter was done in the 1990s [123]. In order
to understand the properties of the pushing force spectrum
while drilling.

adaptively, the author used a neural network. The author of
the study [20]created an observer for an actual control system
to cut down chatter while filming using ANN. The study [8]
used a variety of sensors to identify chatter and developed
a number of multi-layered neural networks by incorporating
inputs of different signals and cutting parameters to analyze
the sensor or combination of sensors that could provide a
dependable source of data for monitoring the chatter, but it
did not offer any conclusive solutions.

WTandSVMwere coupled for the detection of chatter in a
study by [146] The feature vector for the SVM classifier was
created using the wavelet transform’s standard deviation and
the signal frequency band’s wavelet packet energy ratio. The
article [109] presents a novel method for detecting cutting
chatter that is based on WT and multiclass SVM.

It is significant to notice that the chatter phenomenon is
linked to an increase in vibrational signal amplitude in all
of these publications, and that the majority of verification
experiments are far from commercial usage.

Advances in artificial intelligence have made it possi-
ble for methods like deep learning to automatically retrieve
features from input data. The (CNN) is one of the most
widely used techniques for converting data into informa-
tion because It has the ability to analyze raw information
and automatically spot data feature representations in a vari-
ety of forms [43]. The vibration signal was translated into
the time–frequency spectrum in the research [41] to create
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a deep-learning model for chatter detection. The time–fre-
quency features are extracted by the deep neural network,
and the VMD divides the vibration signal into the chatter
band. To categorize the features obtained from chatter detec-
tion, an SVM is introduced.

A deep neural network is trained to recognize the various
chatter stages. By combining CNN and genetic algorithms,
the authors of the paper [155] were able to detect chatter
on the picture of the machined part. By improving their
technique, they were also able to solve the oscillation prob-
lem brought on by the employment of genetic algorithms.
In the paper [102], a chatter detection method that com-
bines a CNN and a physics-based model is presented. By
linking artificial neurons with calibrated weights, they can
imitate how the human brain works and forecast a state
using CNN.Numerous deep learning techniques have been
evaluated in these relatively recent studies, frequently in
combination with other techniques, and have generally pro-
duced positive outcomes. Although some articles use actual
cutting conditions, the majority of studies still use machin-
ing parameters that are distant from industrial applications.
Nevertheless, it is always obvious that chatter and vibra-
tion amplitude have a close relationship. It is challenging
to decide whether all these complex techniques are superior
to straightforward RMS-level monitoring. Table 3 provides a
detailed comparison of various AI techniques employed for
chatter detection.

3 Chatter suppression technique

In machining, chatter suppression and control are difficult
problems to solve. According to reviews by Abele et al. [1]
and Zhu and Liu [153], numerous research initiatives aimed
at chatter control have been conducted in recent years. The
two fundamental types of chatter suppression techniques are
passive and active chatter suppression. Table 4 illustrates the
distinctions between active and passive chatter suppression
techniques. A summary of chatter suppression techniques for
themachining process is shown in Fig. 6 and these techniques
will be briefly reviewed in this section.

The passive approach aims to decrease chatter by modi-
fying system behavior. The design of the machine tool can
be improved, or extra components that absorb extra energy
or interfere with the regenerative effect can be added to alter
or modify the system’s response [100].

These additional components are capable of damping,
minimizing, and controlling chatter and typically have
reduced rigidity. Some of the most common passive chat-
ter suppression mechanisms used on machines are vibra-
tion absorbers, mass dampers, friction dampers, and tuned
dampers. Using vibration cutting, Xiao et al. [143] demon-
strated a strategy for reducing chatter vibration. By causing

friction during vibration between the inserted plate surface
and thewall’s inner hole,Marui et al. [82] employed a friction
plate in the tool shank’s overhang to increase the dampening
capacity of the mechanism. The tuned mass damper (TMD)
or dynamic vibration absorber (DVA) is one of many passive
suppression systems that has been largely used in various
applications. Tobias [104], provided a few usefulmethods for
reducing chatter and enhancing process stability by attaching
vibration absorbers to different machine tool components.

Wang et al. [140], developed a novel nonlinear TMD that
can absorb energy through sliding friction andmass vibration
to reduce chatter during the turning process. The innovative
nonlinear TMD having a 0.01 mass ratio raised the crucial
limitingDOCby 150 to180% in contrast to an undamped sys-
tem. Using a multi-frequency approach, Otto et al. explored
the durability of non-uniform pitch and helical tools and
found that these tools can dramatically raise the limiting
DOC [93]. Comak andBudak [29] described the reliability of
adjustable helix and pitch tools and proposed a realistic way
of optimizing pitch angle design to capitalize on stability.
Absorbers and dampers are used to reduce chatter by reduc-
ing vibration or altering the dampening features of the spindle
system [80]. The position of the vibration absorber and the
stiffness of its spring were adjusted by Moradi et al. [88]
to control chatter. A nonlinear tuned vibration absorber was
developed by Habib et al. [47] to reduce chatter. By employ-
ing a minimax numerical optimization strategy to enhance
the stiffness and damping of several TMD, Yang et al. [144]
decreased chatter.

Passive vibration suppression systems provide several
advantages, including ease of use, low cost, and the absence
of external energy. However, some passive dampers need
very exact calibration for excellent operation highly uncer-
tain in the design of machine tools and the cutting operation.

The active approach, as the name suggests, actively elim-
inates chatter vibrations by continuously observing and
diagnosing the turning operation, as well as implementing
necessary modifications in the operation. Some studies were
able to reduce the regeneration effect by purposefully chang-
ing process variables like feed, speed, and DOC. Lin and Hu
[72], develop a method for reducing chatter by changing the
feed rate and spindle speed. To eliminate the onset of chatter,
the cutting tool’s rake and clearance angles were modified
by Mei et al. [83]. Frumusanu et al. [40] have introduced a
turning stability intelligent control system. The cutting force
signal was monitored online as part of the procedure. a lag in
the feedback control Vibration suppression using a vibration
absorber is another option. The temporal delay is usually
caused by the fundamental nature of the system’s dynam-
ics. It is possible to use a delay to efficiently control the
change from chaotic to ordered motion in a system. Olgac
andHolm-Hansen [92] developed a delayed resonator to give
dynamical systems delayed position feedback control. This
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Table 3 Comparison of Various AI Techniques

Aspect Approach Data Type Training Data Complexity Strengths Limitations

Support Vector
Machines

Supervised
machine
learning
algorithm that
finds a
separating
hyperplane for
classification
tasks

Suitable for
both
numerical and
categorical
data

Requires labeled
data for
supervised
training

Relatively
simple to
implement,
moderate
computational
requirements

Suitable for
high-dimensional
data, can handle
non-linearity

May struggle
with large
datasets.
Doesn’t
provide
probability
estimates

Artificial Neural
Networks

A deep learning
model that
processes data
through
interconnected
neurons

Suitable for
numerical
data but can
handle
various types

Requires labeled
data for
supervised
training

Moderate to
high
complexity,
significant
computational
resources

Can capture
complex patterns
and relationships
in data

Requires large
datasets and
computational
resources.
Prone to
overfitting

Hidden Markov
Models

The probabilistic
model is used to
model
sequences of
observations

Suitable for
sequential and
time-series
data

Requires labeled
sequential data
with state
labels

Moderate
complexity
requires
defining states
and transitions

Effective with
time-series data,
captures state
transitions

Makes
assumptions
about data
(Markov
property). Rule
design can be
challenging

Fuzzy Logic Utilizes fuzzy
rules and
memberships to
handle
uncertainty

Suitable for
numerical and
categorical
data with
fuzzy logic
membership
functions

Requires
expert-defined
fuzzy rules and
memberships

Moderate
complexity,
fuzzy rule and
membership
design can be
complex

Handles
uncertainty and
vague
information well

Does not directly
predict chatter,
requires
significant
computation

Genetic
Algorithm

Optimization
technique
inspired by
natural selection
for parameter
tuning

Suitable for
numerical
data
(parameters
to optimize)

Requires a
defined
optimization
objective and
data

Moderate
complexity,
computational
resources
required for
optimization

Optimizes
machining
parameters for
chatter avoidance

Sensitive to
irrelevant
features,
performance
degrades with
increasing data

k-Nearest
Neighbors

Instance-based
learning
algorithm based
on similarity to
previously
observed
instances

Suitable for
both
numerical and
categorical
data

Requires labeled
data for
classification

Simple to
implement,
low
computational
requirements

Simple and robust
for small datasets

Sensitive to
outliers and
noise. Requires
domain
expertise

Bayesian
Network

Models
probabilistic
relationships
between
variables for
decision-making

Suitable for
various types
of data

Requires data for
probabilistic
modeling

Moderate
complexity
may require
expert
knowledge

Represents
dependencies
and provides
probabilistic
predictions

Requires signal
preprocessing
and feature
extraction.
Does not
provide direct
classification

Singular
Spectrum
Analysis

Signal processing
technique used
for analyzing
sensor data

Suitable for
time-series
data,
especially
vibration or
acoustic
signals

Requires
time-series
sensor data

Moderate
complexity,
data
preprocessing,
and feature
extraction may
be needed

Effective for
time-series signal
analysis

Requires data for
training the
ANFIS
network
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Table 3 (continued)

Aspect Approach Data Type Training Data Complexity Strengths Limitations

Decision
&Regression
Trees

Decision trees
partition data
into subsets
based on
criteria, while
regression trees
predict
numerical
values

Suitable for
both
categorical
and numerical
data

Requires labeled
data with
features and
target labels

Simple to
implement,
can be less
complex for
shallow trees

Provides a visual,
interpretable
structure for
decision-making

Offers
interpretability
through fuzzy
rules and
neural network
modeling

Adaptive Neuro
Fuzzy
Inference
System
(ANFIS)

Integrates fuzzy
logic and neural
networks for
inference and
modeling

Suitable for
data with
vague or
uncertain
information

Requires data
for training the
ANFIS
network

Complexity
depends on the
ANFIS
architecture
and rules

Requires sufficient
training data for
effective
modeling

less suitable for
problems with
a large number
of input
variables

Table 4 Difference between Active and Passive Suppression Tech-
niques

Aspect Active Chatter
Suppression

Passive Chatter
Suppression

Mechanism Real-time adjustments
during machining,
utilizing sensors and
control systems

Design and setup
modifications,
involving tool
and workpiece
geometry,
materials, and
damping
elements

Timing of
Intervention

Real-time adjustments
during machining

Implemented
before
machining
begins, with
minimal
real-time
intervention

Productivity
Impact

May improve
productivity by
allowing higher
cutting speeds

May limit
productivity due
to conservative
cutting
parameters

Equipment &
Software

Advanced CNC
machines, sensors,
and real-time control
software

Primarily involves
tool and
workpiece setup
choices

Complexity Can be complex,
requiring skilled
operators and
specialized
equipment

Generally simpler
to implement,
suitable for a
wider range of
scenarios

Cost Typically higher
equipment and
software costs

More
cost-effective,
often requiring
fewer
specialized tools

Table 4 (continued)

Aspect Active Chatter
Suppression

Passive Chatter
Suppression

Applicability Ideal for
high-precision,
high-speed
machining where
chatter can affect
part quality

Suitable for
various
machining
operations, with
some limitations
on cutting
parameters

approach provides benefits such as real-time tunability, a
wide frequency range, flawless tonal suppression, and ease of
control while removing the system’s tonal vibrations. Spin-
dle speed variation (SSV) is another method for reducing
chatter, in which the spindle speed is continuously altered,
disrupting the regenerative effect. By utilizing a disturbance
rejecting and stabilizing strategy, Monnin et al. [86, 87] cre-
ated an active control method based on a piezoelectric stack
that increased milling performance. By placing the magnetic
actuator at the machine’s antinode region, A direct velocity
feedback controller was developed by Zaeh et al. [149] and
chatter-free MRR was raised. The velocity feedback con-
troller can be applied similarly. A model predictive control
method was developed by Li et al. [68] and was successful
in reducing chatter. Milling chatter was successfully con-
trolled by Li et al. [70] using a linear matrix inequality-based
robust controller. Similar techniques were employed byWan
et al. [133] to reduce chatter by active damping. A magnetic
bearing-supported spindle system is also planned. Li et al.
[66] also succeeded in controlling chatter by sending back
the chatter-related current displacement component through
a specially constructed comb filter.

Some encouraging outcomes have been obtained with
chatter control, particularly active chatter management.
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Fig. 6 Summary of chatter
suppression techniques for
machining process

However, the feedback employed in most studies is the entire
vibration behavior of the workpiece system at present or dur-
ing the preceding tooth passage interval. In this instance, the
entire cutting vibration is regulated, and the actuator’s control
energy is often quite high. As per a recent study [67], dis-
placement difference (the difference between the machine
system’s displacement responses at the present moment and
one tooth passing interval before) is employed as feedback
to achieve energy-saving chatter suppression using PD and

fuzzy control approaches. It is simpler to develop and use
non-model-based control strategies like fuzzy and PD. The
results demonstrate that the proven methods not only min-
imize chatter and increase the maximum (MRR) but also
greatly reduce the voltage the actuator needs, allowing for
control energy savings.

Recent developments in the field of machining have led
to substantial progress in techniques aimed at suppressing
chatter during the manufacturing process. This area of study
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has witnessed considerable research and innovation [33].
emphasizes the significance of carefully choosingmachining
parameters to maintain stability, prevent chatter, and fulfill
the demands for quality and efficiency in the machining of
thin-walled SiCp/Al composite workpieces. Another study
proposed that increasing the fundamental angular frequency
of spindle speed variation tends to bemore effective in swiftly
mitigating chatter during turning operations [96].A unique
approach to addressing chatter is investigated in a study that
introduces a diamond turning system assisted by a magnetic
field, with the aim of minimizing chatter during the machin-
ing of titanium alloys. Empirical evidence from experiments
substantiates the efficacy of this magnetic field assistance in
suppressing chatter, improving the quality of the machined
surfaces, and reducing tool wear [71].In another study,
researchers illustrate that a tooling mechanism, capable of
adjusting tool angles, significantly enhances the dynamic
stability in turning processes. This approach can be readily
incorporated into turning machines through straightforward
modifications to the tooling mechanism [13].The challenge
of dealing with simultaneous chatter during machining is
addressed by the researchers. The study investigates para-
metric tunings for vibration absorbers to enhance stability
and introduces a novel tuning criterion, which minimizes the
definite integral of the frequency response function while
taking into consideration the damping of the absorber’s base
component [85].

4 Conclusion

The cutting system experiences chatter, which is a self-
excited vibration. Extensive research has been done on
chatter detection to reveal the cutting state in real time and
lessen its effects. This article examines the state of chatter
detection research fromfour perspectives: gathering informa-
tion, signal processing, choosing features, and classification
using conventional analytical and experimental techniques
as well as the latest artificial intelligence/machine learning
technique. The special focus was to access the ability of AI
techniques and challenges for chatter detection. On the other
hand, some current issues and prospective solutions are dis-
cussed. The following are some findings that can be drawn
from the extant literature.

• Although force and acceleration signals are usually consid-
ered to bemore effective for chatter detection, they are only
used in experiments at the moment since dynamometers
are expensive and accelerometer installation is technically
challenging.

• As a non-stationary phenomenon, chatter is better detected
using the time–frequency domain method.

• Features in the FD or TFD may be more vulnerable to
chatter since it is characterized by the reassignment of
frequency and energy.

• The intelligent recognition system is simpler and user-
friendly as compared to the threshold approach, but the
resilience and self-adaptability of the latter are far greater.

• Despite the expansion of artificial intelligence (AI) in
many areas, the identification of chatter by AI models
is still supported by conventional signal processing tech-
niques. In contrast to other fields, researchers do not
frequently apply AI approaches to identify chatter phe-
nomena.

• Given the complexity of the existing artificial intelligence
models—primarily convolutional or deep neural network-
s—it is nearly hard for their designers to fully comprehend
how they work. However, a machinist can gain a lot from
outlining their choices.

• Despite AI models’ great capacity to make extremely
precise estimates in chatter detection, they nonetheless
encounter certain key difficulties: the learning and clas-
sification processes requiring a considerable amount of
CPU power limits, human knowledge, and time for label-
ing data, particularly when there are many classes, before
training the model; and the lack of transparency due to
their inherent natures.

• High-performance computing platforms with graphics
processing units (GPUs) and tensor processing units
(TPUs), can resolve the computational resource issue dur-
ing model training.

• Deep learning eliminates the need for extensive trial-and-
error by automatically extracting higher-level features and
combining feature extraction and classification into a sin-
gle structure. Deep learning has enhanced the performance
of chatter detection just like machine learning models.

• The minimization of chatter is the main goal of chatter
research. Prior to suppressing the chatter, it is important
to ascertain its nature and evaluate whether it is the cause
of the vibration problem. Therefore, techniques for chatter
management are frequently employed in conjunction with
online chatter detection. Because of this, it is preferable to
incorporate both into the machine tool.

Even though chatter detection investigation has pro-
gressed significantly, several aspects, including sensor signal
selection, real-time signal processing method, feature selec-
tion, database formation, and integration of multiple sensors,
still require improvement. There is room for chatter detection
utilizing AI algorithms that can be aligned with industrial
applications with real-time conditions because the major-
ity of research still employs machining parameters that
are far from industrial applications. Key challenges and
opportunities for future research include improving sensor
accessibility and affordability, enhancing signal processing
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algorithms for greater sensitivity, and integrating multiple
sensors for a holistic view of the machining process. Predic-
tivemodels that anticipate chatter’s onset could revolutionize
the industry, along with leveraging high-performance com-
puting platforms to overcome computational limitations.
Emphasizing synergy between detection and suppression
techniques, especially through online systems and adaptive
control strategies, holds the potential to greatly enhance
machining stability and productivity.
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46. Gök, F., Orak, S., Sofuoğlu, M.A.: The effect of cutting tool mate-
rial on chatter vibrations and statistical optimization in turning
operations. Soft. Comput. 24(22), 17319–17331 (2020). https://
doi.org/10.1007/s00500-020-05022-3

47. Habib, G., Kerschen, G., Stepan, G.: Chatter mitigation using
the nonlinear tuned vibration absorber. Int. J. Non. Linear.
Mech. 91(February), 103–112 (2017). https://doi.org/10.1016/j.
ijnonlinmec.2017.02.014

48. Heyns, P.S.: Tool condition monitoring using vibration mea-
surements: a review. Insight Non-Destructive Test. Cond.
Monit. 49(8), 447–450 (2007). https://doi.org/10.1784/insi.2007.
49.8.447

49. Ji, Y., et al.: EEMD-based online milling chatter detection by
fractal dimension and power spectral entropy. Int. J. Adv. Manuf.
Technol. 92(1–4), 1185–1200 (2017). https://doi.org/10.1007/
s00170-017-0183-7

50. Jin, X., Poudel, A.: 712. Experimental study on high frequency
chatter attenuation in 2-D vibration assistedmicromilling process
CMConventional machining VAMVibration assisted machining,
Mass in and directions, Damping coefficient in and directions,
Stiffness in and di. J. Vibroeng.; 17(6):1392–8716 (2015)

51. K. R. Kashyzadeh and M. J. O. Ghorabi, “Study of Chatter Anal-
ysis in Turning Tool And Control Methods – A Review,” vol. 2,
no. 4, pp. 1–5, 2012.

52. Karam, S., Teti, R.: Wavelet transform feature extraction for chip
form recognition during carbon steel turning. Procedia CIRP 12,
97–102 (2013). https://doi.org/10.1016/j.procir.2013.09.018

53. Khalifa, O.O., Densibali, A., Faris,W.: Image processing for chat-
ter identification inmachining processes. Int. J.Adv.Manuf. Tech-
nol. 31(5–6), 443–449 (2006). https://doi.org/10.1007/s00170-
005-0233-4

54. Kondo, E., Ota, H., Kawai, T.: Newmethod to detect regenerative
chatter using spectral analysis, Part 1: basic study on criteria for
detection of chatter. J.Manuf. Sci. Eng. Trans. ASME 119(4), 4–9
(1997)

55. Kotaiah, K.R., Srinivas, J., Babu, K.J., Srinivas, K.: Prediction
of optimal cutting states during inward turning: an experimental
approach. Mater. Manuf. Process. 25(6), 432–441 (2010). https://
doi.org/10.1080/10426910903229321

56. Kuljanic, E., Sortino, M., Totis, G.: Multisensor approaches for
chatter detection in milling. J. Sound Vib. 312(4–5), 672–693
(2008). https://doi.org/10.1016/j.jsv.2007.11.006

57. Kuljanic, E., Totis, G., Sortino, M.: Development of an intelligent
multisensor chatter detection system in milling. Mech. Syst. Sig-
nal Process. 23(5), 1704–1718 (2009). https://doi.org/10.1016/j.
ymssp.2009.01.003

58. Kurata, Y., Merdol, S.D., Altintas, Y., Suzuki, N., Shamoto, E.:
Chatter stability in turning and milling with in process identi-
fied process damping. J. Adv. Mech. Des. Syst. Manuf. 4(6),
1107–1118 (2010). https://doi.org/10.1299/jamdsm.4.1107

123

https://doi.org/10.1007/s00170-005-2573-5
https://doi.org/10.1016/j.ijmachtools.2005.04.002
https://doi.org/10.1016/j.ymssp.2021.107799
https://doi.org/10.1016/0020-7403(94)00070-Z
https://doi.org/10.1016/S0890-6955(02)00036-6
https://doi.org/10.1016/j.precisioneng.2016.09.021
https://doi.org/10.1016/0020-7357(67)90026-1
https://doi.org/10.1115/1.2899767
https://doi.org/10.1016/j.ijnonlinmec.2010.09.016
https://doi.org/10.1177/16878132231177995
https://doi.org/10.1016/j.ymssp.2021.107755
https://doi.org/10.1115/1.2902125
https://doi.org/10.1016/j.precisioneng.2021.04.006
https://doi.org/10.1115/1.3159047
https://doi.org/10.1016/S0043-1648(03)00356-9
https://doi.org/10.1007/s00170-012-4074-7
https://doi.org/10.2507/IJSIMM19-4-CO16
https://doi.org/10.1007/s00170-018-2306-1
https://doi.org/10.1080/00207543.2021.1891318
https://doi.org/10.1016/j.ijmachtools.2006.01.021
https://doi.org/10.1016/S0890-6955(03)00184-6
https://doi.org/10.1007/s00500-020-05022-3
https://doi.org/10.1016/j.ijnonlinmec.2017.02.014
https://doi.org/10.1784/insi.2007.49.8.447
https://doi.org/10.1007/s00170-017-0183-7
https://doi.org/10.1016/j.procir.2013.09.018
https://doi.org/10.1007/s00170-005-0233-4
https://doi.org/10.1080/10426910903229321
https://doi.org/10.1016/j.jsv.2007.11.006
https://doi.org/10.1016/j.ymssp.2009.01.003
https://doi.org/10.1299/jamdsm.4.1107


International Journal on Interactive Design and Manufacturing (IJIDeM) (2024) 18:3751–3771 3769

59. Kwak, J.S., Ha, M.K.: Neural network approach for diagnosis
of grinding operation by acoustic emission and power signals. J.
Mater. Process. Technol. 147(1), 65–71 (2004). https://doi.org/
10.1016/j.jmatprotec.2003.11.016

60. Lajmert, P., Rusinek, R., Kruszynski, B.: Chatter identification in
milling of Inconel 625 based on recurrence plot technique and
hilbert vibration decomposition. MATEC Web Conf. 148, 1–5
(2018). https://doi.org/10.1051/matecconf/201814809003

61. Lamraoui, M., Barakat, M., Thomas, M., El Badaoui, M.: Chatter
detection in milling machines by neural network classification
and feature selection. J. Vib. Control 21(7), 1251–1266 (2015).
https://doi.org/10.1177/1077546313493919

62. Lamraoui, M., Thomas, M., El Badaoui, M.: Cyclostationarity
approach for monitoring chatter and tool wear in high speed
milling. Mech. Syst. Signal Process. 44(1–2), 177–198 (2014).
https://doi.org/10.1016/j.ymssp.2013.05.001

63. Lange, J.H., Abu-Zahra, N.H.: Tool chatter monitoring in turning
operations usingwavelet analysis of ultrasoundwaves. Int. J. Adv.
Manuf. Technol. 20(4), 248–254 (2002). https://doi.org/10.1007/
s001700200149

64. Lee, B.Y., Tarng, Y.S., Ma, S.C.: Modeling of the pro-
cess damping force in chatter vibration. Int. J. Mach. Tools
Manuf 35(7), 951–962 (1995). https://doi.org/10.1016/0890-
6955(94)00046-M

65. Lei, N., Soshi, M.: Vision-based system for chatter identifica-
tion and process optimization in high-speed milling. Int. J. Adv.
Manuf. Technol. 89(9–12), 2757–2769 (2017). https://doi.org/10.
1007/s00170-016-9770-2

66. Li, D., Cao, H., Chen, X.: Fuzzy control of milling chatter with
piezoelectric actuators embedded to the tool holder. Mech. Syst.
Signal Process. 148(28), 107190 (2021). https://doi.org/10.1016/
j.ymssp.2020.107190

67. Li, D., Cao, H., Chen, X.: Displacement difference feedback con-
trol of chatter in milling processes. Int. J. Adv. Manuf. Technol.
120(9–10), 6053–6066 (2022). https://doi.org/10.1007/s00170-
022-09128-w

68. Li, D., Cao, H., Zhang, X., Chen, X., Yan, R.: Model predictive
control based active chatter control inmilling process.Mech. Syst.
Signal Process.128(28), 266–281 (2019). https://doi.org/10.1016/
j.ymssp.2019.03.047

69. Li, K., He, S., Li, B., Liu, H., Mao, X., Shi, C.: A novel online
chatter detection method in milling process based on multiscale
entropy and gradient tree boosting. Mech. Syst. Signal Pro-
cess. 135, 106385 (2020). https://doi.org/10.1016/j.ymssp.2019.
106385

70. Li, X., Wan, S., Yuan, J., Yin, Y., Hong, J.: Active suppression
of milling chatter with LMI-based robust controller and electro-
magnetic actuator. J. Mater. Process. Technol. 297(May), 117238
(2021). https://doi.org/10.1016/j.jmatprotec.2021.117238

71. Li, D., Yip,W.S., Cao, H., Zhang, H., Tang, Y.M., To, S.: “Chatter
suppression in diamond turning using magnetic field assistance.
J. Mater. Process. Technol. 321(August), 118150 (2023). https://
doi.org/10.1016/j.jmatprotec.2023.118150

72. Lin, S.C., Hu, M.R.: Low vibration control system in turning. Int.
J. Mach. Tools Manuf 32(5), 629–640 (1992). https://doi.org/10.
1016/0890-6955(92)90018-C

73. Liu, H., Bo, Q., Zhang, H., Wang, Y.: Analysis of Q-factor’s
identification ability for thin-walled part flank and mirror milling
chatter. Int. J. Adv. Manuf. Technol. 99(5–8), 1673–1686 (2018).
https://doi.org/10.1007/s00170-018-2580-y

74. Liu, H., Chen, Q., Li, B., Mao, X., Mao, K., Peng, F.: On-line
chatter detection using servo motor current signal in turning. Sci.
China Technol. Sci. 54(12), 3119–3129 (2011). https://doi.org/
10.1007/s11431-011-4595-6

75. Liu, Z., Memon, A.A., Negussie, W., Ketema, H.: Interpreting
the sustainable development of human capital and the sheepskin

effects in returns to higher education: empirical evidence from
Pakistan. Sustain. (2020). https://doi.org/10.3390/su12062393

76. Liu, Y., Wang, X., Lin, J., Zhao, W.: Early chatter detection in
gear grinding process using servo feed motor current. Int. J. Adv.
Manuf. Technol. 83(9–12), 1801–1810 (2016). https://doi.org/10.
1007/s00170-015-7687-9

77. Liu, Y., Wu, B., Ma, J., Zhang, D.: Chatter identification of the
milling process considering dynamics of the thin-walled work-
piece. Int. J. Adv. Manuf. Technol. 89(5–8), 1765–1773 (2017).
https://doi.org/10.1007/s00170-016-9190-3

78. Liu, C., Zhu, L., Ni, C.: Chatter detection in milling process based
on VMD and energy entropy. Mech. Syst. Signal Process. 105,
169–182 (2018). https://doi.org/10.1016/j.ymssp.2017.11.046

79. Lu, K., Lian, Z., Gu, F., Liu, H.: Model-based chatter stability
prediction and detection for the turning of a flexible workpiece.
Mech. Syst. Signal Process. 100, 814–826 (2018). https://doi.org/
10.1016/j.ymssp.2017.08.022

80. Ma, W., Yang, Y., Jin, X.: Chatter suppression in micro-
milling using shank-mounted Two-DOF tuned mass damper.
Precis. Eng. 72(May), 144–157 (2021). https://doi.org/10.1016/
j.precisioneng.2021.04.017

81. Mahdavinejad, R.: Finite element analysis of machine and
workpiece instability in turning. Int. J. Mach. Tools Manuf
45(7–8), 753–760 (2005). https://doi.org/10.1016/j.ijmachtools.
2004.11.017

82. Marui, E., Ema, S., Hashimoto, M., Wakasawa, Y.: Plate insertion
as a means to improve the damping capacity of a cutting tool
system. Int. J. Mach. ToolsManuf 38(10–11), 1209–1220 (1998).
https://doi.org/10.1016/S0890-6955(98)00001-7

83. Mei, Z., Yang, S., Shi, H., Chang, S., Ehmann, K.F.: Active chat-
ter suppression by on-line variation of the rake and clearance
angles in turning- principles and experimental investigations. Int.
J. Mach. Tools Manuf 34(7), 981–990 (1994). https://doi.org/10.
1016/0890-6955(94)90029-9

84. Merritt, H.E.: Theory of self-excited machine-tool chatter: Con-
tribution to machine-tool chatter research-1. J. Manuf. Sci. Eng.
Trans. ASME 87(4), 447–454 (1965). https://doi.org/10.1115/1.
3670861

85. Mobaraki, M., Ratava, J.: Tuning vibration absorbers to mitigate
simultaneous regenerative and mode-coupling chatter. Noise Vib.
Worldw. (2023). https://doi.org/10.1177/09574565231179731

86. Monnin, J., Kuster, F., Wegener, K.: Optimal control for chat-
ter mitigation in milling-Part 2: experimental validation. Control.
Eng. Pract. 24(1), 167–175 (2014). https://doi.org/10.1016/j.
conengprac.2013.11.011

87. Monnin, J., Kuster, F., Wegener, K.: Optimal control for chatter
mitigation in milling-Part 1: modeling and control design. Con-
trol. Eng. Pract. 24(1), 156–166 (2014). https://doi.org/10.1016/
j.conengprac.2013.11.010

88. Moradi, H., Bakhtiari-Nejad, F., Movahhedy, M.R., Vossoughi,
G.: Stability improvement and regenerative chatter suppression
in nonlinear milling process via tunable vibration absorber. J.
Sound Vib. 331(21), 4668–4690 (2012). https://doi.org/10.1016/
j.jsv.2012.05.032

89. Moradi, H., Movahhedy, M.R., Vossoughi, G.R.: Robust con-
trol strategy for suppression of regenerative chatter in turning.
J. Manuf. Process. 11(2), 55–65 (2009). https://doi.org/10.1016/
j.jmapro.2009.06.002

90. Munoa, J., et al.: Chatter suppression techniques in metal cutting.
CIRP Ann. - Manuf. Technol. 65(2), 785–808 (2016). https://doi.
org/10.1016/j.cirp.2016.06.004

91. N.H.Hanna, S.A. Tobias (1973) Theory of nonlinear regenerative
chatter. Am. Soc. Mech. Eng., no. 73-DET-20

92. Olgac, N., Holm-Hansen, B.T.: A novel active vibration absorp-
tion technique: delayed resonator. J. Sound Vib. 176(1), 93–104
(1994). https://doi.org/10.1006/jsvi.1994.1360

123

https://doi.org/10.1016/j.jmatprotec.2003.11.016
https://doi.org/10.1051/matecconf/201814809003
https://doi.org/10.1177/1077546313493919
https://doi.org/10.1016/j.ymssp.2013.05.001
https://doi.org/10.1007/s001700200149
https://doi.org/10.1016/0890-6955(94)00046-M
https://doi.org/10.1007/s00170-016-9770-2
https://doi.org/10.1016/j.ymssp.2020.107190
https://doi.org/10.1007/s00170-022-09128-w
https://doi.org/10.1016/j.ymssp.2019.03.047
https://doi.org/10.1016/j.ymssp.2019.106385
https://doi.org/10.1016/j.jmatprotec.2021.117238
https://doi.org/10.1016/j.jmatprotec.2023.118150
https://doi.org/10.1016/0890-6955(92)90018-C
https://doi.org/10.1007/s00170-018-2580-y
https://doi.org/10.1007/s11431-011-4595-6
https://doi.org/10.3390/su12062393
https://doi.org/10.1007/s00170-015-7687-9
https://doi.org/10.1007/s00170-016-9190-3
https://doi.org/10.1016/j.ymssp.2017.11.046
https://doi.org/10.1016/j.ymssp.2017.08.022
https://doi.org/10.1016/j.precisioneng.2021.04.017
https://doi.org/10.1016/j.ijmachtools.2004.11.017
https://doi.org/10.1016/S0890-6955(98)00001-7
https://doi.org/10.1016/0890-6955(94)90029-9
https://doi.org/10.1115/1.3670861
https://doi.org/10.1177/09574565231179731
https://doi.org/10.1016/j.conengprac.2013.11.011
https://doi.org/10.1016/j.conengprac.2013.11.010
https://doi.org/10.1016/j.jsv.2012.05.032
https://doi.org/10.1016/j.jmapro.2009.06.002
https://doi.org/10.1016/j.cirp.2016.06.004
https://doi.org/10.1006/jsvi.1994.1360


3770 International Journal on Interactive Design and Manufacturing (IJIDeM) (2024) 18:3751–3771

93. Otto, A., Rauh, S., Ihlenfeldt, S., Radons, G.: Stability of milling
with non-uniform pitch and variable helix Tools. Int. J. Adv.
Manuf. Technol. 89(9–12), 2613–2625 (2017). https://doi.org/10.
1007/s00170-016-9762-2

94. P. Thangavel, V. Selladurai, R. Shanmugam (2006) Application
of response surface methodology for predicting flank wear in
turning operation. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
220(6):997–1003. https://doi.org/10.1243/09544054JEM460SC.
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